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Abstract

:

Hybrids between different subspecies of rice Oryza sativa L. commonly show hybrid sterility. Here we show that a widely planted commercial japonica/GJ variety, DHX2, exhibited hybrid sterility when crossing with other GJ varieties. Using the high-quality genome assembly, we identified three copies of the Sc gene in DHX2, whereas Nipponbare (Nip) had only one copy of Sc. Knocking out the extra copies of Sc in DHX2 significantly improved the pollen fertility of the F1 plant of DHX2/Nip cross. The population structure analysis revealed that a slight introgression from Basmati1 might occur in the genome of DHX2. We demonstrated that both DHX2 and Basmati1 harbored three copies of Sc. Moreover, the introgression of GS3 and BADH2/fgr from Basmati1 confers the slender and fragrance grain of DHX2. These results add to our understanding of the hybrid sterility of inter-subspecies and intra-subspecies and may provide a novel strategy for hybrid breeding.
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1. Introduction


For over 2000 years, two major types of O. sativa—O. sativa indica/Xian (XI) and O. sativa japonica/Geng (GJ) Group—have historically been recognized [1]. There is great breeding potential in XI/GJ hybridization. Its hybrid F1 has strong heterosis in yield, quality, and stress resistance [2]. However, due to the semi-sterile characteristics of the XI/GJ hybrid, XI/GJ heterosis has encountered great difficulties in practical application, including a series of problems, such as high plant height, difference in flowering time, and low seed setting rate. The most important one is the low seed setting rate (pollen fertility) of the F1 generation of the XI/GJ hybrid [3]. Kato et al. (1928) showed that the average fertility of hybrids among cultivated rice varieties was more than 50%, while the fertility of XI/GJ F1 Hybrid was between 0% and 33% [4]. A series of subsequent studies showed that different XI/GJ hybrid combinations contained different sterile loci. The fertility of F1 generation of XI/GJ inter subspecies hybrid varied greatly from complete sterility to complete fertility, and the seed setting rate of the inter-subspecies hybrid was significantly lower than that of the intra-subspecies hybrid [5].



As early as 1962, Yang et al. proposed that XI/GJ hybrid rice can be used as a common strategy for rice breeding, and further explored the breeding methods regarding the improvement of seed setting rate of XI/GJ offspring, combination of the advantages of XI and GJ rice and heterosis utilization [6]. In 1987, Yuan et al. divided hybrid rice breeding into three development stages from the level of heterosis: intra-subspecies, inter-subspecies and utilization of distant heterosis, and strategically put forward the idea of hybrid rice breeding [7]. Because of the close relationship of intra-subspecies, the heterosis is limited in yield. The yield potential of an XI/GJ F1 hybrid is expected to be an effective way to further improve the yield of hybrid rice. The main limitation of direct utilization of strong XI/GJ heterosis is hybrid sterility [8]. Tremendous efforts have been made to overcome inter-subspecific hybrid sterility in rice, and genetic studies have identified approximately 50 loci involved in hybrid sterility [9]. The XI/GJ hybrid sterility is mainly affected by the genes at Sc, S5, SA, hsa1, S7, dpl1/dpl2, and S27/S28 loci [10,11,12,13,14,15]. The isolation and cloning of these hybrid sterile genes have deepened the understanding of the molecular mechanism of plant reproductive isolation. The discovery of its genetic and molecular mechanism provides a new opportunity for overcoming hybrid sterility and utilizing heterosis.



Daohuaxiang2 (DHX2) is a large-scale variety planted in northern China. DHX2 is favored by the market because of its slender and fragrant grain. Thus, DHX2 was used as a backbone parent to breed new varieties in northern China (Figure 1a). During the breeding process, partial sterility due to the abortion of pollen was observed in the cross between DHX2 and other GJ varieties, whereas the F1 pollen derived from the cross between DHX2 and XI varieties showed normal fertility. In this study, we demonstrated that the semi-sterility between DHX2 and GJ was caused by introgression of a copy number variation at the Sc locus from Basmati1. The F1 hybrid sterility was rescued when knocking out an extra copy of Sc in DHX2 using CRSIPR gene editing technology. Our results identified a novel allele of Sc and will provide an effective approach to conduct crossbreeding using DHX2 as a parent line.




