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Abstract: Effective phage cocktails consisting of multiple virus types are essential for successful phage
therapy against pandrug-resistant pathogens, including Salmonella enterica serovar (S.) Typhimurium.
Here we show that a Salmonella phage, F118P13, with non-productive infection and a lytic phage, PLL1,
combined to inhibit pandrug-resistant S. Typhimurium growth and significantly limited resistance to
phages in vitro. Further, intraperitoneal injection with this unique phage combination completely
protected mice from Salmonella-induced death and inhibited bacterial proliferation rapidly in various
organs. Furthermore, the phage combination treatment significantly attenuated the inflammatory
response, restored the generation of CD4+ T cells repressed by Salmonella, and allowed macrophages
and granulocytes to participate in immunophage synergy to promote bacterial clearance. Crucially,
the non-productive phage F118P13 is less likely to be cleared by the immune system in vivo, thus
providing an alternative to phage cocktail against bacterial infections.

Keywords: Salmonella Typhimurium; phage cocktail; immunophage synergy; lysis from without;
phage resistance

1. Introduction

Salmonella has been recognized as a major and important foodborne pathogen for
humans and animals for more than a century [1]. Following ingestion, Salmonella causes a
multistage systemic infection ranging from gastroenteritis to invasive typhoid fever in both
humans and animals [2]. Nontyphoid Salmonella spp. serovars, predominantly Salmonella
enterica serovars (S.) Typhimurium and Enteritidis, primarily cause gastroenteritis, bac-
teremia, and focal infection, whereas typhoidal serovars (S. Typhi and S. Paratyphi A)
mainly cause typhoid fever [3]. Among them, S. Typhimurium has been considered the
prototypical broad-host-range serovar, it can cause acute inflammatory diarrhea that may
progress to invasive systemic disease with bacteremia, meningitis, or focal infections that,
if improperly treated, can be fatal [4,5]. Currently, non-typhoidal salmonella invasive
disease most commonly occurs in infants and young children, older individuals, or im-
munocompromised or malnourished individuals, usually in sub-Saharan Africa, where
the incidence of non-typhoidal salmonella invasive disease often exceeds 100 illnesses per
100,000 individuals per year [6,7]. In addition, multidrug resistant Salmonella isolates have
been frequently identified from breeding farms, meat processing, and clinical trials in many
countries [8–12], resulting in antibiotic treatment failure increasingly encountered for the
emergence of pandrug-resistant isolates [13,14].

There has recently been a renewed interest in the use of bacteriophages (phages) for
clinical and environmental applications. In contrast to antibiotics, phages are specific in

Int. J. Mol. Sci. 2022, 23, 12830. https://doi.org/10.3390/ijms232112830 https://www.mdpi.com/journal/ijms

https://doi.org/10.3390/ijms232112830
https://doi.org/10.3390/ijms232112830
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/ijms
https://www.mdpi.com
https://orcid.org/0000-0003-4967-0315
https://orcid.org/0000-0003-4074-4023
https://orcid.org/0000-0003-0059-6759
https://doi.org/10.3390/ijms232112830
https://www.mdpi.com/journal/ijms
https://www.mdpi.com/article/10.3390/ijms232112830?type=check_update&version=2


Int. J. Mol. Sci. 2022, 23, 12830 2 of 12

their targets without directly affecting the normal microbiota of the host, and they are
capable of auto-dosing for phage replication [15]. However, a major concern regarding
the use of phages in the treatment of infectious diseases was the emergence of phage-
resistant mutants [16,17]. When phage resistance develops in phage therapy using a
single phage, this limitation can be overcome by using phage cocktails [18,19]. Previous
attempts to use phage cocktails to prevent or treat bacterial infections mainly focused
on broadening target bacterial strain spectrums, targeting multiple bacterial species, and
limiting resistance to phages [20–22]. Katarzyna et al. [22] showed that a cocktail of two lytic
phages given 1 h after S. Typhimurium challenge in a Galleria mellonella infection model
increased the survival rate of larvae significantly more than a single-phage treatment.
Studies by Bardina et al. [23] showed that a cocktail of three phages given 8 h before
S. Typhimurium challenge or 4 h, 7 days, and 10 days after S. Typhimurium infection
could not protect BALB/c mice from a systemic typhoid fever-like disease; the increased
survival rate of mice was only observed when phages were administrated immediately
after the challenge. Roach et al. [24] showed that host innate immunity was essential for
the efficacy of phages in treating respiratory bacterial infections, defining the concept of
“immunophage synergy”. Phage- and bacterial-derived pathogen-associated molecular
patterns released after bacterial lysis have been proposed to stimulate local innate immune
responses, which could promote bacterial clearance. These studies suggest that effective
phage cocktail treatment of bacterial infections and the role of immune system in phage
therapy merits further in-depth investigation.

