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Abstract: Ovarian cancer is one of the most dangerous gynecologic cancers worldwide, showing
a high fatality rate and recurrence due to diagnosis at an advanced stage of the disease and the
occurrence of chemoresistance, which weakens the therapeutic effects of the chemotherapeutic
treatments. In fact, although paclitaxel and platinum-based drugs (carboplatin or cisplatin) are
widely used alone or in combination to treat ovarian cancer, the occurrence of chemoresistance
significantly reduces the effects of these drugs. Metformin is a hypoglycemic agent that is commonly
used for the treatment of type 2 diabetes mellitus and non-alcoholic fatty liver disease. However,
this drug also shows anti-tumor activity, reducing cancer risk and chemoresistance. This review
analyzes the current literature regarding the role of metformin in ovarian cancer and investigates
what is currently known about its effects in reducing paclitaxel and platinum resistance to restore
sensitivity to these drugs.
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1. Introduction

Among gynecologic cancers, ovarian cancer is one of the most lethal, showing a
high fatality rate and recurrence due to diagnosis at an advanced stage of the disease
and the development of chemoresistance, which weakens the therapeutic effects of the
chemotherapeutic treatments [1–4]. In fact, although most patients are initially responsive
to the chemotherapeutic treatment with paclitaxel and platinum-based drugs (carboplatin
or cisplatin), almost 80% of women relapse due to chemoresistance occurrence with these
treatments [1]. Metformin (also known as 1,1-dimethylbiguanide hydrochloride) is a
hypoglycemic agent commonly used for the treatment of type 2 diabetes mellitus and
non-alcoholic fatty liver disease, but it also shows anti-tumor activity, reducing cancer
risk and chemoresistance [5,6]. Importantly, metformin also plays a key role in regulating
mitochondrial function since it can inhibit complex I of the respiratory chain [7]. Although
paclitaxel and platinum-based drugs are widely used alone or in combination to treat
ovarian cancer, chemoresistance occurrence significantly reduces their effects. The chemical
structures of paclitaxel, carboplatin, cisplatin, and metformin are shown in Figure 1.

Platinum drugs, such as cisplatin and carboplatin, used alone or in combination with
other drugs, are the most used chemotherapeutics against ovarian cancer, and among
them, cisplatin (cis-diamminedichloroplatinum II, CDDP) shows the highest efficiency.
Cisplatin and carboplatin form both mono-adducts (binding the N7-guanine in DNA),
and intra- and/or inter-strand crosslinks [4,8,9]. These DNA structural alterations block
DNA synthesis and transcription, causing cell death [4,10]. One of the most important
mechanisms of platinum-based drug resistance consists of the binding inhibition between
platinum and DNA by activating efflux transporters. In addition, DNA alterations induced
by platinum-based drugs can be fixed by activating DNA repair pathways [1]. Another
important mechanism of the action of platinum derivatives is associated with the generation
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of potent cellular reactive oxygen species (ROS) [3,11]. Indeed, several enzymes involved
in toxic effect neutralization due to excessive ROS levels have been proposed as therapeutic
targets for several malignancy treatments, including those for ovarian cancer [3,12–14],
since enzyme inhibition is able to improve tumor cell chemosensitivity [15–18]. Consistently,
it deserves to be mentioned that ovarian cancer cells also show increased expression of
antioxidant enzymes, which can inactivate the reactive oxygen species (ROS) induced by
platinum-based drugs [3,19].
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Figure 1. Chemical structures of paclitaxel, carboplatin, cisplatin, and metformin.

