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Abstract: Gilbert’s syndrome is mainly diagnosed through genetic analysis and is primarily detected
through a mutation in the promoter region of the UGT1A1 gene. However, most of the research
has been conducted on Caucasian populations. In this study, we studied the Han population in
Taiwan to investigate the possibility of other mutations that could cause Gilbert’s syndrome. This
study comprised a test group of 45 Taiwanese individuals with Gilbert’s syndrome and 180 healthy
Taiwanese individuals as a control group. We extracted DNA from the blood samples and then
used Axiom Genome-Wide TWB 2.0 array plates for genotyping. Out of 302,771 single nucleotide
polymorphisms (SNPs) from 225 subjects, we detected 57 SNPs with the most significant shift in
allele frequency; 27 SNPs among them were located in the UGT1A region. Most of the detected SNPs
highly correlated with each other and are located near the first exon of UGT1A1, UGT1A3, UGT1A6,
and UGT1A7. We used these SNPs as an input for the machine learning algorithms and developed
prediction models. Our study reveals a good association between the 27 SNPs detected and Gilbert’s
syndrome. Hence, this study provides a reference for diagnosing Gilbert’s syndrome in the Taiwanese
population in the future.

Keywords: Gilbert’s syndrome; genetic factors; single nucleotide polymorphism; machine learning

1. Introduction

Gilbert’s syndrome (GS) is a hereditary disease. The most common physiological
symptom is jaundice, caused by the toxic unconjugated bilirubin in the blood (hyperbiliru-
binemia). However, it does not cause any other abnormal liver functions [1]. Additionally,
hepatic processing of drugs metabolized through glucuronidation may be affected in
patients with GS, including acetaminophen, nonsteroidal inflammatory drugs, statins,
gemfibrozil, human immunodeficiency virus protease inhibitors (indinavir and atazanavir),
sorafenib, and irinotecan (CPT-11). It has been found that unconjugated bilirubin has
a protective effect against cardiovascular disease, diabetes, and metabolic syndrome [2].
This can be primarily attributed to its antioxidant action and anti-inflammatory proper-
ties. However, the risk of GS associated with the neoplastic disease is controversial in
several tumors [2]. Bilirubin is a waste product of heme catabolism [3]. The breakdown
of hemoglobin releases heme, which is transformed into unconjugated (indirect) biliru-
bin. The unconjugated bilirubin is generally bound to glucuronic acid, in the liver, by the
enzyme uridine diphosphoglucuronate glucuronosyltransferase (UGT) [4]. This enzyme
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converts the toxic form of bilirubin (unconjugated bilirubin) to its nontoxic form (conju-
gated bilirubin) and is encoded by the UGT1A1 gene [5]. Conjugated (direct) bilirubin,
which is water-soluble, passes from the liver to the gallbladder, where it is mixed with
other constituents of bile and finally enters the small intestine [5,6]. Only a small fraction
of it is transported into the kidneys and excreted with urine [7]. This contributes to the
formation of tea or cola-colored urine and brown-colored stool [8]. However, if the UGT1A1
gene mutates, it causes GS [9–11]. Changes in the promoter region of the UGT1A1 gene
lead to the dysfunction of the UGT enzyme [12,13]. When UGT enzyme dysfunctions,
unconjugated bilirubin is not transformed into conjugated bilirubin. High levels of uncon-
jugated bilirubin in the blood lead to jaundice, characterized by yellow discoloration of the
skin and jaundice [14]. Caucasian and African American populations with GS are usually
characterized by the homozygous form of the UGT1A1*28 allele (rs34983651), which is a
homozygous 2-bp insertion (genotype (TA)7TAA/(TA)7TAA) mutation of the TATA box
promoter region of the UGT1A1 gene, resulting in higher concentrations of serum biliru-
bin [9,12,13,15–17]. Recent studies have shown that GS may be associated with UGT1A7 as
well [18]. To examine the genotypes of GS in the population of Taiwan, we used the Axiom
Genome-Wide TWB2.0 array based on the genotyping data of the Taiwanese subjects [19].

2. Results
2.1. Clinical Characteristics

A total of 225 subjects were recruited for this study from August 2013 to April 2021.
There were 45 patients with GS and 180 healthy controls. The patients’ GS diagnoses are
based on clinical characteristics, with more details provided in Study Subjects. The level of
total bilirubin in patients with GS was 1.5–2.8 mg/dL, and the ratio of direct bilirubin to
total bilirubin ranged between 0.06–0.19. In comparison, in the healthy controls, the level of
total bilirubin was 0.2–0.8 mg/dL, and the ratio of direct bilirubin to total bilirubin ranged
between 0.5–1. The demographic and clinical baseline characteristics of the subjects are
presented in Table 1. As we know, no significant differences were observed for the other
clinical variables.

