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Abstract: Amyloidoses is a group of diseases characterized by the accumulation of abnormal proteins
(called amyloids) in different organs and tissues. For systemic amyloidoses, the disease is related to
increased levels and/or abnormal synthesis of certain proteins in the organism due to pathological
processes, e.g., monoclonal gammopathy and chronic inflammation in rheumatic arthritis. Treatment
of amyloidoses is focused on reducing amyloidogenic protein production and inhibition of its
aggregation. Therapeutic approaches critically depend on the type of amyloidosis, which underlines
the importance of early differential diagnostics. In fact, the most accurate diagnostics of amyloidosis
and its type requires analysis of a biopsy specimen from the disease-affected organ. However, absence
of specific symptoms of amyloidosis and the invasive nature of biomaterial sampling causes the
late diagnostics of these diseases, which leads to a delayed treatment, and significantly reduces its
efficacy and patient survival. The establishment of noninvasive diagnostic methods and discovery of
specific amyloidosis markers are essential for disease detection and identification of its type at earlier
stages, which enables timely and targeted treatment. This review focuses on current approaches to
the diagnostics of amyloidoses, primarily with renal involvement, and research perspectives in order
to design new specific tests for early diagnosis.

Keywords: protein aggregation; amyloids; early diagnostics; proteinuria; serum; kidney biopsy;
chronic kidney disease; seeding

1. Introduction

Amyloidoses is a heterogeneous group of diseases, which results from proteins mis-
folding with the formation of amyloid aggregates accumulated in tissues with subse-
quent progressive organ dysfunction and failure [1,2]. Amyloids are fibrils of orderly
complexed proteins that are connected by hydrogen bonds to form an intermolecular cross-
β-structure [3,4]. Amyloid fibrils are typically composed of two or more protofilaments or,
in some cases, of a single protofilament. Protofilaments are connected to each other in a
parallel fashion via their side chains [5]. Each protofilament has a cross-β structure, where
β-strands are stacked perpendicular to the fibril axis [6]. Amyloids usually bind specific
dyes, such as Thioflavin T (ThT) and Congo red [7–9], and exhibit resistance against the
actions of proteases and various detergents [10,11]. The amyloidogenic properties may be
a consequence of variations in the amino acid sequence and are manifested in different
pathologies associated with increased levels of amyloidogenic protein [1,12–14]. Current
classification of amyloidoses is based on the type of protein that predominantly forms
fibrils in the deposits [5]. More than 30 amyloidogenic proteins and peptides have been
found that accumulate in organs and tissues and cause approximately 70 different forms of
amyloidoses in humans, with the majority being extremely rare [5,15].
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The triggers of amyloidogenesis are not yet fully discovered. In the case of localized
amyloidoses, individual organs may be affected by local production of amyloid protein in
skin, soft tissues, urinary bladder, digestive tract, respiratory tract, and others [16].

The circulation of amyloidogenic proteins in systemic disease leads to amyloid de-
position in multiple tissues throughout the body [17] (Figure 1). Systemic amyloidoses
have a worse prognosis than the localized form of disease [18]. The most common types of
systemic amyloidosis such as immunoglobulin (Ig) light chain (AL) amyloidosis, hereditary
and wild-type transthyretin (ATTR) amyloidosis, serum amyloid A (AA) amyloidosis and
leukocyte chemotactic factor 2 (ALECT2) amyloidosis cause progressive organ dysfunction
and end-stage kidney disease [19–21]. The incidence of systemic amyloidosis exceeds
0.8/100,000 of the population [22].

Figure 1. Common mechanisms of renal amyloidosis. (a) Schematic representation of process of
renal amyloidosis formation. GIT—gastrointestinal tract; PNS—peripheral nervous system; scheme
of renal parenchyma: 1—glomerulus; 2—mesangium; 3—arterioles; 4—arterial wall; 5—tubules;
6—glomerular basement membrane; 7—interstitium. (b) The microphotograph demonstrating amy-
loid deposition in mesangium, capillary basement membranes and arterioles of glomerulus (white
arrow), interstitium (black arrow) and arterial wall (arrowhead) presented as homogenous Congo-
positive masses. Congo red stain, original magnification ×200 (the microphotograph was obtained
by V.G. Sipovsky.

In the context of pathological processes, several diseases of the central nervous system
(CNS), such as Alzheimer’s diseases and Parkinson’s diseases, form a specific distinct cate-
gory in the amyloidosis entity. These disorders could result from the toxic effect of soluble
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oligomeric amyloid aggregates, rather than structural tissue alterations due to amyloid de-
posits, as it shown in cell culture and animal models [23,24]. Cellular toxicity of non-fibrillar
(oligomeric) protein forms are also suggested for AL and ATTR amyloidoses [12,19,25].

The diagnosis of the amyloidosis type is critical for assigning therapies, reducing the
specific protein level in the body, and inhibiting the pathological processes associated with
this protein [26,27]. The effectiveness of the treatment largely depends on the stage at which
the disease is diagnosed [28–30]. According to the current clinical criteria, the diagnosis
of amyloidosis can be verified only by a morphological analysis of impaired organ biopsy
samples, e.g., kidney biopsy in the case of renal amyloidosis [31]. The gold standard for
diagnosis of amyloidosis is the positive staining of tissue specimens to amyloid-specific
Congo red dye with apple green birefringence under polarized light microscopy [32,33].

