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Abstract: Alterations in DNA methylation are critical for the carcinogenesis of ovarian tumors, es-
pecially ovarian carcinoma (OC). DNMT3B, a de novo DNA methyltransferase (DNMT), encodes
for fifteen spliced protein products or isoforms. DNMT3B isoforms lack exons for the catalytic do-
main, with functional consequences on catalytic activity. Abnormal expression of DNMT3B isoforms
is frequently observed in several types of cancer, such as breast, lung, kidney, gastric, liver, skin,
leukemia, and sarcoma. However, the expression patterns and consequences of DNMT3B isoforms
in OC are unknown. In this study, we analyzed each DNMT and DNMT3B isoforms expression by
qPCR in 63 OC samples and their association with disease-free survival (DFS), overall survival (OS),
and tumor progression. We included OC patients with the main histological subtypes of EOC and
patients in all the disease stages and found that DNMTs were overexpressed in advanced stages
(p-value < 0.05) and high-grade OC (p-value < 0.05). Remarkably, we found DNMT3B1 overex-
pression in advanced stages (p-value = 0.0251) and high-grade serous ovarian carcinoma (HGSOC)
(p-value = 0.0313), and DNMT3B3 was overexpressed in advanced stages (p-value = 0.0098) and
high-grade (p-value = 0.0004) serous ovarian carcinoma (SOC). Finally, we observed that overexpres-
sion of DNMT3B isoforms was associated with poor prognosis in OC and SOC. DNMT3B3 was
also associated with FDS (p-value = 0.017) and OS (p-value = 0.038) in SOC patients. In addition,
the ovarian carcinoma cell lines OVCAR3 and SKOV3 also overexpress DNMT3B3. Interestingly,
exogenous overexpression of DNMT3B3 in OVCAR3 causes demethylation of satellite 2 sequences in
the pericentromeric region. In summary, our results suggest that DNMT3B3 expression is altered in OC.

Keywords: ovarian cancer; DNMT3B isoforms; histological grade; biomarkers; cancer epigenetics;
DNA methylation

1. Introduction

Ovarian cancer (OC) is the most lethal cancer of the female genital tract. In the United
States, OC is responsible for more cancer-related deaths than all other gynecological tu-
mors [1]. OC is a heterogeneous histological cancer. There is non-epithelial cancer, an
uncommon group comprising germinal and stromal tissues; however, the most frequent
tumor is epithelial ovarian cancer, which comprises more than 90% of all OC cases. The
subtypes of epithelial ovarian cancer (EOC) are serous ovarian carcinoma (SOC), endometri-
oid carcinoma (EC), mucinous carcinoma (MC), clear cells carcinoma (CCC), and mixed
carcinoma [2,3].
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Alterations in DNA methylation have a role in the development of cancer cells and
other diseases [4,5]. In cancer, DNA methylation has been associated with clinical diagnosis
and prognosis. Specifically, in EOC, DNA methylation has been associated with nuclear
size, proliferation index, and chromosomal ploidy [6–9]. In EOC, it has been reported
that DNA is globally hypomethylated [10], but the gene promoters of tumor suppressors
such as BRCA1 [11], RASSFF1A [12], CDKN2A [13], and p16 [14], among others, are
hypermethylated.

DNA methylation is catalyzed by DNA methyltransferases (DNMTs), wherein DNMT1
is essential in maintaining DNA methylation patterns through the cell cycle, whereas
DNMT3A and DNMT3B are in charge of methylation patterns’ establishment in the
genome [15,16]. Alternative splicing regulates DNMT1 [17], DNMT3A [18], and DNMT3B
isoforms’ expression [19]. DNMT1 and DNMT3A isoforms are catalytically active, and
DNMT3B encodes several catalytically inactive isoforms. It has been reported that DNMT3B
has fifteen protein products resulting from alternative splicing, including seven DNMT3Bs,
seven ∆DNMT3B, and one DNMT3B3-like product [20–24]. DNMT3B isoforms lack exons
that encode for the catalytic domain, causing their loss or reduction of catalytic activ-
ity [25–27]. The consequences of some DNMT3B isoforms’ overexpression have been
studied in several models of cancer cell lines, where DNMT3B4 and DNMT3B7 isoforms
have activities such as growth suppressors, differentiation, and altering DNA methylation
patterns [28–30]. The overexpression of ∆DNMT3B4 in a transgenic mouse model induces
lung hyperplasia and alters DNA methylation patterns [20]. Overexpression of DNMT3B
isoforms has also been found in embryonic development [19,31,32].