In clinical practice, phages are typically administered as a mix of viral strains. However,
pandrug-resistant bacteria are often faced with few available phages and poor therapeutic
effects with screened phage isolates [12,25]. Furthermore, phages that exhibit abortive
infection do not produce phage progeny, but the role of such phages in combating antibiotic
resistant bacterial infections remains unclear. In the present study, we investigated a novel
phage combination exhibiting both productive and abortive infection to control pandrug-
resistant S. Typhimurium invasive systemic infections in a mouse model. Our results
demonstrated that the phage combination successfully protected mice against Salmonella
systemic infections with the help of the immune system, thus providing a novel alternative
strategy of using a phage cocktail to treat non-typhoidal Salmonella invasive disease.

2. Results
2.1. Phages Effectively Inhibited Bacterial Growth In Vitro

We screened 30 sewage samples to isolate virulent phages specific for pandrug-resistant
S. Typhimurium strain ST149; however, only one phage, named PLL1, which can form small
plaques on ST149, was obtained. Host range analysis showed that ΦPLL1 was specific for
Salmonella, including S. Enteritidis, S. Typhimurium and S. Pullorum, whereas other members
of Enterobacteriaceae that we tested cannot be lysed (Supplementary Table S1). In addition,
ΦPLL1 exhibited similar EOPs on S. Typhimurium strain ST149 and S. Enteritidis stain SE3377
(Figure 1A). ΦF118P13, a virulent Salmonella phage isolated from the above sewage samples
using S. Enteritidis as host, can form clear plaques on S. Enteritidis SE3377, but it is only able
to produce clear zones over the ST149 lawn with high-titer (more than 107 PFU/mL) droplets
of phage particles, and no plaque was observed on S. Typhimurium using either phage titer
(Figure 1A). Transmission electron microscopy (Figure 1B) revealed that ΦPLL1 possesses an
icosahedral head, a neck without a collar, and a contractile tail, while ΦF118P13 has a capsid
with a noncontractile tail with a length of ~120 nm. Genome sequence analysis confirmed that
ΦPLL1 is a Myoviridae phage and ΦF118P13 is a Siphoviridae phage; both phages were virulent.

To determine the rate of mutation of S. Typhimurium ST149 to ΦPLL1, ΦF118P13
and the combination of two phages, we used these phages to infect 108 CFU of bacterial
cells at an MOI of 1 for 2 h. Then the pelleted cells in the above cultures were diluted
with phage-containing buffer for plating. The results showed that the Salmonella mutation
rate to the phage combination reduced dramatically, to about 10−5: significantly lower
than that of any single phage (both approximately 10−2) (Figure 2A). The bacterial growth
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curves showed that both ΦPLL1 and ΦF118P13 could effectively inhibit the growth of
S. Typhimurium ST149 at MOIs of 1 and 10 (Supplementary Figure S1). However, the
phage combination showed only a slight decrease in the optical density of bacterial cells
compared to ΦF118P13 at an MOI of 1 (Figure 2B). The one-step growth curve of ΦPLL1
showed a latent period of approximately 15 min, and the burst size was 50 PFU per infected
cell. Considering ΦF118P13 could only infect ST149 with high phage titer at MOIs of
1 and 10, we therefore tested the growth of ΦF118P13 at an MOI of 1. To our surprise,
no progeny phage particles were produced during phage F118P13 infection; by way of
contrast, the phage titer declined 10 times within 30 min at an MOI of 10, followed by
bacterial cells with a reduction of 2 log10 CFU/mL (Figure 2C,D). These data suggest that
these two phages had different ways to lyse S. Typhimurium: phage PLL1 lysed bacteria
by lytic cycle with productive infection, whereas ΦF118P13 induced bacterial lysis with
non-productive infection.
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2.2. Phage Combination Protected Mice against Salmonella Systemic Infections