2. Results


2.1. F1 Hybrid Sterility between Geng Varieties


Rice hybrid sterility occurs extensively in the hybrid between XI and GJ [16]. For instance, the pollen fertility of the F1 hybrid between GJ variety Nipponbare (Nip) and XI variety 93–11 was 37.2% (Figure 1b). DHX2 is a GJ variety with slender and fragrant grain and was widely planted in northern China. Interestingly, F1 hybrid sterility was observed in the cross between DHX2 and other GJ varieties, such as Nip (Figure 1b). Moreover, the pollen fertility of the F1 hybrid derived from the cross between DHX2 and an XI variety 93–11 was significantly improved compared to the cross between Nip and 93–11 (Figure 1b). As a recent study has published the de novo genome assembly of DHX2 [17], we compared the sequence of published hybrid causal genes in an XI/GJ hybrid (Figure 1c). The result showed that the sequences of Sa, DPL2, S5, S7, and HSA1 in DHX2 were identical to those of Nip. However, we found a complex structural variation at the Sc locus in DHX2 compared to Nip (Figure 2a).




2.2. Complex Genomic Structural Variation in the Sc-DHX2 Alleles


The copy number variation at the Sc locus was reported to confer the XI/GJ hybrid male sterility [15]. Normally, the GJ allele (Sc-Nip) contains a pollen-essential gene encoding a DUF1618 domain protein, whereas the XI allele harbors at least two extra copies besides Sc-Nip. Here, we found that there were three tandem duplicated segments, and each of them contained a copy of Sc homolog protein (Sc-DHX2-1, Sc-DHX2-2



, and Sc-DHX2-3) in DHX2 (Figure 3a). The Sc-DHX2-1 shared a similar promoter sequence to Sc-Nip, but lost the DUF1618 domain due to the 2.0 kb insertion in the first exon and a 34.0 kb insertion at the intron of Sc-DHX2-1. Thus, we concluded that the Sc-DHX2-1 is a pseudogene. The other two copies, Sc-DHX2-2 and Sc-DHX2-3, each contain the entire sequence of Sc-Nip. However, there are several SNPs in the exon of Sc-DHX2-2 and Sc-DHX2-3 compared to that of Sc-Nip. The first exon of Sc-Nip contains 1284 bp, the first exon of Sc-DHX2-2 was 98.0% (1258/1284), identical to Sc-Nip, and the first exon of Sc-DHX2-3 was 97.8% (1256/1284), identical to Sc-Nip (Figure 3b). We then checked whether the extra copies of Sc were altering the expression pattern and expression level of Sc. The RT-PCR showed that Sc was specifically expressed in anther with a low level in Nip, whereas, they were broadly in leaf, stem, panicle, and anther, with a significantly higher level in DHX2 compared to Nip (Figure 3c). Thus, we hypothesized that the copy number variation at the Sc locus in DHX2 conferred the F1 hybrid sterility when DHX2 was crossed to other typical GJ varieties.




2.3. Knockout of Sc-DHX2-2 or Sc-DHX2-3 Rescues the F1 Hybrid Sterility


To confirm whether the extra copies of Sc-DHX2-2 and Sc-DHX2-3 caused the F1 hybrid sterility of the cross between DHX2 and other GJ varieties, we used the CRISPR/cas9 plant genome editing system to knockout the Sc-DHX2-2 and Sc-DHX2-3 in DHX2. As there are two SNPs between Sc-DHX2-2 and Sc-DHX2-3, we designed the different sgRNA for Sc-DHX2-2 and Sc-DHX-3 based on the SNPs (Figure 3a). By transforming DHX2 with these two constructs, we successfully identified a plant CR-1 with 1bp deletion at the first exon of Sc-DHX2-2, and a plant CR-2 with 2 bp at the at first exon of Sc-DHX2-3. The homozygous mutants of Sc-DHX2-2 and Sc-DHX2-3 did not exhibit a significant difference of agronomic traits compared to DHX2. We then crossed CR-1 and CR-2 with Nip to generate F1 plants (Figure 3b). The Sc-Nip expression level of F1 (CR-1/Nip) and F1 (CR-2/Nip) was significantly higher than that of F1 (DHX2/Nip) (Figure 3c), and the pollen fertility of these F1 plants was significantly improved (Figure 3d).