Currently, there are different approaches based on immunodetection and mass spec-
trometric technologies that enable the type of amyloidosis to be determined by analysis of
Congo red positive biopsy specimen (for review, see [34]). Current clinical practice based
on clinical and histological presentation leaves many patients with systemic amyloidosis
undiagnosed, especially those with earlier stages of the disease. Therefore, new approaches
for amyloidosis confirmation and determination of its type are warranted. The only nonin-
vasive method with 100% specificity and positive predictive value is based on infusion of
99mTc-labeled bone scintigraphy tracers and their accumulation in the myocardial amyloid
deposits. This imaging technique, in fact, has been designed exclusively for the detection
of cardiac ATTR amyloidosis in the absence of plasma cell dyscrasia [35]. Radioactively-
labeled serum amyloid P component (SAP) can be applied for amyloid assessment, but
only at a rather late stage, where massive tissue deposits are already apparent [36]. This
method can hardly be used for differentiation of amyloidosis type (AA or AL) due to
considerable overlap between patterns of organ involvement [36]. Hence, improvement
in noninvasive diagnostics of amyloidosis and its types represents a significant clinical
problem. The identification of new diagnostic markers for different amyloidosis types has
clinical relevance, while being important for understanding the pathogenesis of the disease
as well.

There have been previously published reviews considering methods of early noninva-
sive diagnosis of CNS amyloidosis and their significance for the effective monitoring and
management of the disease [37–39]. This review focuses on the current advances and new
approaches in noninvasive diagnostic modalities for systemic amyloidosis, primarily with
renal involvement.

2. Different Types of Renal Amyloidosis

In systemic amyloidoses, kidney involvement is known to be very frequent and
usually manifests with nephrotic syndrome and chronic kidney disease [19]. Nowadays,
about 15 amyloid proteins are known to impair the kidneys (Table 1) with the pooled
prevalence of AL, ALECT2, or AA types exceeding 88% [21]. The less common variants
of renal amyloidosis are characterized by an accumulation of deposits of fibrinogen α

chain, Ig heavy chains, apolipoproteins, and other precursor proteins (Table 1), as well as
co-aggregation of Ig heavy and light chains [21,31]. Additionally, cases of two types of
amyloidosis co-existing have also been described, either co-localizing in the same organ or
affecting different organs [31,40]. Each type of amyloidosis has specific features depending
on the affected renal structures (e.g., glomeruli, tubulointerstitium, and arteries) and the
distribution of the renal deposits (diffuse or focal) [41]. Conversely, the wide range of
morphological alterations and corresponding clinical manifestations may be observed at
the same amyloidosis type [42,43]. In addition to kidney abnormalities, patients often have
extrarenal disease manifestations (Table 1) [44,45]. Amyloid deposition in myocardium is
associated with inferior patient survival [46], meanwhile kidney amyloid deposition results
in end-stage kidney disease that requires renal replacement therapy [47,48].
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Table 1. Characteristics of renal amyloidoses [21,31,49–52].

Amyloidogenic Protein Sporadic (S) or Hereditary
(H)/Local (L) or Systemic (S)

Overall Incidence/Prevalence
of Kidney Impairment, %

Extrarenal Manifestation
(Other Organ Tropism)

Ig light chains S/S 59/53–86 Different organs

Serum amyloid A protein S/S 2.9/7–40 Different organs

Leukocyte cell-derived
chemotaxin-2 S/S 3.1/2.5–19.1

Liver, lungs, spleen, adrenal
glands, prostate,

gastrointestinal tract,
gall bladder

Ig heavy chains S/S 2.3/0.3–4.6 Different organs

Ig light and heavy chains S/S not assessed/3.6 Different organs

Fibrinogen α chain H/S 0.44/1.3–3.5 Liver, spleen, gastrointestinal
tract, fat

Transthyretin S/S; H/S 28/0.9–1.4
Different organs with heart

and peripheral nervous
system predominance

Apolipoprotein A–IV H/S 0.35/0.1–1.06 Heart, gastrointestinal tract,
skin, lungs

Gelsolin H/S 0.18/0.8
Cranial nerves, cornea, liver,
gastrointestinal tract, skin,

heart, breast, pituitary gland

Apolipoprotein C–II H/L <0.1/0.6 -

Apolipoprotein A–I H/S 0.35/0.1–0.5
Liver, heart, skin, larynx,

gastrointestinal tract, muscles,
peripheral nervous system

Lysozyme H/S <0.1/0.16
Lymphatic nodes, liver,

gastrointestinal tract, lungs,
fat, heart

Apolipoprotein A–II H/L <0.1/<0.1 (extremely rare) -

Apolipoprotein C–III H/S <0.1/<0.1 (extremely rare) Liver, heart, spleen

Calcitonin S/S <0.1/<0.1 (extremely rare) Thyroid gland, fat

AL-amyloidosis is the most common type of systemic amyloidosis in developed
countries [22] and mainly relates to organ deposition of aberrant Ig kappa (Igκ) or Ig
lambda (Igλ) light chains produced by the malignant clone of B-cell lineage (plasmacytic,
lymphoplasmacytic, or lymphocytic). Due to numerous genetic changes, this clone co-
produces light chain molecules with a destabilized structure of Ig variable domain [53].
The aggregation-prone state of the Ig variable domain of monoclonal protein is considered
to be responsible for the progression of AL-amyloidosis [1].