Paclitaxel exerts its anticancer effects by binding to the tubulin β-subunit, leading
to tubulin polymerization in the absence of guanosine-5′-triphosphate (GTP), which is a
factor normally required for microtubule polymerization [20]. Paclitaxel binding to tubulin
stabilizes the microtubules, preventing tubulin depolymerization. This process inhibits
microtubule shortening during anaphase in the cell cycle by blocking sister chromatid
separation, leading to cell death [21]. Several mechanisms of paclitaxel resistance have been
found. In particular, paclitaxel, like platinum-based chemotherapies, can be pumped out
by efflux transporters, such as the ATP-binding cassette transporter (also known as ABCB1,
P-glycoprotein, P-gp, or MDR1) [22–24]. Moreover, the antiproliferative effects of paclitaxel
can be counteracted by the activation of pro-mitotic factors, such as phosphoinositide
3-kinase/protein kinase B (PI3K/AKT) pathway activation. In addition, paclitaxel can
transform B-cell lymphoma 2 (Bcl-2) anti-apoptotic to pro-apoptotic activity by binding
to the N-terminal loop of Bcl-2; thus, paclitaxel-resistant cancer cells can counteract this
pro-apoptotic activity by increasing the expression of Bcl-2 family anti-apoptotic mem-
bers [25,26]. It has been found that metformin can induce apoptosis in both primary ovarian
cancer cells and SKOV-3 cells by downregulating Bcl-2 and Bcl-xL expression and upregu-
lating Bax and Cytochrome c expression. Moreover, metformin treatment can lead to cell
cycle arrest in the G0/G1 and S-phases. Interestingly, the apoptotic effects of metformin
can be enhanced by combining metformin with carboplatin and/or paclitaxel, highlighting
the important role of metformin in improving the sensitivity to these drugs [27].

The aim of this review was to provide an overview of the current literature regard-
ing the role of metformin in ovarian cancer’s response to standard therapy, particularly
investigating its effects in reducing paclitaxel and platinum resistance and restoring the
sensitivity to these drugs.
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2. Metformin as Regulator of Cancer Cell Progression and Resistance

Tunneling nanotubes (TNTs) are small (diameter 50–800 nm) membrane-lined con-
duits that can form connections between cells and ensure various exchanges, such as the
exchange of mitochondria and microRNAs, between cells [28–30]. These structures have
a potential in vivo role in human malignancies since they can connect tumoral cellular
microenvironments with normal ones. Moreover, it has been proven that hypoxic envi-
ronments can stimulate tunneling nanotube (TNT) formation in both SKOV3 and C200
chemoresistant ovarian cancer cells [31]. Desir and colleagues found that the TNT formation
rate of A2780 cells was higher than that of SKOV3 and benign ovarian epithelial (IOSE) cells
when co-cultured with chemoresistant C200 and chemoresistant A2780 cells. Moreover,
hypoxic conditions increased TNT formation between chemoresistant ovarian cancer cells.
Interestingly, metformin treatment significantly decreased TNT formation by suppressing
the mTOR signaling pathway, a key modulator of TNT formation [28], under both hypoxic
and normoxic conditions in human malignant pleural mesothelioma cells. Interestingly, the
authors found that metformin inhibited mTOR through the activation of 5′ AMP-activated
protein kinase (AMPK), suggesting that metformin is an indirect inhibitor of mTOR. Impor-
tantly, TNT formation was most dramatically inhibited in platinum-resistant SKOV3 and
chemosensitive A2780 cells. Thus, TNT formation represents a potential mechanism for
intercellular communication in both chemosensitive and chemoresistant ovarian cancer,
suggesting that TNTs are a potential therapeutic target in cancer-directed therapy [31].