2.4. Introgression from Basmati Variety


As most GJ varieties only have a single copy of Sc [15], we hypothesized that the copy number variation of the Sc locus in DHX2 was caused by introgression from XI or other subspecies. We first compared the genome of DHX2 to Nip and identified 16,873 SVs (Figure 4a). Then we collected 58 long-read de novo assemblies to conduct a population structure analysis [17,18,19]. The result showed that the slight introgression from the circum-Basmati group (cB) might occur in the genome of DHX2 (Figure 4b). The cB group comprises the famous Basmati and Sadri aromatic varieties which we term the circum-Basmati group (cB) [1]. Basmati1 is a high-yield Basmati variety, that possesses extra-long slender grains, a pleasant aroma, appealing taste, good mouthfeel, and easy digestibility [20]. Considering that DHX2 exhibited similar characteristics to Basmati1, such as slender and fragrance grain, we speculated that DHX2 inherited these characteristics from Basmati1. As the truncated GS3 protein contributed to the slender grain of Basmati1 [21], and the fragrance of Basmati1 was regulated by gene BADH2/fgr [22,23], we conducted the haplotype network analysis of Sc, GS3, and BADH2/fgr using sequence data of the 3000 Rice Genomes Project [24]. The results indicated that Sc, GS3, and BADH2/fgr differentiated among cB, XI, and GJ groups (Figure 4c). We subsequently compared the sequence of the Sc locus between DHX2 and Basmati1. The result showed that both DHX2 and Basmati1 had three copies of Sc, although the interval of the three copies was different between DHX2 and Basmati1 (Figure 5a). The BADH2/fgr of DHX2 was identical to that of Basmati1, which was different to other GJ variety, such as Nip (Figure 5b). We subsequently compared the sequencing of GS3 between DHX2 and Basmati1. The result exhibited that both DHX2 and Basmati1 shared a C/A SNP compared to Nip. The C/A SNP generated a premature stop codon, which caused a frameshift mutation in the C terminus that yielded a truncated protein of GS3 (Figure 5c).





3. Discussion


A combination of the advantages of XI and GJ rice through the XI/GJ crossbreeding was the basic breeding strategy in northern China. Hybridization between XI and GJ rice combined with the utilization of the ideal plant type has led to the development of high-yielding GJ rice in northern China. Crossbreeding causes genome introgression from XI and cB varieties. Our previous study revealed that the XI pedigree introgression frequencies were significantly increased in cultivars bred after 1990 and the XI pedigree introgression frequencies were significantly positively correlated with grain number per panicle [25]. In an investigation of 1200 Chinese accessions, an average of 6.8 Mb XI genome introgression was found in GJ accessions [26]. Notably, the important gene haplotypes controlling plant architecture, yield components, and pest and disease resistance, including IPA1, SMG1, DEP3, Pib, Pi-d2, and Bph3, were introduced from XI rice to GJ by introgression [27]. In this study, we found that there is cB introgression in some Chinese GJ varieties, such as DHX2. The introgression of Sc, GS3, and BADH2/fgr from cB variety Basmati1 caused the special characteristics of DHX2 in GJ/GJ hybrid sterility, slender grain shape, and fragrance.



Copy number variations are widely distributed in plant genomes [28]. Recently reported pan-genomes have revealed hidden copy number variations and demonstrated that copy number variations regulate important agronomic traits [17,29,30]. The copy number variation at the GL7 locus contributes to the grain size diversity in rice [31], the extra copy number at the GNP1 locus significantly increased the grain number per panicle [30], the dual copies of OsMADS18 are likely a causal candidate accounting for the early flowering phenotype Koshihikari [17]. However, only the copy number variation of Sc differentiated between XI and GJ subspecies [15]. Our study detected a GJ variety DHX2 harboring three tandem copies at the Sc locus, which might be caused by the introgression of Basmati1. Moreover, the sequence of the extra copies of Sc showed a slight difference compared to the XI allele [15]. These findings suggested that the presence of rich copy number variation is a treasure of the total genetic diversity of O.sativa, revealing that the copy number variation originated from the intricate breeding history.