AA-amyloidosis is another common type of renal amyloidosis [12], characterized by
the tissue accumulation of serum amyloid A protein (SAA) aggregates. Increased SAA
production is a response to chronic inflammation (rheumatoid arthritis, Crohn’s disease,
chronic osteomyelitis, bronchiectasis, etc.). Other common types are hereditary and senile
forms of ATTR amyloidoses, ATTRv and ATTRwt, respectively [54,55], caused by the
accumulation of transthyretin protein (TTR). TTR accumulation primarily affects the heart,
and only in rare cases, is ATTR associated with renal abnormalities [31]. ALECT2 and AFib
amyloidoses are associated with deposition of leukocyte chemotactic factor 2 and fibrino-
gen α chain precursor proteins, respectively. New data indicate that ALECT2 amyloidosis
may have a substantially higher prevalence than previously suspected. According to [21],
ALECT2 accounts for 19.1% of the renal amyloidosis cases and yields only to AL amyloido-
sis. ALECT2 amyloidosis is most common in the Hispanic population [56] and primarily
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targets the kidneys among the elderly. AFib amyloidosis leads especially to end-stage
kidney disease in the elderly, and the deposit formation is associated with a mutation in
the FGA gene [57]. Amyloidoses associated with apolipoproteins and other proteins such
as gelsolin and lysozyme do not involve kidneys.

3. Tissue- and Cell-Based Diagnostics of Amyloidosis

Early diagnostics of systemic amyloidosis is crucial as the disease has unfavorable
prognosis if left untreated [22]. The median survival has been found to be about 6–11 years
in AA amyloidosis [26,58] and about 1–3 years in AL amyloidosis [59,60] with the tendency
toward declining mortality in the era of new treatment modalities [61]. Current available
therapeutic options depend on the pathogenesis of particular amyloidosis type. The limita-
tion of amyloid protein production by targeting specific pathological processes is the basic
treatment approach. Such an approach, in particular, is used to reduce SAA levels by sup-
pressing inflammation in rheumatoid arthritis, tuberculosis, periodontal disease, etc. [62].
A decrease in production of aberrant Ig light chains in AL-amyloidosis can be achieved by
clone-directed chemotherapy, with or without autologous stem cell transplantation [63].
The treatment of hereditary ATTR amyloidosis is accomplished with liver transplantation,
as the liver is a primary source of systemic TTR pool [64], and by prescribing functional
tetramer TTR stabilizers [65,66]. The use of antisense oligonucleotides or silencing TTR
mRNA has also found to be effective in phase 3 clinical trials [67,68]. Further efforts are in
progress for AL amyloidosis in order to create stabilizers of the native dimeric structure of
full-length Ig light chains or siRNA to reduce pathological λ-light-chain production [69,70].
Moreover, a number of amyloid-clearing immunotherapeutic agents are being clinically
tested. Antibody targeting of amyloid proteins have not been proven as yet to be effective
in systemic amyloidosis while studies on doxycycline treatment provided promising results
(for review, see [27]).

The therapeutic efficacy is critically dependent on the stage of disease. The high mortal-
ity in AL amyloidosis [71] to a great extent refers to the difficulties in early diagnostics [72].
Disease recognition is complicated because clinical presentation of amyloidosis is largely
non-specific and similar to that in other disease [73]. As a result, patients with amyloido-
sis often remain misdiagnosed and subjected to prolonged evaluation and unwarranted
treatment. The assumption of amyloidosis is based on systemic organ damage, including
nephrotic syndrome, unexplained cardiac dysfunction, autonomic or sensory neuropathies,
periorbital purpura, weight loss, and other signs unrelated to the specific pathological
processes [74].

In order to assess the degree of organs involvement and to clarify the type of amy-
loidosis, a number of noninvasive imaging tools could be used, such as echocardiog-
raphy, magnetic resonance imaging, and imaging of radioactive tags injected into the
circulation [75,76]. SAP protein with a radioactive tag, for instance, is trapped in amyloid
deposits, thus making it possible to detect the localization of deposits by the radioactive
signal. This method provides a high level of sensitivity and specificity (>90%) for the
diagnosing of amyloidosis and determining the localization of the deposits in the body [36],
however, without specifying the protein composition of the deposits. Important sensitive,
although not specific, biomarkers of AL amyloidosis, are N-terminal pro-B-type natriuretic
peptide (NT-proBNP) for the heart, proteinuria for the kidney, and alkaline phosphatase
(ALP) for the liver. AL amyloidosis may occur in the presence of multiple myeloma
(MM) most often being associated with monoclonal Igλ or λ free light chains (FLC) in the
serum [63].