Autophagy is a self-stabilizing process characterized by a regulated degradation and
recycling of cellular organelles and proteins that play a pivotal role in cell protection
and cell death since autophagy often precedes apoptosis [32–34]. Thus, autophagy is a
double-edged sword in tumor development since it can regulate cancer cell resistance
to chemotherapeutic agents that promote apoptosis. Interestingly, it was reported that
combining metformin with CDDP and methotrexate (MTX) significantly decreased the
half-inhibitory concentration (IC50) of CDDP and MTX in the drug-resistant cancer cells
SKOV3/CDDP, indicating that cell proliferation was more inhibited when metformin was
used with chemotherapeutics than when using chemotherapeutics alone. Importantly, the
authors found that metformin increased microtubule-associated protein 1 light chain 3-II
(LC3) protein expression, a marker of autophagy, increasing autophagy in SKOV3/CDDP
cells compared with that in SKOV3 cells, demonstrating that metformin can sensitize drug-
resistant ovarian cancer cells to chemotherapeutic agents by inducing autophagy [35]. Long
non-coding RNAs (lncRNAs) are RNA sequences of about 200 nucleotides that play im-
portant roles in the regulation of multiple biological activities, including cell proliferation,
differentiation, autophagy, and apoptosis. Accumulating evidence shows that the impair-
ment of lncRNA regulation can lead to the development of chemoresistance and metastasis
in many types of cancers, including ovarian cancer [3,36–39]. Different from lncRNAs, mi-
croRNAs (miRNAs) are smaller (16–30 nucleotides) noncoding RNAs that can regulate gene
expression by targeting specific 3′-untranslated regions (3′-UTR) of target mRNA. Both
lncRNAs and miRNAs regulate important cell processes and have been used as markers in
many cancerous and non-cancerous diseases [36,37,39–43]. Importantly, these two types
of noncoding RNAs are not independent of each other, but there is a cross-talk in the
regulation of their expression that allows lncRNAs to regulate miRNA expression and vice
versa [40]. Interestingly, it has been reported that metformin inhibits cell viability, migration,
invasion, and autophagy and promotes apoptosis in SKOV3 and A2780 paclitaxel-resistant
ovarian cancer cells (SKOV3/PR and A2780/PR). In fact, the authors found that metformin
significantly reduced lncRNA small nucleolar RNA host gene 7 (SNHG7) expression, but
the overexpression of this gene played an important role in inducing paclitaxel resistance
in both cell lines. The authors found that metformin treatment could reverse SNHG7-
mediated paclitaxel resistance and autophagy in ovarian cancer cells. The authors also
proved that in non-small-cell lung cancer (NSCLC), SNHG7 directly bound to miR-3127-5p,
an inhibitor of cell proliferation, invasion, and drug resistance [44], and metformin could
increase miR-3127-5p levels in paclitaxel-resistant cells by inhibiting SNHG7 expression.
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Moreover, metformin treatment significantly decreased the tumor growth and autophagy
in xenografts of A2780/PR overexpressing SNHG7. Thus, metformin treatment could
improve paclitaxel sensitivity by regulating SNHG7/miR-3127-5p-mediated autophagy in
ovarian cancer cells [45].

Cancer stem cells (CSCs) are tumor cells characterized by high tumorigenicity, self-
renewal capacity, and a high rate of metastases and chemoresistance [46,47]. An interesting
study evaluated metformin’s effect during chemoresistance development in A2780 and
OAW42 ovarian cancer cells. Interestingly, the authors found that metformin cotreatment
significantly reduced cell proliferation and migration and reduced ERK and AKT kinase
activation by increasing chemosensitivity to cisplatin and paclitaxel. The authors found
that the increased chemosensitivity was due to CSC population reduction in both A2780
and OAW42 cells. In fact, the expression of CD133, a CSC biomarker, and pluripotent genes,
such as Oct 4, Sox 2, and Nanog, were found to be significantly downregulated in these
chemosensitive cells. The authors found that the levels of two amino acids (taurine and
histidine) were upregulated in resistant A2780 cells treated with metformin, demonstrating
the metabolic modulation of metformin in reducing CSC cells by increasing taurine and
histidine levels. These data are in agreement with previous studies showing an important
role of taurine in promoting stem cell differentiation [48,49]. These findings were validated
by other authors treating chemoresistant ovarian cancer cells with taurine. In fact, this
treatment considerably reduced the cancer stem cell population and chemoresistance in
these cells [50].

AXL and TYRO3 receptor tyrosine kinases are two of the three members of the TAM
subfamily of receptor tyrosine kinases (RTKs), a family of receptors widely expressed
in normal and cancerous tissues that is involved in the modulation of pro-survival and
anti-apoptotic signals. These receptors play a key role in tumor cells since they can favor
cancer cell survival and proliferation. For these reasons, TAM kinases are potential ther-
apeutic targets in cancer treatment since their inhibition can reduce cancer cell survival,
enhance chemosensitivity, and reduce metastasis occurrence [51,52]. An interesting study
demonstrated that metformin significantly decreased the viability of sensitive (A2780 and
SKOV3) and cisplatin/taxol-resistant ovarian cancer cells (A2780/CDDP and SKOV3/TR
cells, respectively) in a dose-dependent manner. Moreover, metformin treatment of ovarian
cancer cells significantly decreased both mRNA and protein levels of Axl and Tyro3 in a
dose-dependent manner, indicating that metformin suppresses AXL and TYRO3 expression
at the transcriptional level. Metformin treatment also reduced proliferation in SKOV3 and
taxol-resistant SKOV3/TR cells transfected with AXL and TYRO3 siRNAs, suggesting these
two proteins as targets of metformin. Furthermore, metformin significantly reduced the
levels of X-linked inhibitor of apoptosis protein (XIAP), an anti-apoptotic molecule, thus
favoring apoptosis. Metformin treatment also showed inhibitory effects on Erk and STAT3
phosphorylation in both sensitive and resistant cell lines. Thus, these data show that met-
formin can sensitize cisplatin/taxol-resistant ovarian cancer cells to these drugs, reducing
AXL and TYRO3 RTK expression and favoring apoptosis [53] suggesting a potential use of
metformin as anticancer compound alone or in combination with other molecules to target
different cell pathways [54,55].

