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Abstract: Neuroglial apoptosis and neuroinflammation play an important role in epileptogenesis.
The aim of this study is to evaluate neuronal and glial apoptosis in association with neuroinflamma-
tion in brain epileptic focus and inflammatory changes in blood in patients with focal drug-resistant
epilepsy (DRE). Pathological changes in the temporal lobe in epilepsy (histology, transmission electron
microscopy), levels of apoptotic and neuroinflammatory proteins: active caspase-3 (immunohisto-
chemistry), full-length form caspase-3, caspase-9, FAS, FAS-L, NF-kB, TNF-α, p53 (Western blot), and
cytokine levels in blood: IL-1β, IL-2, IL-4, IL-7, TNF-α, etc. (multiplex analysis) were studied. In
the present work, ultrastructural and immunohistochemical apoptotic signs were found in neurons
and oligodendrocytes in the temporal lobe of DRE patients. Levels of proinflammatory cytokines
that play a role in apoptosis (TNF-α, FAS, NF-kB) were increased. The blood concentration of IL-4,
IL-7, TNF-α is increased and IL-2 is reduced. Oligodendroglial apoptosis has been shown to play an
important role in DRE pathogenesis and to explain demyelination. Thus, a comprehensive analysis
of revealed changes in the blood and brain in DRE patients showed the neuroinflammation in the
epileptic focus, which was combined with the development of apoptosis of glial cells and neurons.
This creates conditions for the development of drug resistance and the epilepsy progression.

Keywords: drug-resistant epilepsy; apoptosis; neuroinflammation; cytokines; neurons; glia

1. Introduction

Drug-resistant epilepsy (DRE) is characterized by spontaneously recurring seizures,
cognitive deficit, and brain structural changes. Status epilepticus is a prolonged seizure
that damages neurons and neural networks; its appearance precedes drug resistance [1,2].
Although more than 30 anti-seizure medications (ASM) are currently available [3], un-
fortunately, long-term regular ASM intake allows only 40–60% of patients to achieve
remission [4]. Surgical correction is an effective method for DRE treatment, however the
positive results of surgery are noted only in 55–74% of patients [5,6]. Thus, it is important to
search for new epileptogenic mechanisms that can become the basis for effective treatment.
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Apoptosis, oxidative stress, the loss of inhibitory or excitatory neurons, and inflamma-
tion play a key role in epilepsy progression [7–9]. We suggest that since the neuronal and
glial components are closely related, it is necessary to study the functioning of both neu-
rons and glia in epilepsy [10]. Reactive gliosis and inflammation accompanying neuronal
damage contribute to the emergence of hyperexcitability focus [11]. Astrocytes may play a
central role in epileptogenesis [4]. The epileptic seizures may be associated with damage
to the myelin sheath, which directly affects neuron survival [12]. In this regard, the glia is
considered to be a promising new target for alternative ASM [13]. Some studies are devoted
to glial apoptosis in epilepsy [14,15], but the main attention is focused on seizure-induced
neuronal death [11,16].

The extrinsic (TNF-α, FAS) [17] or mitochondrial apoptotic pathways [18] and the
important gene p53 [19] can play a significant role in epileptogenesis. It is also important to
study the caspase activation in epilepsy, which plays a decisive role in apoptosis. Caspase-3
is an effector caspase that activates the endonuclease CAD (caspase-activated DNase),
causing DNA breaks in the internucleosomal regions and leading to the destruction and
death of cells [10,14,16,19].

Neuroinflammation, closely associated with cell death, is regulated mainly by cy-
tokines. The cytokine system can modulate the functional activity of immunocompetent
cells and have cytotoxic and proapoptotic effects. Cytokines can migrate between blood and
brain in both directions. The cytokines activate monocytes/macrophages, etc., and together
contribute to apoptosis [20]. In this regard, this work aims to evaluate the manifestations of
neuronal and glial apoptosis in conjunction with neuroinflammation in the epileptic focus
area and inflammatory changes in the blood of patients with DRE.

2. Results
2.1. Histological Examination

When staining according to Nissl, in all DRE patients, we have seen foci of neuronal
loss (Figure 1a,b) and reactive-destructive changes in neurons in the epileptic focus in the
temporal lobe. Hydropic dystrophy with chromatolysis and vacuolization of the neuron
cytoplasm was oberved, as were hyperchromic shriveled ischemic cells. These changes were
accompanied by moderate satelliteitis and neuronophagia, and mild gliosis. In the white
matter, cellular gliosis was accompanied by myelin loss (demyelination), as well as damage
to the myelin sheaths (Spielmeir staining) (Figure 1d,e), TEM (see below) (Figure 1f,g).