Table 1. Baseline characteristics of 225 subjects.

Healthy Control
n = 180

Gilbert’s Syndrome
n = 45 p-Value

Age, years 60.45 ± 14.90 67.49 ± 13.99 0.005
Female, n (%) 68 (37.8%) 17 (37.8%) 1

T_Bilirubin 1 (mg/dL) 0.63 ± 0.24 1.73 ± 0.30 <0.001
D_Bilirubin 2 (mg/dL) 0.22 ± 0.08 0.22 ± 0.06 0.719

D_Bilirubin/T_Bilirubin 37.82 ± 12.63 12.78 ± 3.08 <0.001
Anemia, n (%) 11 (6.1%) 2 (4.4%) 0.668

WBC 3 (×103/µL) 6.11 ± 2.64 6.17 ± 1.95 0.885
RBC 4 (×103/µL) 4.8 ± 0.60 4.86 ± 0.49 0.513

Hemoglobin (g/dL) 14.08 ± 1.42 14.3 ± 1.69 0.356
Hematocrit (%) 41.91 ± 3.69 42.16 ± 4.07 0.689

MCV 5 (fL) 88.04 ± 7.48 87.2 ± 8.14 0.504
MCH 6 (pg) 29.58 ± 2.91 29.57 ± 3.34 0.993

MCHC 7 (g/dl) 33.55 ± 1.03 33.86 ± 1.22 0.092
RDW 8 (%) 13.39 ± 1.03 13.58 ± 1.63 0.33

Platelets (×103/µL) 244.28 ± 62.13 244.18 ± 62.05 0.992
Transferrin (ng/mL) 245.36 ± 34.75 235.14 ± 35.12 0.08

1 T_Bilirubin: total bilirubin; 2 D_Bilirubin: direct bilirubin; 3 WBC: white blood cells; 4 RBC: red blood cells; 5 MCV:
mean corpuscular volume; 6 MCH: mean corpuscular hemoglobin; 7 MCHC: mean corpuscular hemoglobin
concentration; 8 RDW: red blood cell distribution width.

2.2. Genetic Variants Associated with GS

By analyzing the whole-genome SNPs, we found 57 SNPs whose allele frequency
variations differed significantly between the test and control groups (p < 0.05, Table S1).
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Moreover, 27 out of the 57 SNPs were located in the UGT1A gene, and the difference was
highly significant (Figure 1).
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Figure 1. Manhattan plot visualizing the p-values of the allele frequency changes among the sub-
jects with Gilbert’s syndrome (test group) and healthy individuals (control group). Most of the
significant single nucleotide polymorphisms (SNPs) are located in the UGT1A region (chr2:233617645–
233773305).

We used the correlation matrix to represent the correlation between these 57 significant
SNPs and found that three clusters (c1, c2, and c3) had a high correlation with each other
(Figure 2a). The average correlation coefficient of c1 SNPs (n = 9) was 0.791, c2 SNPs (n = 5)
was 0.786, and c3 SNPs (n = 9) was 0.804. These three clusters contained SNPs in the same
location, the UGT1A region of the genome (Table 2). The UGT1A region includes nine
genes: UGT1A1, UGT1A3, UGT1A4, UGT1A5, UGT1A6, UGT1A7, UGT1A9, UGT1A10, and
UGT1A8 (in descending order of gene length). Figure 2b shows that the SNPs in the UGT1A
region gather around the first exon of the genes UGT1A1, UGT1A3, UGT1A6, and UGT1A7.
Hence, the SNPs located near the 5′ end of these genes might be the cause of GS.
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Figure 2. (a) Correlation matrix of 57 significant SNPs (p < 0.05). There are three clusters (c1, c2, and
c3) of SNPs that are highly correlated with each other (r > 0.6). All clusters are located in the UGT1A
region. (b) The graph shows the distribution of SNPs in the UGT1A region. The three clusters in the
correlation matrix are represented by green (c1), blue (c2), and red (c3). Most c1 and c2 SNPs are
clustered near the first exon of UGT1A3, and three of them belong to missense variants. Except for
rs4148323, which is the missense variant of UGT1A1, the other c3 SNPs are concentrated between
the first exon of UGT1A7 and the first exon of UGT1A6, and most of them are missense variants of
UGT1A7 or UGT1A6.
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Table 2. The information on SNPs among these tree clusterings which having a high correlation with
each other.