DUF1618 is a new gene family that originated after the dicot–monocot divergence. DUF1618 family members in plants possess a 56–199-amino acid conserved domain, and there are 121 DUF1618 genes identified in the rice genome [32]. Recent studies have demonstrated that the DUF1618 gene family is involved in the regulation of hybrid sterility. The GJ type allele of HSA1a encodes a highly conserved plant-specific domain of DUF1618, whereas the XI type allele has two deletion mutations that cause disruption of domain structure. The recombinant haplotype of HSA1a and HSA1b caused semi-sterility [14]. Shen et al. (2017) genotyped 14 GJ cultivars and 21 XI cultivars and found that all tested GJ type alleles of Sc contain a pollen-essential gene encoding a DUF1618 domain, and all tested XI type alleles contain two or three tandem duplicated Sc segments. The genomic structural variation at the Sc locus causes hybrid male sterility between XI and GJ [15]. Our study found that there are copy number variations at the Sc locus in GJ variety DHX2 and the extra two copies of Sc cause hybrid male sterility when DHX2 is crossed to other GJ varieties. However, only these two genes have been functionally studied among 121 DUF1618 gene families. The function of the other 119 DUF1618 genes needs to be further studied.




4. Materials and Methods


4.1. Plant Materials


In this study, the GJ variety DHX2, GJ variety Nipponbare (Nip), and XI variety 93-11, and the F1 plants were employed. Shenyang Agricultural University’s Rice Research Institute (41° N, 123° E) was used to conduct field tests. The seeds were sowed on April 16 and transplanted to the field on May 22 in 2020. Each line was planted in three rows, with 10 plants per row and a 30 cm × 13.3 cm plant spacing.




4.2. Pollen Fertility Test


Five young panicles of each F1 plant were sampled. Pollen fertility was evaluated using pollen grains stained with I2KI solution. We counted 500 pollen to distinguish the stained/unstained pollen grains for each young panicle under a microscope. The average data of five young panicles was presented in the Figure 1 and Figure 3.




4.3. Expression Analysis


The pollen was sampled according to the method described previously [15]. The primer for the RT-PCR of Sc and Actin was listed in Table S1. The investigation was conducted by three biological replicates, and the significance was analyzed by Duncan’s multiple range tests.




4.4. Vector Construction and Plant Transformation


To conduct the CRISPR/Cas9 gene editing, the vector construction was performed as described by Li et al. [33]. We designed the specific single-guide RNA (sgRNA) sequences targeting the Sc-DHX2-2 and Sc-DHX2-3 copies. The specificity of the targeting sequence was confirmed by BLAST searching against the Nip genome [34]. The rice transformation was conducted as described elsewhere [35]. We extracted the genomic DNA from transformants, and the genomic DNA was sequenced for mutant identification. The PCR products (200–500 bp) were sequenced and identified using the degenerate sequence decoding method [36]. We examined 20 independent transgenic plants for each construction at T0 generation. The sequence analysis detected 12 and 9 plants with mutations of Sc-DHX2-2 and Sc-DHX2-3, respectively. Among these mutants, 3 and 4 plants were putative homozygous mutants, of Sc-DHX2-2 and Sc-DHX2-3, respectively.