Suspected diagnosis of systemic amyloidosis with renal involvement should be proven
by a morphological analysis of a kidney specimen. Alternatively, in a case of contraindi-
cations for kidney biopsy, one may consider an analysis of extrarenal tissue such as bone
marrow, liver, and abdominal fat (for review, see [34]). However, the diagnostic value of
non-renal samples is lower in comparison to renal ones [47,77].
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Kidney biopsy specimens are studied using light microscopy, immunoassays, and
electron microscopy. Special Congo red staining shows detected amyloid material as a red
color under light microscopy and as apple green birefringence under polarized light as a
result of dye binding with amyloids [32,33]. Immunofluorescence microscopy of frozen
sections and immunogold labeling or immunohistochemistry (IHC) of formalin-fixed
paraffin-embedded (FFPE) sections using antibodies against Igκ and Igλ, SAA, TTR and
other amyloidogenic proteins make it possible to determine the type of amyloidosis [34].
The diagnostic effectiveness of IHC using antibodies against amyloid precursor proteins
depends significantly on the quality of reagents, pathologist experience [78], and often
requires antigen retrieval for antibodies in pretreatment with protease digestion, microwave
heating, pressure cooking, and others [79]. In the case of AL amyloidosis, there is a
possibility of false-negative results due to the presence of variable domains in Ig light
chains [31], which can probably affect the folding of the proteins in aggregates and the
epitope availability. Amyloids can include both full-length proteins and single fragments
of Ig light chains, which also influences the efficiency of immunodetection [80,81] and the
ability to specify the type of light chains, Igκ or Igλ [82]. In contrast, false-positive results
are problematic for the diagnosis of AA amyloidosis [83]. At the same time, automatic assay
systems with 100% sensitivity and specificity in diagnosing amyloidosis using an optimized
antibody panel have been recently developed [84]. Immunoelectron microscopy (IEM)
employing gold-labeled secondary antibodies provides more specificity in comparison
to other antibody-based techniques due to the ability to detect nanostructures (amyloid
fibrils and non-amyloid complexes) to which antibodies bind [85,86] and thereby exclude
background staining.

The most effective approach for diagnosing amyloidosis and its type is laser microdis-
section followed by tandem mass spectrometry (LMD–MS) of biopsy tissue specimens [87].
Proteins isolated from Congo red-stained FFPE sections are tryptically digested into pep-
tides that are sequenced by mass spectrometry (MS). This method also provides the identifi-
cation of common amyloidosis marker proteins such as SAP and apolipoprotein E (amyloid
signatures), for which its presence in samples serves as an internal control of procedure and
confirms amyloid deposits [49,88]. LMD–MS tissue analysis provides the opportunity to
correctly identify the amyloidosis type with sensitivity and specificity up to 100% [89–91].
It should be noted that the LMD–MS-approach has demonstrated greater efficiency com-
pared to immunoassays for the identification of amyloidosis type on specimens from the
same batch. According to [91], LMD–MS of FFPE affected organ biopsy samples enabled
identification of amyloidosis type in 92% of cases, whereas the use of antibodies provided
detection in only 45% of cases on specimens from the identical sampling. Gilbertson et al.
demonstrated 100% concordance between positive IHC and LMD–MS in 142 sequential
biopsy samples from 38 different tissue types; however, the diagnostic accuracy was 76%
and 94%, respectively [90]. Gonzalez Suarez reported that immunofluorescence staining
for Igκ or Igλ has inferior sensitivity and specificity compared with LMD–MS in the typing
of 170 cases of renal immunoglobulin-derived amyloidosis [92]. Identification of 12.3%
of cases failed in the immunofluorescence assay. LMD–MS is also an essential method
for identifying extremely rare forms of amyloidosis [21]. Along with LMD–MS, there are
other MS-based proteomics methods demonstrating their advantage over antibody-based
techniques. The study by [93] reported that 2D-PAGE-based comparative proteomics al-
lowed the identification of amyloidosis type in two cases in which the IEM assay was
unsuccessful. However, immunoassays are still the most common diagnostic technique
in clinical laboratories because the technique is more reproducible and lower in cost
than LMD–MS.

Mutation studies for various hereditary amyloidosis are performed to verify the amy-
loidosis type identified by biopsy analysis and also to refine the disease predicting [94].
Specifically, ATTRv amyloidosis are related to the presence of point mutations in the TTR
gene including Val30Met, Val122Ile, Thr60Ala, and AFib amyloidosis is caused by point mu-
tations (most common Glu526Val) or frameshift mutations in the FGA gene [95,96]. When
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AA amyloidosis due to systemic autoinflammatory disease is suspected, the diagnostics
can be complemented with genetic testing on mutations in MEFV, NLRP3, MVK, and other
genes [97]. A current list of mutations could be viewed at http://amyloidosismutations.
com/ (accessed on 19 September 2022) [98]. Genetic analysis is essential, as hereditary
amyloidosis may mimic AL in immunoassays [99]. Notably, genetic analysis requires cau-
tion because the penetrance of mutations can be highly variable [57,100]. A more reliable
method to verify the hereditary amyloidosis type (sensitivity 92% and specificity 100%) is
mass spectrometric detection of variant proteins isolated from biopsy specimens [101].

Thus, the analysis of biopsy-derived material is an effective method of diagnosing
the amyloidosis type. However, kidney biopsy is generally performed by indication in
the case of pronounced organ dysfunctions and higher risks of treatment failure. Another
major disadvantage of this approach is the invasive nature of the procedure and risk of
complications that limit its use in certain cases.