The overexpression of DNMT3B isoforms has been reported in several types of cancer
cells; for example, DNMT3B3 and DNMT3B4 in gastric cancer [33], DNMT3B4 in the liver
and clear cells renal cancers [33–35], DNMT3B7 in breast cancer [36,37], and ∆DNMT3B4 in
lung cancer [20]; however, the expression patterns and consequences of DNMT3B isoforms’
overexpression in EOC are still unknown. Therefore, this study aimed to analyze the
expression patterns of DNMT3B isoforms and their association with clinical variables such
as tumor grade, disease stage, and prognostic value in EOC. We used real-time reverse
transcription PCR assays to quantify the expression of DNMT3B isoforms in 63 epithelial
EOC tumor samples. We found that overexpression of DNMT3B3 was associated with poor
disease-free survival and overall survival of epithelial ovarian cancer patients. We also
observed that DNMT3B, DNMT3B3, and DNMT3B3∆5 have higher levels in high-grade
and advanced stages compared with low-grade and early stages, respectively. In summary,
these results suggest that DNMT3B3 overexpression could be important in EOC progression
and aggressiveness.

2. Results
2.1. DNA Methyltransferases Expression in Ovarian Carcinoma

To evaluate the expression of DNMTs in 63 EOC samples, we used 10 ovarian disease-
free tissue samples as controls of DNMTs’ basal expression. We analyzed if DNMTs are
related to the ovarian carcinoma stage of the disease. We observed higher expression
of DNMT3B3 (p = 0.0022), DNMT3B5 (p = 0.0235), DNMT3B6 (p = 0.0250), DNMT3B7
(p = 0.0471), and DNMT3B3∆5 (p = 0.0042) in an advanced stage of ovarian carcinoma
(Figure 1d,f–i). In contrast, we did not observe significant differences in the expression
of DNMT1 (p = 0.0861), DNMT3A (p = 0.0556), DNMT3B1 (p = 0.889), and DNMT3B4
(p = 0.6782) (Figure 1a–c,e). Then, we compared DNMTs’ expression from high-grade
tumors (medium- and high-grade endometrioid cancer cells, clear cancer cells, high-
grade serous ovarian carcinomas, and mixed ovarian cancers) versus low-grade EOC
samples (low-grade endometrioid, mucinous cancer cells, and low-grade serous ovarian
carcinomas) (Figure 2). We found higher expression of DNMT1 (p = 0.0325), DNMT3A
(p = 0.0394), DNMT3B1 (p = 0.0068), DNMT3B3 (p = 0.0171), DNMT3B5 (p = 0.0039),
DNMT3B6 (p = 0.0143), and DNMT3B3∆5 (p = 0.0148) in high-grade ovarian carcinoma
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(Figure 2a–d,f,g,i). In contrast, we did not find significant differences in the expression of
DNMT3B4 (p = 0.5537) and DNMT3B7 (p = 0.0830) (Figure 2e,h).
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according to histological grade. DNMTs’ expression in low-grade (n = 13) versus high-grade (n = 