Nuclear factor kappa B (NF-κB) is an important transcription factor involved in the
inflammatory and innate immune responses. However, this transcription factor also plays
a key role in drug resistance in many cancer types, including ovarian cancer, and it is
constitutively active in many cancerous cells [56]. In fact, NF-κB inhibition significantly re-
duced cell proliferation and induced apoptosis in drug-resistant ovarian cancer cells [57,58].
Interestingly, it has been reported that metformin exhibited antiproliferative effects in
the paclitaxel-resistant A2780/PR and cisplatin-resistant A2780/CDDP cell lines. In fact,
cisplatin or paclitaxel combined with metformin significantly improved treatment effi-
ciency, reducing the cell proliferation rate in both sensitive and resistant cells. In addition,
metformin significantly reduced the NF-κB signaling pathway and cytokine production.
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Furthermore, metformin further improved the efficiency of these drugs, reducing drug-
induced inflammation [59].

Generally, the tumor microenvironment significantly contributes to cancer progression
and the chemotherapeutic response [60]. The role of inflammation in the ovarian cancer
microenvironment and the effects of metformin in its regulation were also investigated by
Xu and colleagues [61]. In this study, the authors found a significant IL-6 overexpression
in the stromal fibroblasts of ovarian cancer samples from patients that had been treated
with cisplatin. However, the authors found that the ovarian cancer stroma from patients
with routine metformin administration exhibited lower IL-6 expression. Interestingly,
the authors found that metformin cotreatment significantly reduced IL-6 secretion in the
cisplatin-stimulated MRC5 fibroblast cell line and fibroblast-facilitated tumor growth when
cocultured with the ovarian cancer cell line SKOV3, as well as in murine xenograft models.
Notably, authors found that metformin treatment significantly inhibited IL-6 secretion by
suppressing NFκB signaling. This study highlighted a novel mechanism of metformin
in suppressing ovarian cancer progression through the modulation of NFκB signaling in
stromal cancer fibroblasts, alleviating stromal inflammation in ovarian cancer [61].

Vascular endothelial growth factor (VEGF) is a key regulator of angiogenesis and vas-
culogenesis that binds to the tyrosine kinase receptors (VEGFRs) on endothelial cells [62].
However, VEGFRs are present not only in endothelial cells but also in neurons, retinal
epithelial cells, and tumor cells, suggesting that VEGF also plays a pleiotropic role in
non-endothelial cells. In fact, it has been reported that VEGF induces ERK1/2 phospho-
rylation in cancer cells, promoting tumor progression and migration [63–66]. Metformin
significantly reduced the viability of HO-8910 cells in a time- and concentration-dependent
manner. Moreover, metformin inhibited cell viability and induced apoptosis when it was
combined with cisplatin. In addition, the expression of phosphorylated (p)ERK1/2, VEGF,
VEGFR2, and B-cell lymphoma 2 (Bcl-2) was downregulated when metformin was used as
a cotreatment with cisplatin, whereas Bcl-2-associated X (Bax) and caspase-3 expression
was significantly upregulated, demonstrating that metformin in combination with cisplatin
significantly improved the cisplatin response, inhibiting ERK1/2 activation by VEGF and
VEGFR2 downregulation in ovarian cancer cells [67].

Insulin-like growth factor 1 (IGF-1) is a pluripotent growth factor that binds to its
receptor IGF1R, inhibiting apoptosis induced by chemotherapy. In addition, it activates the
AKT signaling pathway, favoring cancer progression and chemoresistance by inducing mul-
tidrug resistance-associated protein 2 (MRP2) expression [68–71]. MRP2 is an ATP-binding
cassette superfamily transporter that is involved in cytotoxic agent effluxes, including
anticancer drugs, such as cisplatin [72,73]. An interesting study evaluated the role of
metformin in regulating the IGF/IGF1R/AKT/MRP2 axis. In this study, the authors found
that the IC50 value of cisplatin in cisplatin-resistant CP70 cells decreased significantly in a
concentration-dependent manner. Moreover, metformin significantly increased apoptosis
and the percentage of cells in the G0/G1 phase of the cell cycle. Interestingly, metformin
significantly reduced the expression of MRP2, IGF1, IGF1R, pIGF1, pIGF1R, AKT, and pAkt
proteins. In nude mice, the tumor volumes of cisplatin-treated groups were significantly
lower than those of the control group, and this volume was further reduced by cisplatin and
metformin cotreatment, indicating a synergic effect of these two substances in inhibiting
tumor growth. Thus, metformin can significantly improve the sensitivity of ovarian cancer
CP70 cells to cisplatin by inhibiting the IGF/IGF1R/AKT/MRP2 axis [74].