Clustering SNP Chromosome Position (bp) p-Value Location

c1

rs3755319 2 233,758,936 0.003031869 UGT1A region: Intronic Variant
rs4124874 2 233,757,013 0.005113795 UGT1A region: Intronic Variant
rs2221198 2 233,749,977 0.00333 UGT1A region: Intronic Variant
rs7574296 2 233,729,603 0.002707358 UGT1A3: Synonymous Variant
rs3806597 2 233,728,923 0.026915457 UGT1A region: Intronic Variant
rs2008595 2 233,728,546 0.026915457 UGT1A region: Intronic Variant
rs6706232 2 233,729,207 0.0152489 UGT1A3: Missense Variant
rs3806596 2 233,729,061 0.015291563 UGT1A region: Intronic Variant
rs3821242 2 233,729,157 0.012727593 UGT1A3: Missense Variant

c2

rs17863787 2 233,702,448 0.002450485 UGT1A region: Intronic Variant
rs1976391 2 233,757,337 6.66 × 10−15 UGT1A region: Intronic Variant
rs1875263 2 233,716,976 0.000759234 UGT1A region: Intronic Variant
rs6431625 2 233,729,266 1.99 × 10−12 UGT1A3: Missense Variant
rs1983023 2 233,728,376 8.00 × 10−11 UGT1A region: Intronic Variant

c3

rs4148323 2 233,760,498 0.00000151 UGT1A1: Missense Variant
rs7586110 2 233,681,881 0.000000195 UGT1A region: Intronic Variant
rs10168416 2 233,688,441 0.000000195 UGT1A region: Intronic Variant
rs11692021 2 233,682,559 5.39 × 10−8 UGT1A7: Missense Variant
rs2070959 2 233,693,545 0.000000195 UGT1A6: Missense Variant
rs1105880 2 233,693,319 0.00000193 UGT1A6: Synonymous Variant
rs1105879 2 233,693,556 0.00000193 UGT1A6: Missense Variant
rs6759892 2 233,693,023 0.00000193 UGT1A6: Missense Variant
rs4261716 2 233,684,471 0.00000133 UGT1A region: Intronic Variant

2.3. Machine Learning

The above results showed that the 27 SNPs located in the UGT1A region exhibit
significant differences in the test subjects with GS and are highly correlated with each
other. We used these 27 SNPs as input variables for the machine learning models. The
prediction models for GS were developed using the algorithms SVM, Random Forest,
Logistic Regression, Decision Tree, and XGBoost. SVM and XGBoost perform better in
terms of accuracy rate and AUC (Figure 3). SVM and XGBoost displayed an accuracy rate
of 0.82 and 0.84, respectively. The AUC of the SVM and XGBoost models were 0.9 and 0.91,
respectively. The data demonstrate that these 27 SNPs are a reliable marker in the diagnosis
of GS.

2.4. Limitations

Our study has several limitations. First, only a few subjects were available for analysis.
Gilbert’s syndrome is a rare disease and a hereditary genetic disorder. In order to collect
more information from the limited number of probes in the SNP array and small sample
size, we hope to use whole genome sequencing (WGS) to obtain more SNPs information
in the future. Second, validation cohorts of other races or places of residence may be
warranted for evaluation in the future. Finally, the current study could not assess clinical
events such as drug interactions, cardiovascular disease, diabetes, metabolic syndrome,
and cancer outcomes. Therefore, we could not determine a GS-related effect in the above-
mentioned clinical events. Moreover, Gilbert syndrome usually is diagnosed until puberty
or later. We will design our research in the direction of cohort and longitudinal study so
that we may also develop models to predict the opportunity to have Gilbert’s syndrome
from childhood.
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3. Discussion

We have identified novel biomarkers for the diagnosis of GS through this study. For
genetic diagnosis, UGT1A1*28 mutations have been established as a diagnostic marker
for GS [15,20]. The genotype (TA)7/(TA)7 insertion in the SNP rs34983651 in the pro-
moter region of UGT1A1 gene (chr2:233760233) promotes the conversion of (TA)6TAA into
(TA)7TAA, which impacts UGT1A1 activity and causes the mutations [12].