4. Noninvasive Evaluation of Amyloidosis and Its Types

A major area of noninvasive diagnostics is the development of scanning research
methods (radiography, computed tomography, ultrasound, magnetic resonance imaging,
bone scintigraphy, and others). Currently, the application of those methods is limited
to the late stages of amyloidosis in the presence of the significant deposition of amyloid
aggregates in the organs [102–104]. Therefore, imaging is mainly applied to verify the
amyloidosis diagnosis and clarify the type of amyloidosis. For example, 123I-labeled
SAP scintigraphy provides detection of either AA- or AL- amyloidosis types with 90%
sensitivity. However, this approach has limited value because of overlapping patterns
of organ involvement for both types of amyloidosis [36]. Injection of 99mTc-labeled bone
scintigraphy tracers into circulation followed by the visualization of their accumulation
in myocardial amyloid deposits provides specificity and a positive predictive value of
100% for the diagnosis of ATTR cardiac amyloidosis, but only in the absence of plasma cell
dyscrasia [35]. At the same time, plasma cell dyscrasia is a common competing disease,
especially in the elderly, and was detected in 39% of ATTRwt cases and in 49% of patients
with ATTRv amyloidoses [105]. Positron emission tomography and computed tomography
with thioflavin-analogue tracers [106,107] enable the detection of Ig light chain deposits in
organs not previously identified by clinical manifestations or biopsy. While being effective
for the detection of asymptomatic amyloid in some extra-renal organs, PET identified renal
involvement in fewer subjects than the international consensus diagnostic approach was
able to [108]. Research applying diffusion-weighted magnetic resonance imaging, which is
sensitive to local water motion in the tissue, becomes more promising for the detection of
amyloid nephropathy [102]. However, the sensitivity and specificity of that method in the
detection of amyloidosis are still low (79% and 60%, respectively). Collectively, imaging
methods continue to be only a supporting tool in the diagnosis of renal amyloidosis.

Another area of noninvasive diagnosis is the analysis of body fluids (saliva, blood,
urine, mucous membrane epithelial scrapes), which are collected without damaging the
internal organs affected by amyloidosis. This approach provides opportunities for detecting
factors and disease markers before the occurrence of severe systemic abnormalities that
are recalcitrant to therapy. Fluid analysis, firstly, simplifies the condition monitoring of
patients with already diagnosed amyloidosis and, secondly, enables the screening of the
early stages of disease until progressive systemic abnormalities become apparent.

Since the 1970s, there have been several attempts to detect amyloid aggregates in
the urine. Several studies have demonstrated the presence of different types of fibrillar
structures in the urine in amyloidosis [109,110]. This approach, however, has been called
into question by the fact that fibrils were not found in all specimens from patients with
amyloidosis, and were also observed in control specimen groups [111–113].

Nowadays, there are a variety of methods for detecting the precursor protein of
amyloidosis in serum and urine. Palladini et al. demonstrated that immunofixation elec-
trophoresis of serum and urine (IFE) performed with anti-IgG, -IgA, -IgM, -Igκ, and -Igλ

http://amyloidosismutations.com/
http://amyloidosismutations.com/
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antibodies on gels could identify the amyloidogenic Ig light chains in all 115 patients with
a monoclonal gammopathy [114]. The serum FLC immunoassay used for calculating the
Igκ/Igλ ratio had less sensitivity (76%). However, a combination of these two methods
had a 100% sensitivity [114]. Igκ/Igλ ratio outside of the physiological range (0.26–1.65)
with high urine albumin levels implicates renal AL amyloidosis [115], and increased serum
NT-proBNP values indicate cardiac AL amyloidosis in the absence of echographic features
of heart involvement [116]. Despite the methods reaching 100% sensitivity in the detection
of amyloidosis, they are nonspecific and require further verification of the diagnosis. Ig
light chain is found in 100% of cases with other types of monoclonal gammopathies, in-
cluding light chain monoclonal gammopathy of undetermined significance (MGUS) [117],
which is significantly more prevalent than AL amyloidosis [118]. As noted above, mono-
clonal light chains could be found in the serum in patients with ATTRwt, AA, and other
amyloidosis types [105,119]. On the contrary, increased levels of precursor protein SAA
(>10 mg/mL) are associated with the progression of established AA amyloidosis in most
cases [120]. However, SAA concentrations have no value for the prediction of this amyloid
type incidence [121] and, hence, cannot substitute standard histological diagnostics.

The possibility of detection of precursor proteins in biological fluids by MS is currently
being studied (for review, see [122]), despite the nonspecificity of the approaches to the
identification of precursor proteins in fluids. These methods frequently involve the use of
antibodies to enrich samples with putative precursor proteins because of the high content
of non-target proteins in plasma and urine specimens (in the case of proteinuria) [123–125].
Using the MS provides an opportunity to detect the monoclonal protein in the serum and
urine at concentrations below the threshold values for the IFE and FLC assay [124,126]. The
MS of serum samples for ATTR amyloidosis enables the diagnosis of inherited forms of
that disease [127]. The detection of peptides in serum and plasma samples with specific
post-translational modifications at Cys-10 by liquid chromatography–MS is considered to
be a promising approach for the diagnosis of ATTRv amyloidosis [123].