4.5. Population Structure Analysis


We collected 55 de novo assembled genomes of wild type, XI, GJ, circum-Aus group, (cA) which encompasses the Aus, Boro, and Rayada ecotypes from Bangladesh and India, and cB, based on the long-read sequencing techniques [17,18,19]. After discarding duplicated assemblies, a total of 57 assembled genomes were compared to the genome of Os-Nipponbare-Reference-IRGSP-1.0 (https://rapdb.dna.affrc.go.jp/download/irgsp1.html) (Kawahara et al., 2013) using MUMmer (v 4.0) [37]. After filtering the low-quality structure variations using metrics of minor allele frequency (MAF) > 0.05′ from the raw SV dataset, we retained 156,319 high-confidence SVs for population structure analysis. Detailed information on SVs was described in our previous study [30]. The population genetic structure was examined using the program ADMIXTURE (v1.23) [38] with K values (the putative number of populations) from 2 to 10. The K = 6 values were chosen to display the genetic admixtures of rice populations. A haplotype network of Sc, GS3, and BADH2/fgr was conducted using the tools of Haplotype Network Analysis on RiceVarMap v2.0 (http://ricevarmap.ncpgr.cn/hap_net/ (accessed on 22 September 2022)) [39].
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Figure 1. DHX2 exhibited hybrid sterility when crossing with other GJ varieties (a) The plant architecture of GJ variety DHX2. Scale bar: 20 cm; (b) The pollen phenotypes of F1 plants derived from the cross of DHX2/93-11, DHX2/Nip, and Nip/93-11. Scale bar: 50 μm; (c) The loci for hybrid sterility. The loci that have been cloned from XI/GJ cross were highlighted in red color. 
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Figure 2. The structure variation of DHX2 at the Sc locus. (a) The copy number variation of the Sc locus in DHX2 and Nip; (b)the sequence variation of three copies of Sc in DHX2. The red line indicates the sequence of DHX2 is different from Nip; (c) the expression level of Sc on various tissues of DHX2 and Nip. 






Figure 2. The structure variation of DHX2 at the Sc locus. (a) The copy number variation of the Sc locus in DHX2 and Nip; (b)the sequence variation of three copies of Sc in DHX2. The red line indicates the sequence of DHX2 is different from Nip; (c) the expression level of Sc on various tissues of DHX2 and Nip.



[image: Ijms 23 12804 g002]







[image: Ijms 23 12804 g003 550] 





Figure 3. The CRISPR/Cas9 gene editing of the extra copy of Sc in DHX2. (a) The sgRNA sequence of Sc-DHX2-2 and Sc-DHX2-3. The red dash line box indicates the DUF1618 domain; (b) the sequence of two mutant lines; (c) the expression level of Sc-Nip in the anthers of the F1 plants. Different letters denote significant differences (p < 0.05) from Duncan’s multiple range tests; (d) the pollen phenotypes of F1 plants derived from the cross of CR-1/Nip and CR-2/Nip. Scale bar: 50 μm. 
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Figure 4. The population structure analysis of 58 assemblies. (a) The different types of SVs between DHX2 and Nip. INS: insertion, DEL: deletion, TRA: translocation, INV: inversion, NOTAL: not aligned region, TDM: tandem repeat, HDR: highly diverged regions; (b) Structure analysis of 58 accessions with different numbers of clusters, K = 6. The different colors represent different groups of rice accessions. (c) Haplotype network of Sc, GS3, and BADH2/fgr using sequence data of the 3000 Rice Genomes Project. Circle size is proportional to the sample number for a given haplotype. Different colors represent ecotypes, as shown in the illustration. Different Roman numerals indicate various haplotypes of Sc, GS3, and BADH2/fgr. 






Figure 4. The population structure analysis of 58 assemblies. (a) The different types of SVs between DHX2 and Nip. INS: insertion, DEL: deletion, TRA: translocation, INV: inversion, NOTAL: not aligned region, TDM: tandem repeat, HDR: highly diverged regions; (b) Structure analysis of 58 accessions with different numbers of clusters, K = 6. The different colors represent different groups of rice accessions. (c) Haplotype network of Sc, GS3, and BADH2/fgr using sequence data of the 3000 Rice Genomes Project. Circle size is proportional to the sample number for a given haplotype. Different colors represent ecotypes, as shown in the illustration. Different Roman numerals indicate various haplotypes of Sc, GS3, and BADH2/fgr.



[image: Ijms 23 12804 g004]







[image: Ijms 23 12804 g005 550] 





Figure 5. The introgression loci in DHX2 from Basmati1. (a) The structural variation of the Sc locus in DHX2 and Basmati1. The red line indicates that the sequence of Basmati1 is different from DHX2; (b) the sequence variation of BADH2/fgr in DHX2, Nip, and Basmati1; (c) the sequence variation of the GS3 locus in DHX2, Nip, and Basmati1. 
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