Figure 1. Cont.
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Figure 1. Structural changes in the epileptic focus in the temporal lobe. Light microscopy: (a) neurons
in the cerebral cortex in the comparison group; (b) loss of neurons in the cerebral cortex in a patient
with DRE (Nissl staining, 200×); (c) white matter rich in myelin in the comparison group; (d) white
matter demyelination in a patient with DRE (Spielmeier staining, 200×); (e) white matter, gliosis (HE,
400×). TEM: (f) destruction of myelin sheaths; bar, 1 µm; 16,500×; (g) destruction of myelin sheaths;
bar, 500 nm; 26,500×. 1, areas of lamella rupture; 2, delamination of the sheath; 3, myelin dissociation;
4, vesicular disintegration; 5, grainy myelin disintegration; GlF, gliofibrils; Oc, oligodendrocyte; AC,
axial cylinder, axon; MS, myelin sheath.

2.2. IHC (Active Caspase-3)

To assess the severity of apoptosis in the cortex and in the white matter in the epileptic
focus, IHC with caspase-3 (active form) was performed.

In all DRE patients, we have seen the presence of active caspase 3 in the nuclei of
glial cells of the gray and white matter of the brain. In the cortex, the distribution of
immunoreactive gliocytes was diffuse, predominantly uniform in all cortical layers, and
nuclear staining was intense. In 20% of cases, the presence of active caspase-3 was observed
in separate nuclei of cortical neurons; in 80% of cases, active caspase-3 was absent in
neurons. In comparison, for the group in the cortex, in 66.7% of cases, active caspase-3
was absent in glial cells and neurons (Figure 2a,b, Table 1); in 33.3% of cases, we observed
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single stained nuclei of gliocytes. In the white matter, immunoreactive gliocytes were also
diffusely distributed, predominantly evenly, and the staining of the nuclei was less intense
than in the cortex. While in the comparison group, the active form of caspase-3 was absent
in the white matter (Figure 2c,d, Table 1).

Figure 2. Study of cell apoptosis in the epileptic focus of the temporal lobe. Light microscopy, IHC
study of cell apoptosis in the epileptic focus of the temporal lobe: (a) the presence of active caspase-3
in glial cells in the cortex of patients with DRE (brown staining in the cell nucleus); (b) absence of the
active caspase-3 in the cortex cells of patients in the comparison group (without epilepsy); (c) the
presence of active caspase-3 in glial cells in the white matter of patients with DRE (brown staining
in the cell nucleus); (d) absence of the active caspase-3 in the white matter cells of patients in the
comparison group (without epilepsy), 400×. TEM, the initial stage of apoptosis: (e) cortical neuron
with an elongated, curved nucleus (NN, neuron nucleus), finely condensed chromatin fragments in
the karyoplasm, destructively altered mitochondria (M) in the cytoplasm (NC, neuron cytoplasm),
dilated tubules of the endoplasmic reticulum (ER) and lipofuscin granules (LF); bar, 2 µm; (f) an
accumulation of oligodendrocytes in the white matter of the brain, the heterochromatin of which
is distributed throughout the nucleus (OcN, oligodendrocyte nucleus) in large conglomerates. GlF,
glyofibrils; MF, myelin fibers; bar, 2 µm; 8200×.
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Table 1. Mean relative values (M) of caspase-3-positive glial cells in the temporal lobe brain tissue in
the comparison group (without epilepsy) and in patients with epilepsy, mean error (m), number of
cases (n), differences in the content of caspase-3 in the cerebral cortex compared to the comparison
group statistically significant at p < 0.05.

Comparison Group
(n = 6)

Patients with Epilepsy
(n = 20)

Cerebral Cortex White Matter Cerebral Cortex White Matter

Caspase-3
(M ± m) 0.33 ± 0.23 0 25.05 ± 0.70 5.94 ± 0.47

2.3. Ultrastructural (TEM) and Histological Examination of Apoptosis in Epileptic Focus

The IHC study has shown that predominantly glia, not neurons, undergo apoptosis.
TEM has revealed that in the cortex of DRE patients, a significant number of neurons have
shown morphological signs of apoptosis (Figure 2e, Figure 3a). We have observed different
apoptotic stage neurons and glial cells; early signs of DNA fragmentation based on the
presence of heterochromatin clumps spread throughout the karyoplasm (Figure 2e,f). At the
later apoptosis stages, we have observed nuclear disintegration against the background
of irreversible degenerative changes in the cytoplasm, pronounced perinuclear pockets,
sharply dilated tubules of the endoplasmic reticulum and cisterns of Golgi apparatus,
which often combined into huge vacuoles (Figure 3).

Figure 3. Cont.