Figure 1. Overexpression of DNMT3B3, DNMT3B5, DNMT3B6, DNMT3B7, and DNMT3B3∆5
according to the clinical stage of epithelial ovarian cancer (EOC). DNMT isoforms’ expression
in stages I–II (early disease stages) (n = 36) versus stages III–IV (late disease stages) (n = 27).
(a) DNMT1, (b) DNMT3A, (c) DNMT3B, (d) DNMT3B3, (e) DNMT3B4, (f) DNMT3B5, (g) DNMT3B6,
(h) DNMT3B7, and (i) DNMT3B3∆5. Assays were normalized with GAPDH expression in each case
and ten controls of the normal ovary. The Mann–Whitney U test was used. * 1 + log-transformed.
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Figure 2. Expression of DNMT1, DNMT3A, DNMT3B3, DNMT3B5, DNMT3B6, and DNMT3B3∆5
according to histological grade. DNMTs’ expression in low-grade (n = 13) versus high-grade (n = 50).
(a) DNMT1, (b) DNMT3A, (c) DNMT3B, (d) DNMT3B3, (e) DNMT3B4, (f) DNMT3B5, (g) DNMT3B6,
(h) DNMT3B7, and (i) DNMT3B3∆5. Assays were normalized with GAPDH expression in each case
and ten controls of the normal ovary. Mann–Whitney U test was used. * 1 + log-transformed. Tumor
grade: G1 (low grade), G2–G3 (medium–high grade).
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2.2. DNMT3B1 and DNMT3B3 Are Overexpressed in High-Grade and Advanced Stages of Serous
Ovarian Carcinoma

Then, we analyzed if DNMT1, 3A, 3B1, and DNMT3B3, 3B4, 3B5, 3B6, 3B7, and 3B3∆5
isoforms’ expression was associated with the stage of disease and tumor grade in serous
ovarian carcinoma (SOC). We only found differences in DNMT3B1 and 3B3 expression
from advanced stages (stages III and IV) (n = 27) with early stages (stages I and II) (n = 6)
of serous ovarian carcinoma, and high-grade (HGSOC) (n = 27) with low-grade (LGSOC)
(n = 6) (Figure 1). We found significant overexpression of DNMT3B1 and DNMT3B3 in
HGSOC and advanced stages compared with LGSOC and early stages of SOC (Figure 3).
To validate that DNMT3B3 is overexpressed in advanced stages of HGSOC, we used two
arrays of cDNA rapid cDNA panels: II and III, of ovarian carcinoma (TissueScan Ovarian
Cancer cDNA arrays II and III) (OriGene Technologies, Rockville, MD, USA) (cat. no.
HORT102 and 103), and both had 14 ovaries without cancer and 82 ovarian carcinoma
samples of cDNA to be analyzed (Figure 4).
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Figure 3. DNMT3B1 and DNMT3B3 expression according to grade and clinical stages in serous
ovarian carcinoma (SOC). DNMT3B isoforms’ expression in serous ovarian carcinoma (n = 27):
LGSOC (low-grade serous carcinoma) (n = 6) versus HGSOC (high-grade ovarian carcinoma) (n = 21)
and stages I–II (early disease stages) (n = 6) versus stages III–IV (advanced stages) (n = 21). DNMT3B1:
(a) grade and (c) stage, and DNMT3B3: (b) grade and (d) stage. Assays were normalized with
GAPDH expression in each case and ten controls of the normal ovary. Mann–Whitney U test was
used. * 1 + log-transformed.