The studies discussed in the previous paragraph and summarized in Table 1 clearly
showed that metformin plays a key role in modulating many important processes involved
in ovarian cancer progression and resistance.
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Table 1. Metformin as a regulator of cancer cell progression and resistance.

Model Target Results Ref.

A2780, C200, SKOV3, and IOSE cell lines Tunneling nanotubes (TNTs) Metformin decreased TNT formation, suppressing mTOR signaling by
AMPK activation. [31]

SKOV3/CDDP and SKOV3 cells Autophagy
Metformin increased LC3 expression, inducing autophagy. Combining
metformin with DDP or MTX decreased the IC50 of CDDP and MTX in

the drug-resistant cancer cell lines SKOV3/CDDP.
[35]

Paclitaxel-resistant A2780/PR and SKOV3/PR cells SNHG7/miR-3127-5p axis

Metformin inhibited cell viability, migration, invasion, and autophagy
and promoted apoptosis by reducing SNHG7 expression. Metformin

treatment reversed SNHG7-mediated paclitaxel sensitivity and
autophagy by increasing miR-3127-5p expression. Metformin decreased

tumor growth and autophagy in xenografts of A2780/PR by
SNHG7 overexpression.

[45]

A2780 and OAW42 cells resistant and sensitive to cisplatin
and paclitaxel Cancer stem cells (CSCs)

Metformin cotreatment significantly reduced cell proliferation and
migration and increased chemosensitivity by reducing the CSC

population by increasing taurine levels.
[50]

A2780, SKOV3, cisplatin resistant A2780/CDDP and
taxol-resistant SKOV3/TR cells AXL and TYRO3

Metformin decreased sensitive and cisplatin/taxol-resistant ovarian
cancer cell viability. Metformin decreased both AXL and TYRO3 mRNA

and protein levels. Metformin treatment reduced ERK and STAT3
phosphorylation in both sensitive and resistant cell lines.

[53]

Paclitaxel-sensitive (A2780) and -resistant (A2780/PR)
Cisplatin-sensitive (A2780) and -resistant (A2780/CDDP) cells NF-κB

The combination of metformin with cisplatin or paclitaxel improved the
efficiency of treatment, reducing the cell proliferation rate in both

sensitive and resistant cells. Metformin reduced the NF-κB signaling
pathway and cytokine production.

[59]

Ovarian cancer samples, MRC5 and SKOV3 cells NF-κB

Tumor stroma of samples from patients with routine metformin
administration exhibited lower IL-6 expression. Metformin cotreatment

reduced IL-6 secretion in cisplatin-stimulated MRC5 cells, reducing
tumor growth in 3D cocultures with SKOV3 and in murine xenograft

models. Metformin inhibited NFκB signaling.

[61]

HO-8910 cells ERK1/2 activation

Metformin combined with cisplatin inhibited cell viability and induced
apoptosis. Metformin reduced pERK1/2, VEGF, VEGFR2, and Bcl-2
expression when used as a cotreatment with cisplatin, whereas the

expression of Bax and caspase-3 was upregulated.

[67]

Cisplatin-resistant CP70 cells IGF/IGF1R/AKT/MRP2 axis

Metformin reduced the IC50 value of cisplatin in a
concentration-dependent manner. Metformin increased apoptosis and

the cell number in the G0/G1 phase of the cell cycle. Metformin reduced
MRP2, IGF1, IGF1R, pIGF1, pIGF1R, AKT, and pAkt expression.