New perspectives in the analysis of precursor proteins of AL amyloidosis include the
assessment of the Ig light chain functional properties detected in body fluids. The glycosy-
lation of precursor proteins, their toxicity, and the genes encoding the monoclonal protein
provide a high-level confidence in predicting of amyloidosis in a group of patients with
MGUS, smoldering myeloma, or MM [13,128–131]. Proteomic analysis of urine exosome can
be used for the differential diagnosis of renal disorders in monoclonal gammopathies [132].
In particular, in renal AL amyloidosis out of remission, immunoreactive proteins are found
in urine exosomes corresponding to λ light chains, in contrast to non-amyloid renal in-
jury in MM [132]. The use of the nematode Caenorhabditis elegans as an object for testing
the toxicity of a monoclonal protein (“biosensor”) has demonstrated the possibility of
diagnosing the cardiac AL amyloidosis in MM patients by the level of pathogenic effects
on the pharynx of nematode [13]. Amyloidogenic Ig light chains isolated from the urine
and serum of patients with cardiac AL amyloidosis caused cell death in the pharynx and
reduced pumping rate. In contrast, non-cardiotoxic Ig light chains from patients with
renal amyloidosis and MM had no effect on organ function [17]. Kumar et al. [131] found
the presence of N-glycosylation of Ig light chains in 33 of 189 samples obtained by im-
munoprecipitation from the serum of patients with AL amyloidosis. Glycosylation of Igκ
was detected for 32.8% of AL patients, and glycosylation of Igλ–for 10.2% of cases. The
glycosylation rate in patients who had a detected monoclonal protein but without of AL
amyloidosis was only 4.1% (5 of 122 cases) [131]. As a result, the risk group screening for
Ig light chains glycosylation has a positive predictive value of 86.8%, which is extremely
high for a noninvasive approach. Subsequent study has indicated that glycosylation in the
MGUS group makes it possible to assess the risks of AL amyloidosis. Rates of progression
at 20 years were 21% and 3% for AL patients with and without glycosylated light chains,
respectively [129]. Kumar et al. also reported that glycosylation more frequently affects
sites of polypeptides encoded by genes of the KV1 and LV3 families [131]. It has been
previously demonstrated that proteomics-determined Ig germline gene usage provides
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a risk assessment of organ damage in AL amyloidosis [130]. Light chain variable region
(IGVL) genes LV6-57, LV3-01, and LV3-21 are associated with renal injury, LV1-44 is more
frequently identified in patients with cardiac AL amyloidosis, LV2-14 and KV1-33 usage are
more probable if peripheral nerve and liver, respectively, are involved [130]. At the same
time, in another recent study of Ig germline gene usage by cDNA analyses IGLV1-44 was
the most dominant IGLV-subfamily for patients with dominant kidney involvement and
IGLV3-21 with dominant heart involvement [128]. These and other inconsistencies indicate
that the clinical significance of the identification of IGVL genes encoding the monoclonal
protein in patients with AL amyloidosis requires further evaluation.

Thus, the available range of noninvasive methods in the amyloidosis evaluation
seems to be useful in clarifying the organ involvement, assessment prognosis, and disease
monitoring (Figure 2). However, these methods do not allow us to make an ultimate
diagnosis of amyloidosis per se and to ascertain its type.
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Figure 2. Noninvasive methods for amyloidosis diagnostics. AA—serum amyloid A amyloi-
dosis; AFib—fibrinogen α chain amyloidosis; AH—immunoglobulin heavy chains amyloidosis;
AHL—immunoglobulin heavy and light chains amyloidosis; AL—immunoglobulin light chains
amyloidosis; ALP—alkaline phosphatase; ALT—alanine aminotransferase; AST—aspartate amino-
transferase; ATTRv—hereditary type of transthyretin amyloidosis; CT—computed tomography;
ECG—electrocardiography; I/T—troponin I/troponin T; LV, left ventricle; MG—monoclonal gam-
mopathy; MS—mass spectrometry; NT-proBNP—N-terminal pro-B-type natriuretic peptide [133,134].
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5. Promising Trends in Noninvasive Diagnostics

In the absence of noninvasive methods of early diagnosis for the majority of amyloi-
dosis, it is necessary to carry out research with new approaches. One of the trends is to use
specific properties of amyloid aggregates and precursor proteins. These properties include
the seeding of amyloidogenic protein monomers by preexisting aggregates [135], amy-
loid resistance to detergents and proteases [10,136], and the recruitment of amyloidogenic
monomer protein by synthetic amyloid fibrils [137] (see Figure 3).
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PAGE—polyacrylamide gel electrophoresis; LC-MS/MS—liquid chromatography with tandem mass
spectrometry; ThT—thioflavin; IgκC—Igκ constant domain; IgκV—Igκ variable domain.