2.3. DNMT3B3 Overexpression Is Associated with Poor Prognosis in Serous Ovarian Carcinoma

To test if DNMT3B1 and DNMT3B3 have a prognostic value in death and recurrence,
we first realized a ROC curve to determine the value that we consider as overexpression. We
found that DNMT3B3 had a cut-off 3.29 in a curve area of 72%, 87% of sensitivity, and 71%
of specificity (Supplementary Figure S1). Nonetheless, DNMT3B1 had curve areas greater
than 50%, but they were less than the DNMT3B3 curve area. To evaluate the prognostic
value of DNMT3B1 and DNMT3B3 overexpression, we performed a Kaplan–Meyer survival
analysis (Figures 5 and 6). DNMT3B1 overexpression was associated with DFS (p = 0.0043),
but it did not associate with OS (p = 0.182) (Figure 5a,c), and DNMT3B3 overexpression was
associated with both DFS (p = 0.002) and OS (p = 0.017) in EOC (Figure 5c,d). Additionally,
DNMT3B1 overexpression was associated with DFS (p = 0.005) and did not associate with
OS (p = 0.136) (Figure 6a,c). Interestingly, DNMT3B3 overexpression was associated with
DFS (p = 0.002) and OS (p = 0.017) in SOC (Figure 6c,d). These results suggest that the
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overexpression of the DNMT3B3 isoform could be helpful as a prognostic biomarker in
EOC cancer patients, in contrast to DNMT paralogues and DNMT3B isoforms.
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Figure 4. DNMT3B3 overexpression validated in advanced stages of high-grade serous ovarian
carcinoma (HGSOC). DNMT3B3 isoform overexpression in two arrays of cDNA rapid cDNA panels:
II and III, of ovarian carcinoma (TissueScan Ovarian Cancer cDNA arrays II and III) (OriGene
Technologies, Rockville MD) (cat. no. HORT102, and 103) (n = 82). Non-advanced HGSOC (n = 23:
mucinous, low-grade serous ovarian carcinoma, endometrioid, carcinoma clear cells, and stages I–II
of HGSOC) versus advanced HGSOC (n = 59: stages III–IV of HGSOC). Assays were normalized
with GAPDH expression in each case and ten controls of the normal ovary. Mann–Whitney U test
was used.
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(EOC). DNMT3B1 expression in Kaplan–Meyer survival analysis in EOC: (a) DFS and (c) OS, and
DNMT3B3 in EOC: (b) DFS and (d) OS. The log rank test was used to calculate the significant
differences among overexpression (n = 46) versus no overexpression (n = 23) groups.
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SOC: (c) DFS and (d) OS. The log rank test was used to calculate the significant differences among
overexpression (n = 46) versus no overexpression (n = 23) groups.

2.4. DNA Methyltransferase 3B3 Expression in High-Grade, Advanced Ovarian Carcinoma
Cell Lines

We observed that ovarian cancer tumors have DNMT3B3 overexpression associated
with poor prognosis of patients with ovarian carcinoma. Next, we validated the overex-
pression of DNMT3B3 in advanced, high-grade, serous ovarian carcinoma in cell lines. We
measured the quantity of mRNA of DNMT3B3 from ovarian carcinoma cell lines OVCAR3
and SKOV3 compared to a primary culture: ovarian superficial epithelial (OSE). We found
that OVCAR3 and SKOV3 overexpress DNMT3B3 compared with OSE (p < 0.001). SKOV3
overexpressed 10-fold the quantity of DNMT3B3 compared with OVCAR3 (p < 0.001)
(Figure 7a). Next, we characterized chromosome numbers by counting cellular chromo-
somes (30 cellular metaphases) (Figure 7b,c). We found that these high-grade advanced
ovarian carcinoma cell lines, OVCAR3 and SKOV3, have chromosome instability. The
variation of chromosome numbers in OVCAR3 has a range from 40 to 69 chromosomes per
cell (hipotriploid cell line) with a mode in 57 chromosomes (relative frequency of 14.58%
of cells), and SKOV3 is more variable, with a range from 68 to 83 (hipotetraploid), with
some cells present in lesser frequency: 115, 119, and 148 (relative frequency of 3.3% of cells)
chromosomes per cell, having a mode in 81 chromosomes (relative frequency of 36.6%
of cells). Interestingly, SKOV3 overexpresses DNMT3B3 and has more aggressive charac-
ters and a more variable number of chromosomes. These results suggest that DNMT3B3
overexpression could be a biomarker of tumor aggressiveness.

2.5. Overexpression of DNA Methyltransferase 3B3 Is a Cause of DNA Hypomethylation in the
OVCAR3 Cell Line

Since we observed an association of DNMT3B3 with poor prognosis in patients, we
wanted to know if this could be related to DNA methylation of satellite 2, which is well-
known as a possible cause of chromosome instability (CIN) [7]. Therefore, we analyzed
the effect of exogenous overexpression of DNMT3B3 by transitory transfection in the
OVCAR3 cell line. Then, we asked if overexpression of DNMT3B3 is a cause of DNA
hypomethylation. Hence, we overexpressed DNMT3B3 and found that satellite 2 sequences
were hypomethylated after the DNMT3B3 transfection in OVCAR3 (Figure 8).
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3. Discussion

Our study has found that DNMT3B3 may be involved in EOC development and
aggressiveness and suggested that some DNMT3B isoforms, such as DNMT3B3, could be
used as a potential prognostic biomarker in EOC.