To establish a mouse model of S. Typhimurium invasive systemic infection, the challenge
dose of pandrug-resistant strain ST149, which is lethal to ICR mice, was determined by in-
traperitoneal injection. It is worth noting that when Salmonella-infected mice were prostrate
and unresponsive, preemptive euthanasia was performed and moribund animals would be
euthanized by means of anesthetic isoflurane inhalation. The results showed that 105 and 106 of
bacteria did not induce lethality in mice during the 14-day observation period. In contrast,
the injection of 107 cells was fatal in 16.7% of mice within 4 days and 83.3% by the end of
14-day of observation, and injection of 108 cells quickly caused death in 100% of mice within
2 days (see Figure S2 in the Supplemental Material). Therefore, we used 107 cells for challenge
to examine whether the phage combination could protect against S. Typhimurium invasive
systemic infection (Figure 3A). The result showed that phage therapy completely protected
mice from Salmonella-induced death, while no mice survived in Salmonella challenge group
at day 7 post-infection (Figure 3B). Figure 3C shows that the titer of ΦF118P13 in spleen was
much higher than that of ΦPLL1 in both the phage alone group and the phage therapy group,
implying that ΦF118P13 might play an important role in protecting mice from Salmonella-
induced death. Mice treated with phages had a significantly reduced Salmonella burden in
their spleen (4.7 log10 CFU/g), thymus (3.6 log10 CFU/g), liver (4.4 log10 CFU/g), and kidneys
(4.7 log10 CFU/g), with a reduction of nearly 1.1 to 1.8 log at 3 days post-challenge relative to
the levels (4.9~6.5 log10 CFU/g) in these organs of mice given Salmonella alone. By day 6, the
numbers of bacteria had rebounded in all the above tested organs of mice treated with the phage
combination, approaching the bacterial loads of corresponding organs in challenged mice with-
out phage treatment. However, at the time of necropsy on day 9, the bacterial loads in organs
of phage-treated mice showed a significant reduction, and kept decreasing to approximately
103 CFU at day 15 (Figure 3D), while the phages’ titers gradually decreased to below the limit
of detection in the liver and kidney from day 3 to day 12. Furthermore, the phage titers in the
phage therapy group were notably lower than that in the phage control group.
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Typhimurium strain ST149 in vitro. (A) Mutation rates of ST149 resistance to phages. (B) Phages’
lytic activity on ST19 in vitro. Approximately 108 Salmonella cells alone, or cells mixed with single
phage or phage combination (MOI = 1) were incubated aerobically at 37 ◦C in 96-well plates. OD600

was measured at 10 min intervals for 6 h. (C) ΦF118P13’s lytic ability on ST149. Approximately
108 Salmonella cells alone, or cells mixed with phages (MOI = 10) were incubated aerobically at
37 ◦C. Bacterial cells were determined by plating on LB plates. (D) The growth curve of ΦPLL1 and
ΦF118P13’s proliferation in ST149. Approximately stationary phase 108 CFU/mL of bacterial cells
were incubated with ΦPLL1 and ΦF118P13 in LB medium at an MOI of 0.01 and 10, respectively.
Phage titer was determined by plating on double-layer agar plates. **** p < 0.0001 (Student’s t-test).

Histopathological examination showed massive hemolysis in the splenic red pulp,
a reduction in white pulp area, and marked decreased lymphocytes in the spleen of
Salmonella-challenged mice, whereas lymphocytes, neutrophils, and multinucleated giant
cells in red pulp were markedly increased in mice treated with the phage combination
(Figure 4A). Figure 4B shows that histological scores from organs of phage-treated mice
were lower than those of infected mice that did not receive phage therapy, indicating that
phage combination treatment prevented organ damage and reduced lesion severity.