Int. J. Mol. Sci. 2022, 23, 12662 11 of 21

Amyloid aggregates, characterized by the presence of an array of β-strands, are
known to induce and promote the formation of new aggregates by monomers of these
proteins (nucleation and secondary seeding processes, for review, see [138]). The addition
of aggregates to the monomer solution and periodic fragmentation of nascent fibrils leads
to exponential growth of aggregated protein forms, making the detection of amyloids in
biological fluids possible even at extremely low concentrations [139,140]. Both of these and
related amyloid amplification methods are abbreviated as PMCA, from Protein Misfolding
Cyclic Amplification, or QuIC, from Quaking-Induced Conversion. New-forming fibrils,
typically, can be detected by Thioflavin T (ThT), the fluorescent dye. Previously, use of
urine samples as seed in PMCA demonstrated high sensitivity for diagnosing diseases
associated with amyloid deposition of prion proteins in the brain [141]. It is known that
the Ig light chains isolated from the urine of patients with amyloidosis are capable of
aggregation in vitro, as are prion proteins [142]. Alternatively, [143] reported that the ex
vivo fibrils extracted from the heart of patient with cardiac AL amyloidosis accelerated fibril
formation of homologous and non-homologous monomers of Igλ variable domain. The
acceleration of time-resolved ThT fibrillation kinetics with ex vivo fibrils as seeds has also
been demonstrated for TTR and SAA proteins [136,144]. Until now, no one has reported
the possibility of detecting minor amounts of these protein aggregates in the urine or blood
by PMCA or QuIC. In the future, since PMCA-based detection frequently demonstrates
high sensitivity, that approach could provide detection of fibrils and specific oligomeric
forms of pathological Ig light chains variants scarcely represented in the biological fluids of
patients with amyloidosis.

One of the challenges in applying the protein amplification approach to AL amyloi-
dosis is the unique nature of each Ig light chain due to the complementarity-determining
regions of the variant domain. This problem could be solved by selection of the monomeric
protein required to be induced by the aggregates from the biological fluids. The amino
acid sequence of the selected protein will differ from the sequence of Ig light chains and
their fragments in aggregates obtained from different patients. Therefore, the amplification
reaction must proceed through cross-seeding between heterologous proteins [145]. Blancas-
Mejía et al. show that the time of Igκ variable domain aggregation upon the addition of ag-
gregates obtained in vitro from domains with a different sequence (sequence identity with
the IGKV 1–33 germline gene 91–96%) varies significantly in various combinations [146].
Cross-seeding most often caused the acceleration of monomer aggregation, but the lag
phase reduction could vary considerably for different monomeric proteins. The lag-phase
reduction in cross-seeding was occasionally shorter compared to homologous seeding.
Moreover, for one variant of the aggregates, an inhibition of the amplification rate during
the cross-seeding of a monomeric protein variant was observed [146]. The authors gen-
erally conclude that the efficiency of seeding is determined mainly by the amyloidogenic
properties of the monomers in solution rather than by the properties of the seed. Notably,
the addition of aggregates formed by Igκ variable domains had no effect on the aggregation
kinetics of monomeric variable domains from the λ1b subgroup (sequence identity with
the germline gene IGKV 1-33 48%) [146].

Another interesting finding of [146] was the fact that aggregates of the germline
gene IGKV 1-33 product can accelerate fibril formation in a solution of full-length Igκ
monomers. That result raises the issue of considering the use of Igκ constant domain
monomers for the detection of amyloidogenic monoclonal proteins in biological fluids.
Since the constant domain is unchanged in all Igκ variants except for rare mutations,
its use can provide a stable seeding with lower effects on aggregation kinetics varying
between samples. It was demonstrated that monomers of the constant domain of Igκ
light chains exhibit in vitro self-aggregation with the forming of amyloid fibrils [147]. In
addition, amyloid aggregates formed by Igκ constant domain were described [148]. The
successful use of protein fragments for amplification of aggregates in biological sample
has been shown previously for the detection of human Creutzfeldt–Jakob disease using
cerebrospinal fluid [149]. Amyloidogenic Ig light chains as monomers, oligomers, and
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as a part of aggregates can also possibly promote faster conversion of constant domain
monomers to amyloid conformation both through direct interaction with constant domains
in aggregates and through cross-seeding by amyloidogenic sites in the variable part of light
chains [145].

A different approach for the optimization of monoclonal protein amyloidogenicity
assessments is the development of universal standard aggregates of Ig light chains. For the
testing amyloidogenicity of Ig light chains, [137] used synthetic amyloid fibrils composed of
a λ6 variable domain isolated from an AL patient (rVλ6Wil). Four samples of AL-associated
radiolabeled urinary Igλ and Igκ bound rVλ6Wil fibrils (recruitment) more efficiently than
four samples of MM-associated proteins. Furthermore, in MM patients with abnormally
high Ig light chain recruitment, AL amyloidosis was subsequently diagnosed, thus sug-
gesting the prognostic potential of the proposed methodological approach. Notably, the
AL-associated protein recruitment to Aβ(1–40) fibrils was more pronounced in comparison
to MM proteins. The method was further improved by using biotinyl-λ6 variable domain
monomers in solution together with patient-derived urinary proteins [150]. Competitive
binding to rVλ6Wil fibrils between recombinant λ6 variable domain and urinary proteins
permitted separation of MM and AL patient groups with 100% specificity and sensitivity
by concentration-dependent inhibition of biotinyl-λ6 variable domain recruitment [150].