DNA methylation is an essential epigenetic marker to maintain genome stability and
regulate DNA transcription [4]. Overexpression of DNMTs has been associated with hy-
permethylated tumor suppressor genes in cancer [38–40]. In addition, DNMT3B4 and



Int. J. Mol. Sci. 2022, 23, 12759 8 of 12

DNMT3B7 isoforms’ overexpression has been suggested to trigger DNA hypomethyla-
tion [7,41,42]. DNMT3B has many isoform products of alternative splicing reported. It has
been demonstrated that there are fifteen isoforms of DNMT3B [24]. The main characteristic
in DNMT3B isoforms is the partial or total absence of the catalytic domain [22].

Previous studies have identified DNMT3B and DNMT3B3 overexpression in HGSOC
cell lines (CAOV and SKOV3) by PCR [38]. In this study, we analyzed the overexpression of
DNMTs in a cohort of EOC patients that included the histological subtypes of EOC, as well
as patients in all the disease stages and the majority of patients with optimal cytoreduction
surgery. Although the most frequent subtype was serous, we found interesting results
that comprise all subtypes of EOC. We found the overexpression of DNMT3B isoforms:
DNMT3B3, DNMT3B5, DNMT3B6, and DNMT3B3∆5, in high-grade (G2 and G3) and
advanced stages (III and IV). This result suggests a role of DNMT3B isoforms’ overexpres-
sion in the progression and aggressiveness of ovarian carcinoma. In SOC, we found that
DNMT3B3 was overexpressed in high-grade and advanced stages. While in other EOC
subtypes, we did not find significant differences. Then, we tried to confirm our hypothesis
using commercial Ovarian Cancer cDNA arrays, where we also observed that DNMT3B3 is
overexpressed in advanced stages of HGSOC. Consistent with our results, DNMT3B3 has
been reported as overexpressed in gastric cancer, cancer cell lines derived from the brain,
and cancer stem cells (293 cell line- derived from kidney embryo [19,23,24,33,40].

Ostler et al. have suggested that the abnormal DNA methylation patterns presented
by cancer cells may be regulated by the enzymatically inactive DNMTB protein levels [19].
In the present study, we found that the overexpression of DNMT3B was associated with
differentiation grades and stages of disease; specifically, DNMT3B3 was associated with
disease progression, low DFS, and notably with OS in EOC. Furthermore, in agreement
with our results, other studies have also reported the overexpression of DNMT3B3 in
gastric cancer patients [33] and a correlation between DNMT3B3 expression and DNA
hypomethylation in liver cancer cells [35].

Interestingly, the structure of DNMT3B3 possesses methyltransferase motifs I, IV,
VI, IX, and X, suggesting that it has a potential methyltransferase activity, in contrast to
DNMT3B4, where most of the methyltransferase motifs are missing [27]. In this sense,
we found that overexpression of DNMT3B3 in the OVCAR3 cell line induces hypomethy-
lation of DNA in the locus of satellite 2. Similar to our results, it has been reported that
overexpression of DNMT3B4 causes hypomethylation on pericentromeric satellite regions
in the epithelial 293 cell line [35]. Besides, it has been observed that DNMT3B isoforms
compete with each other; for example, DNMT3B3 competes with DNMT3B4 to target DNA
regions in human epithelial cancer cells [26]. Therefore, it could be possible that DNMT3B3
modulates DNA methylation in cancer, favoring DNA hypomethylation due to competition
with DNMT3B1. In addition, the increased expression of DNMT3B1 and DNMT3B3 may
induce a competence between active and inactive DNMT3B isoforms that results in higher
aggressiveness and progression of EOC. To our knowledge, this is the first study that
associates DNMT3B3 overexpression with poor prognosis in DFS and OS of EOC. These
findings have led to a special interest in DNMT3B3 expression analysis in future research.

In conclusion, our results suggest that DNMT3B isoforms are abnormally expressed
in OC and that DNMT3B3 overexpression may be involved in EOC development and
aggressiveness. Finally, we suggest that DNMT3B3 could be used as a clinical prognostic
biomarker in EOC.