However, for the Taiwanese Nationwide Cohort examined in this study, we found
that UGT1A1*28 or rs34983651 might not be the leading cause of GS. The genome-wide
association study shows that although the mutations occur in the UGT1A region, the
27 SNPs identified in this study are positioned around the first exon of the genes UGT1A1,
UGT1A3, UGT1A6, and UGT1A7. Studies have reported that mutations in the UGT1A1
region are frequently associated with mutations in UGT1A6, UGT1A3, and UGT1A7 [21–23].
This study has identified mutant hotspots in UGTs with greater precision. Out of the 27
SNPs, 8 (rs6706232, rs3821242, rs6431625, rs4148323, rs11692021, rs2070959, rs1105879, and
rs6759892) belong to missense variants (Table 2), implying that these 8 SNPs directly affect
the activity of these proteins. We used the allele frequencies of these 27 SNPs as the input
for the machine learning algorithms to develop predictive models, and the resultant AUC
was more than 90%. Since these SNPs have not been reported to be related to GS, we have
developed reference data for the diagnosis of GS in the Taiwanese population.

4. Materials and Methods
4.1. Study Subjects

From August 2013 to April 2021, 225 prospective participants were recruited from the
Northeastern Taiwan Community Medicine Research Cohort (NTCMRC, ClinicalTrials.gov
Identifier: NCT04839796). They were then enrolled and examined in the gastroenterology
clinic of the Community Medicine Research Center of Chang Gung Memorial Hospital,
Keelung Branch. The participants were divided into 2 groups. The test group comprised

ClinicalTrials.gov
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45 subjects with GS and the control group with 180 healthy subjects without GS, and male
to female ratio (approx. 1.6:1) was the same in both groups. All subjects underwent clinical
examination, blood tests, and assessment of complete individual medical histories. GS was
ascertained at total bilirubin >1.4 mg/dL, the ratio of direct bilirubin to total bilirubin was
<0.2, and significant jaundice symptoms were also observed, but the levels of glutamic
oxaloacetic transaminase (GOT) and glutamic pyruvic transaminase (GPT) were in the
normal range for the liver function tests. In addition, we did not find any abnormalities
of the liver, gallbladder, pancreas, spleen, or kidneys or past medical records of chronic
hepatitis. Informed consent was provided by all participants. This study conformed
to the ethical guidelines of the 1975 Declaration of Helsinki and was approved by the
Institutional Review Board of the Chang Gung Medical Foundation (IRB No: 201800802B0
and 202000077B0A3).

4.2. Clinical Assessment

Personal medical history and questionnaires were collected from 225 participants
during recruitment. In addition, all of them were subjected to physical examination and
biochemical tests for preliminary clinical evaluation.

4.3. DNA Extraction from White Blood Cells

Blood samples were collected in citrate-treated tubes and centrifuged at 3000 rpm for
10 min at 4 ◦C to separate the serum from the cells. Next, the erythrocytes were lysed prior
to the phenol/chloroform-based (Sigma Aldrich, St. Louis, MO, USA) DNA extraction
process. Lastly, we used 95% isopropanol (J.T. Baker Inc., Philadelphia, PA, USA), followed
by 80% ethanol (J.T. Baker Inc., Philadelphia, PA, USA), to obtain the total genomic DNA.

4.4. Whole-Genome Single Nucleotide Polymorphism (SNP) Analysis

We used the Axiom Genome-Wide TWB 2.0 array plates (Thermo Fisher Scientific Inc.,
Waltham, MA, USA) for the genotyping of genomic DNA samples from the 225 subjects,
which is the only means of identifying SNPs in the Taiwanese population, containing
681,796 SNPs. The SNPs whose minor allele frequency was zero and those with more than
10% missing rate were removed. The remaining 302,771 SNPs out of the total 681,796 SNPs
were further analyzed.

4.5. Correlation Heatmap and Machine Learning

The genotype was converted to numerals based on the SNP data. The reference for
homozygous was considered at 1, for heterozygous at 1.5, and for homozygous alternate at
2. Then, we used the programming language Python 3.8 with package scikit-learn 1.0.2
to analyze the converted data and plotted a correlation heatmap. In addition, we used
the scikit-learn 1.0.2 package to develop five different machine-learning models using
Support Vector Machine (SVM), Random Forest, Logistic Regression, Decision Tree, and
XGBoost and calculated their accuracy, precision, recall, area under the receiver operating
characteristic (ROC) curve (AUC) and F1-score to evaluate the performance of the models.

5. Conclusions

Our study reveals that the 27 SNPs play an important role in the Taiwanese pop-
ulation with Gilbert’s syndrome, which differs from the currently known UGT1A1*28
allele (rs34983651) as the basis of diagnosis for Gilbert’s syndrome in other populations.
Hence, this study provides a reference for diagnosing Gilbert’s syndrome in the Taiwanese
population in the future.

Supplementary Materials: The following supporting information can be downloaded at: https:
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