The assessment of amyloidogenicity of protein components and detection of amyloid
aggregates in biological fluids are complicated by the presence of a large number of
other proteins (not participating in amyloidogenesis). Specifically, albumin, the most
abundant protein in serum and in urine samples from patients with nephrotic syndrome
can inhibit amyloid formation [151]. Martin et al. isolated Ig light chains from urine
samples [150] following the protocol proposed by [152] in several steps, including dialysis,
zone electrophoresis, and gel filtration. In the mass spectrometric studies [124,127,153],
the issue of target factor concentration was solved by preliminary immunoprecipitation of
proteins suspected for amyloid formation.

Alternatively, one way to dispose of bulk protein and prepare a sample to assess the
amyloidogenicity of the protein components is ultracentrifugation at speeds in the range of
thousands g and treatment of the deposit with ionic detergents, such as sarcosyl and sodium
dodecyl sulfate. It provides detergent-resistant aggregates from the sample and can be used
for research and diagnostic purposes [11]. Ultracentrifugation eliminates the background of
factors not involved in the aggregate formation, and treatment with detergents enables the
avoidance of protein complexes of non-amyloid nature [154]. According to our preliminary
data, the quantitative and qualitative composition of proteins in the fraction of aggregates
resistant to the treatment with 3% sarcosyl significantly varies in urine samples with
different etiologies of proteinuria and significantly differs in protein composition from the
untreated samples (Figure 4).

Generally, the obtained aggregates contain practically no albumin, and preliminary
centrifugation at a speed of 4000× g enables the removal of large fibrils, the presence of
which is not necessarily associated with amyloidogenic factors in the sample and can be
found in healthy humans [112]. The analysis of the composition of detergent-resistant
aggregates in specimens from patients with various diagnoses may have scientific and
clinical relevance, not assessed by anyone to date. This is supported by the data on the
detection in isolated urine aggregates the main factors for the progression of preeclampsia,
a disease in pregnant women, which, as well as in renal amyloidosis, is associated with
proteinuria and amyloid deposits in tissues ([155,156]; see review [157]). Of interest, the
Congo red dot (CRD) test and the CRD paper test on urine samples have also demonstrated
successful diagnostic applications for preeclampsia [155,158]. The design of those tests
is based on the suggestion that Congo red binds amyloidogenic proteins in the urine of
preeclampsia patients [155]. Performing CRD tests on the proteinuric specimens of urine in
patients with various amyloidoses and non-amyloid diseases could clarify the diagnostic
performance of such an approach.
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Figure 4. Proteins of urine and detergent-resistant aggregates from patients with proteinuria. Sam-
ples are separated in polyacrylamide gel electrophoresis and stained by Coomassie Brilliant Blue.
BSA—bovine serum albumin, AL—AL amyloidosis, AA—AA amyloidosis, MN—membranous
nephropathy, IgA—immunoglobulin A nephropathy. Spectra Multicolor Broad Range Protein Ladder
(no. 26634) (Thermo Fisher Scientific, Waltham, MA, USA) is shown to the left of the gels. Red line
indicates the area just above the BSA band (2 µg) that runs at the level of human serum albumin in
the samples on the right (lines 1–12). Images was obtained by S.A. Fedotov.

6. Conclusions

The current arsenal of diagnostic approaches for renal amyloidosis is based primarily
on invasive procedures applying typically at late stages. Since the effectiveness of renal
amyloidoses treatment largely depends on the stage at which the disease is diagnosed
the design of noninvasive screening techniques for renal amyloidosis might enable earlier
detection of the disease, and significantly improve the renal and life prognosis in these
patients. In this regard, further study of functional and pathological amyloid properties
in humans is essential for the development of new diagnostic and treatment methods
for amyloidosis.
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AA serum amyloid A amyloidosis
AFib fibrinogen α chain amyloidosis
AH immunoglobulin heavy chains amyloidosis
AHL immunoglobulin heavy and light chains amyloidosis
AL immunoglobulin light chains amyloidosis
ALECT2 leukocyte chemotactic factor 2 amyloidoses
ALP alkaline phosphatase
ALT alanine aminotransferase
AST aspartate aminotransferase
ATTR transthyretin amyloidosis
ATTRv hereditary type of transthyretin amyloidosis
ATTRwt wild-type type of transthyretin amyloidosis
BSA bovine serum albumin
CNS central nervous system
CRD Congo red dot
CT computed tomography
ECG electrocardiography
FFPE formalin-fixed paraffin-embedded
FLC free light chains
GIT gastrointestinal tract
I/T troponin I/troponin T
IEM immunoelectron microscopy
IFE immunofixation electrophoresis
Ig immunoglobulin
IgA immunoglobulin A nephropathy
IGVL light chain variable region
Igκ immunoglobulin kappa light chain
IgκC immunoglobulin kappa constant domain
IgκV immunoglobulin kappa variable domain.
Igλ immunoglobulin lambda light chain
IHC immunohistochemistry
LMD–MS laser microdissection followed by tandem mass spectrometry
LV left ventricle
MG monoclonal gammopathy
MGUS gammopathy of undetermined significance
MM multiple myeloma
MN membranous nephropathy
MS mass spectrometry
NT-proBNP N-terminal pro-B-type natriuretic peptide
PAGE polyacrylamide gel electrophoresis
PMCA protein misfolding cyclic amplification
PNS peripheral nervous system
QuIC quaking-induced conversion
SAA serum amyloid A protein
SAP serum amyloid P component
ThT thioflavin T
TTR transthyretin protein
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