[74]

Insulin-like growth factor 1 (IGF-1); IGF-1 receptor (IGF1R); Small nucleolar RNA hostgene 7 (SNHG7); Multidrug resistance-associated protein 2 (MRP2); Extracellular signal-regulated
kinase 1/2 (ERK1/2); phospho-AKT (pAKT); nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB); cisplatin (CDDP); paclitaxel (PR)
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3. Role of Metformin in Regulating the Metabolic Pathway in Resistant Ovarian
Cancer Cells

It is known that tumor cells are defective in mitochondrial respiration and mainly
dependent on glycolytic metabolism, but this hypothesis is still a matter of debate since
this mechanism has not been found in all types of tumors. Although ovarian cancer is one
of the most dangerous gynecological cancers worldwide, its metabolic mechanisms are still
poorly understood.

An interesting study by Ricci and colleagues evaluated the metabolic asset in cisplatin-
resistant ovarian cancer patient-derived xenografts (PDXs) compared with sensitive PDXs
and found that an increase in the glycolytic genes, a downregulation of the gluconeogenic
axis, and a decrease in pyruvate production were present in resistant PDXs, suggesting
an enhanced glycolytic pathway. In addition, they found that the oxygen consumption
rate (OCR) and mitochondrial respiration were higher in resistant PDXs than in sensitive
PDXs. Interestingly, the authors found that metformin could reverse platinum resistance
in PDXs, suggesting an important role of this drug in improving the response to this
chemotherapy [75]. This effect of metformin can be explained by the fact that metformin
can impair mitochondrial function by suppressing complex I of the electron transport
chain [76], reversing the tumor metabolic properties to those of CDDP-sensitive PDX, thus
regaining drug sensitivity.

The importance of targeting the metabolic pathways as a therapeutic approach for
ovarian cancer and the role of metformin in enhancing the effects of these treatments have
also been demonstrated by other authors.

Tumor necrosis factor receptor-associated protein 1 (TRAP1) is a key modulator of
cell metabolism and is upregulated in several types of tumors [77]. It has been reported
that TRAP1 expression was inversely correlated with both ovarian cancer tumor stage
and lower survival. In particular, TRAP1 expression was lower in the more advanced
disease grades, and patients with low expression of TRAP1 had lower survival. Moreover,
TRAP1 expression was lower in platinum-resistant (PEA2) cells compared with platinum-
sensitive (PEA1) cells. Interestingly, TRAP1 silencing in PEA1 cells induced resistance to
cisplatin, and resistant cells showed increased oxidative metabolism, indicating increased
mitochondrial respiration. Strikingly, the authors found that cisplatin resistance was
reversible upon adding metformin to cisplatin treatment, leading to increased cell death.
Interestingly, it has also been found that the increased metabolic activity in low TRAP1-
expressing cells was accompanied by increased production of inflammatory mediators,
such as interleukin IL-6 and IL-8 [78]. Thus, the chemosensitive effect induced by metformin
cotreatment was due to its effect of inhibiting mitochondrial function (inhibiting complex I
of the respiratory chain).

Hexokinase II (HKII) is a key metabolic enzyme significantly upregulated in many
types of cancer, including ovarian cancer [79–81]. HKII is strongly correlated with its
upstream activator pyruvate dehydrogenase kinase-1 (PDK1), a key regulator of cell pro-
liferation that regulates HKII expression and metabolic activity [82]. Moreover, HKII
expression is also regulated by p53, a key tumor suppressor protein frequently mutated in
various subtypes of epithelial ovarian cancer and associated with chemoresistance develop-
ment, tumor progression, metastasis, and adverse clinical outcomes [2,83]. In particular,
p53 can downregulate HKII expression by binding to the HKII promoter, leading to de-
creased glycolysis and increased chemosensitivity in ovarian cancer cells. Interestingly, it
has been reported that metformin can competitively inhibit HKI and HKII by mimicking
their enzymatic product glucose-6-phosphate [84]. Thus, Han and colleagues investigated
the role of metformin on HKII and phosphoPDK1 (pPDK1, the activated form PDK1) ex-
pression, along with CDDP-induced apoptosis in the Hey (p53-wt) and OV-90 (p53-mutant)
cell lines. They found that metformin treatment significantly enhanced the apoptotic rate
in cisplatin-resistant Hey cells. Moreover, metformin treatment significantly decreased
HKII and pPDK1 expression in Hey cells but not in p53-mutant OV-90 cells, suggesting
that p53 is required for HKII and pPDK1 suppression induced by metformin and CDDP.