2.3. The Immune System Contributed to Phage Therapy against Salmonella Infections

To explore why non-typhoidal salmonella invasive disease always occurs in immuno-
compromised individuals, we performed a flow cytometry approach to immunophenotype
splenocytes of mice to understand the role of immune system in our successful treatment
of Salmonella systemic infections. Since CD4+ T cells have been found to be important for
the control of primary Salmonella infection and neutrophils are essential for the successful
treatment of bacterial diseases with phages, we detected the percentage of CD4+ T cells
and granulocytes in splenocytes. Figure 5A shows that Salmonella infection significantly
reduced the percentage of CD4+ T cells by nearly three times within 6 days, whereas the
percentage of CD4+ T cells underwent only a slight decrease in the phage therapy group.
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At day 9 post-infection, the number of CD4+ T cells decreased sharply to a very low level,
then increased gradually over time and returned to approximate control levels at day 15
post-infection. For granulocytes (Figure 5B), a significant 3.4-fold and 7.4-fold increase in
the number of granulocytes was observed in mice given Salmonella alone after 3 days’ and
6 days’ infection, respectively. In addition, the phage combination treatment retarded the
relatively high increase of granulocytes caused by Salmonella infection in the first 6 days.
However, the percentage of granulocytes rose sharply (8.5-fold) on the following day 9,
then gradually returned to the control level at day 15 post-infection. Figure 5C shows that
the percentage of macrophages in challenged mice increased continuously and peaked at
day 6, while the proportion of macrophages, which also increased in the phage-treated
group, reached the highest level at day 12. For B cells, as indicated in Figure 5D, a slight
increase in infected mice at 3 days post-infection was found, but there was no significant
difference in other groups. It is noteworthy that mice which received phages only showed
no significant difference in CD4+ T cells, granulocytes, or B cells compared to the control
group, but phages alone caused an increase in macrophages, indicating the uptake of
phages into macrophages and subsequent macrophage activation.
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groups; × in red represents the number of dead mice. For the ST149 and phage combination control
groups, 12 ICR mice were used in each group; for the phage combination-treated group, 15 mice were
used. (B) Protection of the phage combination in infected mice. (C) The ratio of ΦF118P13 titer to ΦPLL1
titer in spleen in the phage alone group and the phage combination therapy group. (D) The bacterial
load and phage titer in various organs. No data was obtained in the challenge group for 6 mice that died
of Salmonella infection within 9 days. * p < 0.05 (Kruskal–Wallis test), ** p < 0.01; ns, no difference.
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Figure 4. Phage combination alleviates tissue lesions. (A) Representative images of hematoxylin and
eosin-stained spleen tissue from day 3 and day 6 post-infection. Bar = 200 µm. (B) Total histological
scores of the spleen, liver, lung, and kidney harvested on day 3 and day 6 post-infection.
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Figure 5. Phage therapy effect on immune responses in spleen in vivo. (A) Percentage of CD4+ T cells
in live splenocytes. (B) Percentage of granulocytes in live splenocytes. (C) Percentage of macrophage
in live splenocytes. (D) Percentage of B cells in live splenocytes. *, p < 0.05 (Kruskal–Wallis test),
**, p < 0.01, ***, p < 0.001, ****, p < 0.0001; ns, no difference.
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2.4. Phage Combination Attenuated Salmonella-Induced Inflammatory Response

We then investigated the host inflammatory response in serum during phage combi-
nation treatment. As indicated in Figure 6A, the serum level of IL-6 (a pro-inflammatory
factor) in mice given Salmonella alone stayed at a high level within 6 days, whereas phage
therapy significantly reduced the level of IL-6. IL-10, an anti-inflammatory cytokine,
showed a gradual increase in mice given Salmonella alone and reached the highest level
on day 6 post-infection. Although phage combination treatment showed a 3.6~5.0-fold
increase in the level of IL-10 within 6 days, there was a relative 3.6-fold decrease at day
6 compared with infected mice (Figure 6B). The results indicated that phage combination
may help to attenuate Salmonella-induced inflammatory response.
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day 3 and day 6 post-infection relative to the level of IL-10 in the control group. *, p < 0.05 (ordinary
one-way ANOVA), ***, p < 0.001.

3. Discussion

Several studies have proposed multiple techniques to improve phage cocktails [18,26,27].
Here, we have shown that intraperitoneal administration of a novel Salmonella-specific phage
combination protects against Salmonella invasive systemic infections by inhibiting the rapid
proliferation and spread of bacteria in various organs and attenuating the inflammatory
response in a mouse model, and that the elimination of Salmonella also depends on the host’s
immune system. We have shown that ΦF118P13-induced bacterial lysis via high multiplicities
adsorption with non-productive infection can be used to reduce phage-resistance mutations
and kill Salmonella in vitro. The effect of phage combination lysis on S. Typhimurium syner-
gizes the immune system to resolve acute invasive Salmonella systemic infections. Crucially,
the phage with non-productive infection is less likely to be cleared by the immune system,
supporting the novel strategy of a phage cocktail rather than the prevailing paradigms [18].