4. Materials and Methods

Tissue sample: 63 tumors from patients with EOC and 10 non-cancerous ovarian
samples were obtained at the National Cancer Institute, Mexico, from April 2011 to March
2018. The clinical–pathological characteristics of patients are shown in Table 1. The internal
Review Board of the INCAN approved this project and the informed consent in 2011
(Register Number: 008/004/IBI).
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Table 1. Clinical characteristics of patients with ovarian carcinoma enrolled in this study.

Variable Category n %

Stage

I 29 46
II 7 11
III 18 29
IV 9 14

Histologic type

Serous 27 43
Endometrioid 15 24

Clear cells 11 17
Mucinous 8 13

Other 2 3

Tumor grade
G1 18 29
G2 9 14
G3 36 57

Recurrence
Yes 12 16
No 51 84

Current final status
Dead 9 13
Alive 54 87

Tumor grade: G1: low grade, G2: medium grade, G3: high grade.

Reverse-transcription. Total RNA was isolated using TRIzol Reagent (Termofisher,
Waltham, MA, USA) (cat. no. 15596018), and first-strand cDNA was converted from 1 µg
of RNA in a total volume of 20 µL with random primers and the High-Capacity Reverse
Transcription Kit (Termofisher, Waltham, MA, USA) (cat. no. 4368814), according to the
manufacturer’s instructions.

Splice variants-specific quantitative RT-PCR. cDNA (prepared as previously de-
scribed) was subjected to quantitative real-time polymerase chain reaction (qPCR) for
DNMT1, 3A, 3B, and DNMT3B3, 3B4, 3B5, 3B6, 3B7, and 3B3∆5 isoforms using a Master
Mix 2X SYBR Green/ROX qPCR kit (Termofisher, Waltham, MA, USA) (cat. no. K0222)
under the following cycling conditions: PCR reactions were performed in a 30 µL volume
with SYBR Green Master Mix, cDNA samples equivalent to 50 ng, and 0.3 µM of each
primer for 40 cycles at 60 ◦C using QuantStudio 3 (Termofisher, Waltham, MA, USA). To
normalize reactions, GAPDH was used as endogenous gene expression. The primer set
used was previously reported by Liu et al. [34] and is listed in Table 2. To normalize and
compare primers, we calculated the primer efficiencies to verify that they were 100%. The
relative level of each DNMT3B isoform among the samples was then calculated using the
2−∆∆Ct method [43].

Table 2. Primer sets.

Gene Name Forward Primer Reverse Primer

DNMT1 AACCTTCACCTAGCCCCAG CTCATCCGATTTGGCTCTTTCA
DNMT3A GACAAGAATGCCACCAAAGC CCATCTCCGAACCACATGAC
DNMT3B1 CCATCAAAGTTTCTGCTGCT GAAGAGGTGTCGGATGACAG
DNMT3B3 CCGGGATGAACAGGATCTTT AGTAGTCCTTCAGAGGGGCG
DNMT3B4 CGGTTCCTGGAGTGTAATCC GGTTATTGTCTGTACTTTCTTTAACTGTT
DNMT3B5 AATACAATAGGATAGCCAAGGATCT TTCAGAGGGGCGAAGAGG
DNMT3B6 CCAAGCTTGGAAAGCATGAA CCGTTGACGAGGATCGAGT
DNMT3B7 CAGTCTAATTACCTTTCACAGAGAACA GCTTTGAGGCGCTTGGGT
DNMT3B3∆5 GAAAGCCCAGCTTCCCTGAGA AGTTGTGTCCTCTGTGTCGTCTGT
GAPDH TCGTTCCCAAAGTCCTCCTGTTTC TCCGCAGCCGCCTGGTTC

cDNA samples of TissueScan Ovarian Cancer cDNA arrays II and III. Testing was
carried out in two arrays of rapid cDNA panels: II and III, of ovarian carcinoma (TissueScan
Ovarian Cancer cDNA arrays II and III) (OriGene Technologies, Rockville, MD, USA) (cat.
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no. HORT102 and 103) (n = 82). Arrays were prepared by the manufacturer’s instructions,
using the DNMT isoforms’ primers per plate.