Int. J. Mol. Sci. 2022, 23, 12893 8 of 15

In addition, metformin significantly decreased the glucose consumption level in Hey cells
treated together with CDDP, contributing to increased apoptosis. Thus, metformin treat-
ment can sensitize chemoresistant ovarian cancer cells to cisplatin via the PDK1/HKII
pathway, suggesting a potential role of metformin in improving ovarian cancer sensitivity
to cisplatin [85].

Xintaropoulou and colleagues found that the expression levels of GLUT1 and HKII
were higher in high-grade serous ovarian cancer (HGSOC) than in non-HGSOC. Moreover,
GLUT1 expression increased with cancer stage advancement. Interestingly, glycolytic path-
way inhibitors, such as STF31 (a pyridyl-anilino-thiazole that alters glycolytic metabolism
and binds the GLUT1 transporter [86]) and oxamic acid (a pyruvate analog acting as a
competitive inhibitor of LDH [87]), significantly attenuated cell proliferation in platinum-
sensitive (PEA1 cell line) and platinum-resistant (PEA2 cell line) HGSOC cell line models in
a concentration-dependent manner. Furthermore, the authors showed a synergic effect of
STF31 and oxamic acid when combined with metformin, resulting in a significant increase
in cell death in both chemosensitive and chemoresistant ovarian cancer cell lines. These
findings support the efficiency of targeting the glycolytic pathway in ovarian cancer and
further support the role of metformin in enhancing the effects of this type of treatment [88].

The studies discussed in the paragraph above and summarized in Table 2 show that
metformin plays an important role in regulating important metabolic mediators in drug-
resistant ovarian cancer cells.

Table 2. Studies investigating metformin as a metabolic modulator.

Model Target Results Ref.

Ovarian cancer patient-derived
xenografts (PDXs) resistant and

sensitive to cisplatin
Mitochondrial activity?

Metformin reversed platinum
resistance in

cisplatin-resistant PDXs.
[75]

Platinum-sensitive (PEA1) and
platinum-resistant (PEA2) cells Mitochondrial activity

Cisplatin resistance was reversible
upon adding metformin to the

cisplatin treatment, increasing cell
death in TRAP1-silenced cells.

[78]

Hey (p53-wt) and OV-90
(p53-mutant) cell lines HKII and pPDK1

Metformin enhanced the apoptotic
rate in cisplatin-resistant Hey cells

and decreased HKII and pPDK1
expression in Hey cells but not in

p53-mutant OV-90 cells. Metformin
decreased the glucose consumption
level in Hey cells treated with CDDP,
contributing to increased apoptosis.

[85]

Platinum-sensitive (PEA1) and
platinum-resistant (PEA2) cells Mitochondrial activity?

Metformin synergically increased
the effects of STF31 and oxamic acid

when used as a cotreatment,
resulting in a significant increase in
cell death in both chemosensitive

and chemoresistant ovarian cancer
cell lines.

[88]

Cisplatin (CDDP); Hexokinase II (HKII); phosphor pyruvate dehydrogenase kinase-1 (pPDK1)

4. Role of Metformin in Cotreatment with SB203580 or Phenethyl Isothiocyanate (PEITC)

The p38 mitogen-activated protein kinase (MAPK) signaling pathway plays a key role
in regulating many cellular processes, including cell proliferation, differentiation, apoptosis,
and chemoresistance, in various types of cancers, including ovarian cancer [89,90]. The
MAPK family includes many members, but p38, extracellular signal-regulated kinase (ERK),
and c-Jun NH2- terminal kinase (JNK) are considered the key players in carcinogenesis and
are the most studied [90,91]. Interestingly, Xie and colleagues found that the expression of p-
p38 MAPK was significantly increased in cisplatin-resistant SKOV3/CDDP ovarian cancer
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cells as well as in the primary ovarian cancer tissues. Moreover, treatment with metformin
significantly increased the cisplatin sensitivity of SKOV3/CDDP cells. Importantly, the
sensitivity to cisplatin was further enhanced when metformin was combined with SB203580
(a p38 MAPK inhibitor) compared with treatment with metformin alone, suggesting an
important involvement of the p38 MAPK signaling pathway in cisplatin-resistant onset in
ovarian cancer [54].