The development of resistance and the need for readily available phages are the two
major hurdles with phage therapy [20,28]. Although the isolated ΦPLL1 in this study
was able to significantly inhibit the growth of S. Typhimurium at low MOIs, the high rate
of bacterial mutation to phage resistance still greatly increased the risk of single phage
therapy, which may also be likely to occur in other clinical bacteria isolates with high
mutation rates. For example, Pseudomonas aeruginosa often leads to insufficient efficacy
of phage therapy due to its enormous capacity to engender resistance [29,30]. A phage
that cannot form plaques on its host bacteria is usually not considered for phage therapy
even if phage lysis occurs, and this kind of phage could be missed using the conventional
phage isolation method. Here, we screened our phage libraries and obtained a lytic phage
inducing S. Typhimurium lysis via lysis from without with non-productive progeny phage
production, offering the possibility of this kind of phage being useful in treating acute
Salmonella invasive systemic infections. The fact that the titers of ΦF118P13 were higher
than those of virulent ΦPLL1 implies that the predominant phage protecting mice from
Salmonella-induced death appears to be non-productive ΦF118P13, which can survive for
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more than 12 days in vivo, whereas virulent ΦPLL1 seemed more likely to be cleared by
the immune system. The reason for the rapid decline of ΦPLL1 in vivo still requires further
research; however, the potential of phages that exhibit abortive infections, to the best of our
knowledge, in the treatment of bacterial infections has not yet been explored. While the
mechanism of lysis from without is still unclear, our data implies that such phages’ ability
to cause abortive infection might also offer an alternative to other phages or antibiotics in
combating some intractable infections.

The initial stages of Salmonella infection are characterized by effective recruitment and
activation of phagocytes, partly due to a massive inflammatory response in infected tissues,
including the expression of inflammatory cytokines [e.g., IL-6, IL-12, and IL-18]. In addition,
bacterial clearance is preceded by activation of T cells including CD4+ and CD8+ T cells [31].
Consistent with those of other studies, our findings show that ICR mice have intermediate
susceptibility to infection with S. Typhimurium [32]. We therefore selected ICR mice instead
of the more susceptible C57BL/6 mice, which lack the macrophage-encoded Nramp1 gene,
to better study the role of the immune system. Invasive Salmonella systemic infections
and organ damage lead to an uncontrolled inflammatory response and overactivation of
neutrophils, and massive Salmonella further proliferates within macrophages and induces
cell death, thus successfully adapting to the pressure imposed by the innate immune system.
We have shown that S. Typhimurium restrains activation of CD4+ T cells in the acquired
immune response, thus causing an overwhelming invasive systemic infection that leads
to massive deleterious tissue injury culminating in the death of the host, although the
initiation of host-adaptive B cell responses was found in infected mice. Alaniz et al. [33]
demonstrated that Salmonella transitioning from an extracellular phase to an intracellular
phase could reduce the ability of splenic antigen-presenting cells to present FliC to CD4+T
cells, and thus escape detection by host adaptive immunity by restricting FliC bioavailability
via antigen compartmentalization. Interestingly, phage combination treatment inhibited
the rapid proliferation and spread of S. Typhimurium in various organs, thus preventing
cytokine release syndrome and allowing immunophage synergy to clear bacteria. Recent
studies have suggested that phages alone are unable to exterminate the whole bacterial
population and that cooperation with the immune system is a prerequisite for successful
phage therapy [24,34]. Although phages for the mouse model in this study were only
filtered and not purified, remnant Salmonella debris in phage lysates induced the immune
system to a certain extent; our results showed that when Salmonella continued to proliferate
at 6 days post-infection, CD4+ T cells, macrophages, and granulocytes all participated to
promote the reduction of bacterial load together in response to phage therapy. However,
adaptive humoral responses (B cells) seemed not to play a great role in immunophage
synergy in resolving Salmonella systemic infections. Another thing worth noting is that
although great importance was attached to animal welfare and animal protocols were
strictly followed in the mice model in this study, less drastic and ethically acceptable
treatment should be used in the future to explore ways to effectively control bacterial
invasive diseases. Thus, this animal model should not be replicated 1:1.