Cell Culture. SKOV3 and OVCAR3 cells were obtained from ATCC. OVCAR3 cells
were cultured in RPMI medium 1640 (GIBCO/Thermo Scientific, Waltham, MA, USA)
(cat. no. 11875) supplemented with 20% fetal bovine serum. SKOV3 cells were cultured in
McCoy’s 5A medium (ATCC, MNZ, VA USA) (cat. no. 30-2007) supplemented with 10%
fetal bovine serum. Cells were maintained at 37 ◦C in a 5% CO2 atmosphere.

DNMT3B3 transfection in OVCAR3 cell line. OVCAR3 cells were transitory trans-
fected in all experiments of transfection. We used Lipofectamine 3000 (Invitrogen/Termofisher,
Waltham, MA, USA) (cat. no. L3000-015) according to the manufacturer’s instructions,
with a plasmid pcDNA/Myc_DNMT3B3 (Addgene, MA, USA) (plasmid: 37546), and
pCDNA3.1 as the empty vector condition [43]. Cells were allowed to grow for 2 days
before transfection until 70% confluence. No selection was applied during the culture.
Transfections were repeated independently. Overexpression of DNMT3B3 was verified
after transfection by qRT-PCR.

Metaphases counting. OVCAR3 cells were cultured on 6-well plates (Corning Inc.,
NY, USA) (cat. no. 3513), transfected, and treated to count metaphases. Cells were treated
for 30 min with 90 ng/mL of colcemid (KaryoMAX GIBCO, USA) (cat. No. 15210-040)
to induce the arrest in metaphase, and then incubated for 30 min at 37 ◦C in hypotonic
solution (75 mM of KCl). Cells were fixed within 3:1 methanol:acetic acid, followed by
GTG banding (G-banding using trypsin and Giemsa). A total of 30 metaphase cells were
analyzed at the 400–500 band resolution level. For each condition, a certified cytogeneticist
evaluated the metaphases in duplicate.

5-′Methyl DNA immunoprecipitation assay. The assay was performed using the
meDIP kit (Diagenode, MagMeDIP qPCR Kit, BE-WLG, and NJ, USA) (cat. no. C02010014) fol-
lowing the manufacturer’s instructions. OVCAR3 cells were cultured on 6-well plates (Corning
Inc., USA) (cat. no. 3513) and transfected. Then, 1 × 106 transfected cells were used to follow
the manufacturer’s instructions. For meDIP analysis, we realized the amplification efficiency
(AE) and used Ct10% Input to obtain the % recovery = 2ˆ((Ctinput 10% − 3.32)−(CtIP sample) × 100). All
qPCR reactions were performed by triplicate in a fast optical 96-well qPCR reaction plate
(Applied Biosystems, USA) (cat. no. 4346907). We used the following primers: 5′-ATCGA
ATGGAAATGAAAGGAGTCA-3′ (forward) and 5′-GACCATTGGATGATTGCAGTCA-3′

(reverse) for human chromosome 1 juxtacentromeric satellite-2 (Abcam, ab85781).
Statistical analysis. Relative expression of DNMT1, 3A, 3B, and DNMT3B3, 3B4, 3B5,

3B6, 3B7, and 3B3∆5 isoforms’ data was obtained by the 2−∆∆Ct equation and transformed
by log10 + 1; then, we obtained better normalized adjustment as a result. We used the
Mann–Whitney U test to compare differences in clinical variables using Prism 8 software
for Mac. The results of the DNMT1, 3A, 3B, and DNMT3B3, 3B4, 3B5, 3B6, 3B7, and 3B3∆5
isoforms’ expression levels were shown by the Tukey test. ROC curve and Kaplan–Meyer
analyses were calculated in SPSS 21 Mac software. We considered a statistically significant
ROC curve area higher than 50% for each isoform expression in disease-free survival (DFS)
and overall survival (OS). To perform Kaplan–Meyer survival analysis, we used the surgical
date and recurrence date or last visit date to determine DFS and the surgical date and death
date or last visit date to determine OS. We considered p < 0.05 statistically significant in the
log rank probe from survival analysis.

Supplementary Materials: The supporting information can be downloaded at: https://www.mdpi.
com/article/10.3390/ijms232112759/s1.
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