Natural compounds from plants, fungi, and marine organisms have been widely used
worldwide as dietary supplements or natural drugs in traditional medicine. These com-
pounds show numerous beneficial effects, such as antioxidant, anti-inflammatory, and anti-
cancer effects [3,14,92–96]. Phenethyl isothiocyanate (PEITC) is an isothiocyanate present
in cruciferous vegetables that has shown antioxidant and anticancer activities [97,98]. It
has been found that metformin and PEITC significantly inhibit cell growth when used
individually in OVCAR3, CAOV3, SKOV3, A2780, and PA-1 ovarian cancer cell lines.
Moreover, PEITC induced apoptosis, but metformin mainly showed a growth inhibitory
effect. Treatment with either metformin or PEITC significantly increased both total cellular
and mitochondrial reactive oxygen species (ROS). Interestingly, metformin and PEITC
cotreatment showed a synergistic effect on ovarian cancer cell lines, including the cisplatin-
resistant A2780/CDDP line, suggesting that combined metformin and PEITC treatment can
also significantly decrease cancer cell growth and induce apoptosis in cisplatin-resistant
ovarian cancer cells [55].

5. Conclusions and Further Remarks

Ovarian cancer is among the most lethal gynecologic malignancies due to late diagno-
sis and the occurrence of chemoresistance, which significantly weakens the chemotherapeu-
tic efficiency in these patients [1–4]. Although metformin is widely used as a hypoglycemic
agent to treat patients with type 2 diabetes mellitus and non-alcoholic fatty liver disease,
this drug showed important anti-tumor activity in many types of cancer, including ovarian,
breast, and endometrial cancer and uterine myomas [99–107]. The most accepted hypothe-
sis regarding the mechanism of action of metformin in cancer cells is that this compound is
an important inhibitor of respiratory chain complex I, which oxidizes NADH generated
through the Krebs cycle [7,108]. Metformin is a low-cost drug and is clinically safe, and its
pharmacodynamic profile has been well characterized. Thus, it is an ideal candidate for
development as an anticancer compound. However, the epidemiological studies identify-
ing metformin as a potential anticancer drug are difficult to confirm because these studies
have included only diabetic patients. Thus, the use of metformin may have significant side
effects if used in a population of patients in whom metformin treatment is not required
(e.g., non-diabetic patients). However, this compound showed important anticancer effects
in various types of cancer, including ovarian cancer. For these reasons, specific clinical trials
investigating the effects of metformin in cancer patients should be performed. In particular,
it is important to evaluate whether lower concentrations show significant anticancer effects
in order to reduce/avoid possible side effects in patients for whom metformin treatment
is not necessary. Importantly, this compound significantly restored drug sensitivity in
ovarian cancer cells resistant to paclitaxel and platinum-based drugs (see Tables 1 and 2).
This review found that metformin has additional action mechanisms in improving the
sensitivity and efficiency of paclitaxel and cisplatin treatment in sensitive and resistant
ovarian cancer cells. In particular, metformin could modulate tunneling nanotubes, au-
tophagy, cancer stem cells, and receptor tyrosine kinases. Moreover, metformin showed
significant inhibitory effects on the NF-kB, ERK, and AKT signaling pathways. Interestingly,
metformin showed a synergic effect in inhibiting cisplatin-sensitive and -resistant ovarian
cancer cell growth when combined with SB203580 (a p38 MAPK inhibitor) or PEITC [54,55].
A schematic figure representing metformin action is shown in Figure 2.
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Figure 2. Schematic representation of metformin’s effects on ovarian cancer cells. Tunneling nanotube
(TNT); Insulin-like growth factor 1 (IGF-1); IGF-1 receptor (IGF1R); Small nucleolar RNA hostgene 7
(SNHG7); Multidrug resistance-associated protein 2 (MRP2); Extracellular signal-regulated kinase
1/2 (ERK1/2); phospho-AKT (pAKT); nuclear factor kappa-light-chain-enhancer of activated B cells
(NF-κB); Vascular endothelial growth factor (VEGF); Hexokinase II (HKII); phosphor- pyruvate
dehydrogenase kinase-1 (pPDK1); B-cell lymphoma 2 (Bcl-2); Bcl-2-associated X (Bax); mechanistic
target of rapamycin (mTOR).

In conclusion, metformin has a key function in improving cancer cells’ response to
chemotherapeutic agents in both sensitive and resistant ovarian cancer cells. Therefore,
specific clinical trials are needed to assess the potential anti-neoplastic effects of metformin
and its potential use in the treatment of patients with ovarian cancer in order to improve
the outcome of this disease.
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