4. Materials and Methods
4.1. Bacterial Strains

Salmonella Enteritidis SE3377 was purchased from the China Veterinary Culture Col-
lection Center (Beijing, China). Pandrug-resistant S. Typhimurium ST149, isolated from
chickens in Guangdong Province of China, exhibited resistance to many antibiotics in peni-
cillins, aminoglycosides, folate pathway antagonists, tetracyclines, and phenicols. Other
Salmonella serotypes and other species of Enterobacteriaceae used in this work are described
in the Supplemental material Table S1. All strains were cultured in Luria-Bertani (LB)
medium or on LB agar plates at 37 ◦C, unless otherwise noted.
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4.2. Phage Isolation, Propagation, and Characterization

The sewage samples used for phage isolation were collected from chicken farms, urban
rivers, schools, restaurants, and shopping malls in Shandong Province. For phages isolation,
the pandrug-resistant S. Typhimurium ST149 was used by standard enrichment techniques
and double-agar overlay plaque assays described by Kropinski [35]. To preserve the phages,
plaques were picked and dispersed into SM buffer (10 mM MgSO4, 100 mM NaCl, 0.01%
gelatin, 50 mM Tris-HCl, pH 7.5) and stored at 4 ◦C. Meanwhile, other phages in our laboratory
were screened by spot tests and double-layer agar methods to determine their lytic activity
on ST149. The phage combination was prepared by mixing two phages at a ratio of 1:1,
with each phage at a titer of 9 log10 PFU/mL, later diluted in sterile SM buffer to reach
the target concentration for subsequent analysis. For measuring lysis activity of the phages
against Salmonella strains, stationary cultures (108 CFU/mL) were mixed with phages or phage
combination at different MOIs (multiplicities of infection) in 96-well plates and incubated
at 37 ◦C in a standing condition. Growth curves were monitored by measuring the optical
density at 600 nm (OD600) at 10-min intervals for 6 h. The one-step growth curve of a phage
and the frequency of phage-resistant mutants for strain ST149 were measured as described
previously, with a slight modification [36,37]. Briefly, to determine the rate of mutation
of S. Typhimurium ST149 to phages, approximately 108 CFU of overnight bacterial cells
were infected with phages at an MOI of 1 at 37 ◦C, 180 rpm for 2 h, then the cultures were
centrifuged and the pelleted cells were resuspended with SM buffer containing 108 PFU of
corresponding phages. Serial dilutions containing phages were plated directly onto LB agar
plates to count the number of phage-resistant mutants.

4.3. Transmission Electron Microscopy

High-titer phage lysates were prepared in LB medium based on the best MOIs of
phages. The samples were then deposited on carbon-coated Formvar films and stained
with 2% uranyl acetate. Microscopy was performed with a H7650 transmission electron
microscope (TEM) (Hitachi, Tokyo, Japan).

4.4. Phage Genome Sequencing and Analysis

Extraction and purification of genomic DNA from Salmonella phage suspensions were
carried out using a lambda phage genomic DNA Kit (Zoman Biotek Corp., Beijing, China),
according to the manufacturer’s protocol. The whole-genome sequencing using Illumina
NovaSeq PE150 was performed at Beijing Novogene Bioinformatics Technology Co., Ltd.
(Beijing, China). Open reading frames (ORFs) were predicted using GeneMarkS and
annotated for specific functions using the RAST and PHASTER programs [38,39]. BLASTP
and PSI-BLAST searches were used to determine the similarity of all putative proteins in
the genome sequence.

4.5. Salmonella Infection of Mice

All animal work was reviewed and approved by the Laboratory Animal Care Com-
mittee of Shandong Agricultural University [permit number SDAUA-2021-034]. However,
this animal model should not be replicated 1:1 in regard to the animal welfare and the
human endpoints. Male ICR mice (age, 5 weeks old) were purchased from Jinan Pengyue
Experimental Animal Breeding Co., LTD (Jinan, China) for use in infection experiments.
The food, bedding, and water were autoclaved. To determine the lethal dose for Salmonella
infection in mice, S. Typhimurium ST149 was used for intraperitoneal injection with dif-
ferent doses in an inoculum of 100 µL (105–108 CFU) in six mice each. Once infected mice
were prostrate and unresponsive, moribund animals were euthanized preemptively by
means of anesthetic isoflurane inhalation. Dosed mice were observed for 14 days to report
the mortality in each group.

The phage combination for the animal experiment was prepared by mixing two
phages with a ratio of 1:1 in SM buffer, each phage at a titer of 9 log10 PFU/mL. To examine
the therapeutic effect of phage combination on Salmonella infection, mice in the phage
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treatment group were injected intraperitoneally with 100 µL of above phages 18 h prior
to the bacterial challenge, then phages were administrated at 24 and 48 h post-infection.
For mice in Salmonella the challenge group, the phage combination alone group, and the
phage treatment group were all monitored for 15 days, and three live mice in each group
were euthanized with anesthetic isoflurane inhalation every three days until the endpoints.
Tissue samples from spleen, liver, kidney, and lung were removed aseptically, weighed,
homogenized in sterile PBS, diluted, and subjected to bacteriological examination (CFU
count) on xylose lysine desoxycholate (XLD) agar plates. To determine the titer of total
phage and ΦPLL1 in these organs, supernatants were filtered through filters with a pore size
of 0.22 µm and serial dilutions were plated on double-layer agar containing S. Enteritidis
SE3377 and containing S. Typhimurium ST149, respectively. The spleen was also harvested
for histopathology and flow cytometry analysis. Blood was collected from the abdominal
vena cava of mice and serum was used to detect the cytokines.

4.6. Histopathological Analysis and Scoring

At the time of necropsy, the spleen, liver, kidneys, and lungs were stored in 10%
buffered formalin for 48 h and then transferred to 70% ethyl alcohol for long-term storage.
Hematoxylin- and eosin-stained slides were prepared for histopathological examination us-
ing TissueGnostics TissueFAXS system (Vienna, Austria). Histological sections were coded,
randomized, and scored based on a previously published numerical scoring scheme [40].
Lesion severity in the organs was scored on a scale of 0 (no obvious abnormality) to 3, and
each organ’s features are described in Supplementary Table S2. These changes were also
quantified in terms of the percentage involvement by the disease process: (0) no obvious
abnormity, (1) 1–5%, (2) 6–40%, (3) 41–80%, and (4) 81–100%. The total histological score
was scored for each feature separately by establishing the product of the grade for that
feature and the percentage involvement.

4.7. Flow Cytometric Analysis

After splenocyte recovery treatment, aliquots of 106~108 cells/mL assessed using Try-
pan Blue were stained with saturating amounts of CD3-FITC (clone 17A2), CD4-eFlour 450
(clone GK1.5), CD19-PerCP-Cyanine5.5 (clone eBio1D3), and CD11b-FITC (clone M1/70)
antibodies (Thermo Fisher Scientific, Waltham, MA, USA) for 30 min at 4 ◦C, according
to the manufacturer’s instructions. The eBioscience™ Fixable Viability Dye was used for
staining dead cells. After permeabilization, samples were washed twice, resuspended
with PBS and immediately analyzed on an LSRFortessa Flow Cytometer (BD Biosciences,
Franklin Lakes, NJ, USA). The flow data were processed using FlowJo software (Tree Star,
Inc., Ashland, OR, USA).

4.8. Serum Cytokine Assays

Serum cytokines containing interleukin (IL)-6 and IL-10 were detected by enzyme-
linked immunosorbent assay (ELISA) using ExCell Bio kits (Taicang, China) according to
the manufacturer’s instructions.

5. Conclusions

To conclude, these data suggest that the phage combination (i) is efficient at killing
S. Typhimurium cells in vitro and in vivo, (ii) prevents cytokine release syndrome, and
(iii) provides protection against Salmonella systemic infection in the mouse model due to
immunophage synergy. Application of the phage with non-productive infection provides
a novel alternative strategy of phage cocktail in combating pandrug-resistant bacterial
infections. Furthermore, our results also provide an insight in the tripartite interactions
among phages, bacteria, and the host’s immune system.

Supplementary Materials: The supporting information can be downloaded at: https://www.mdpi.
com/article/10.3390/ijms232112830/s1.
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