Int. J. Mol. Sci. 2022, 23, 12561 6 of 16

Figure 3. Apoptosis of neurons and oligodendroglia in the cerebral cortex with the formation
of perinuclear inflation (PnI). TEM: (a) vacuoles and perinuclear inflation in an apoptotic neuron
(N); bar, 2 µm; (b) perinuclear inflation in the oligodendrocyte; bar, 2 µm; 8200×; (c) apoptosis of
oligodendrocyte at the stage of nuclear disintegration with a Lewy body (LB) in the cytoplasm (OcC),
on the side of the rupture of the nuclear envelope has many fragments of nuclear matter. MF, myelin
fiber; NN, neuron nucleus; OcN, oligodendrocyte nucleus; PnI, perinuclear inflation; bar, 1 µm;
9900×.; (d,e) formation of apoptotic bodies (AB) and their utilization: (d) apoptotic bodies in the
intercellular space; bar, 1 µm; 16,500×; (e) astrocyte (Ac), performing the function of a macrophage,
with a large accumulation of cellular degradation products, lipofuscin granules (Lf) and Lewy body
(LB) in the astrocyte cytoplasm (AcC); AcN, astrocyte nucleus; Glf,glyofibrils; MF, myelin fiber; bar,
2 µm; 6000×.

Most cortical oligodendrocytes and almost all oligodendrocytes in the white matter
have shown signs of apoptotic destruction. The nuclei were irregular, angular shaped, and
their karyoplasm was filled with many dense heterochromatin lumps of different sizes.
Often, the сytoplasm of neurons was hypertrophied, with a compacted matrix, sharply
vacuolated organelles, and homogeneous condensation of karyoplasm, which is rather
characteristic of necrotic cell death. Single apoptotic astrocytes were also observed. Thus,
we show that neuronal damage, both necrotic and apoptotic, is recorded in the epileptic
focus. In the gliocytes, apoptosis is more pronounced in oligodendrocytes (Figure 3b,c).

We have also observed the stages of cell disintegration into apoptotic bodies as a result
of disruption of the cell membrane integrity. Astrocytes often act as macrophages capable
of phagocytosis of apoptotic bodies (Figure 3d,e). In addition, TEM has revealed a wide
variety of pathological signs of destruction in the structure of the myelin sheath of axons
(Figure 1f,g).
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2.4. WB
2.4.1. WB. Epileptic Focus

In cortical biopsies of the epileptic focus, the content of proinflammatory TNF-α was
increased (Figure 4). Similarly, cortical biopsies have shown FAS overexpression against
the background of high levels of its ligand FAS-L. TNF-α content in the white matter of
the temporal lobe has also increased in comparison with the values of the control group.
No increase in FAS expression was found in the white matter, while the FAS-L content
was significantly higher than in the control group in the gray and white matter (Figures 4
and 5).

Figure 4. Content of TNF-α, FAS-R, FAS-L, caspase-3, caspase-9, p53, p-NF-kB p65, p-NF-kB p105 in
the temporal lobe cortex. Lysates of biopsies of the human temporal lobe cortex were studied on a
10% polyacrylamide gel using Western blot. C, control group; EF, epileptic focus; EP, perifocal zone.
Significant differences: a, differences in the content of TNF-α protein in the cortex compared to the
control group, statistically significant at p < 0.05; b, differences in the content of FAS-R protein in
the cortex in comparison with the control group, statistically significant at p < 0.05; c, differences in
the content of FAS-L protein in the cortex compared to the control group, statistically significant at
p < 0.05; d, differences in the content of caspase-3 protein in the cortex compared with the control
group, statistically significant at p < 0.05; e, differences in the content of caspase-9 protein in the
cortex compared to the control group, statistically significant at p < 0.05; f, differences in the content
of p53 protein in the cortex in comparison with the control group, statistically significant at p < 0.05;
g, differences in the content of p-NF-kB p65 protein in the cortex compared to the control group,
statistically significant at p < 0.05; h, differences in the content of NF-kB p105 protein in the cortex
compared to the control group, statistically significant at p < 0.05.
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Figure 5. Content of TNF-α, FAS-R, FAS-L, caspase-3, caspase-9, p53, p-NF-kB p65, p-NF-kB p105
in the white matter of the temporal lobe of the brain. Lysates of human white matter biopsy were
studied on a 10% polyacrylamide gel by Western blot. C, control group; EF, epileptic focus; EP,
perifocal zone. Significant differences: a-differences in the content of TNF-α protein in the white
matter compared with the control group, statistically significant at p < 0.05; b, differences in the
content of FAS-R protein in the white matter compared to the control group, statistically significant at
p < 0.05; c, differences in the content of FAS-L protein in the white matter compared with the control
group, statistically significant at p < 0.05; d, differences in the content of caspase-3 protein in the white
matter compared to the control group, statistically significant at p < 0.05; e, differences in the content
of caspase-9 protein in white matter in comparison with the control group, statistically significant
at p < 0.05; f, differences in the content of p53 protein in the white matter in comparison with the
control group, statistically significant at p < 0.05; g, differences in the content of p-NF-kB p65 protein
in white matter compared to the control group, statistically significant at p < 0.05; h, differences in the
content of NF-kB p105 protein in white matter compared to the control group, statistically significant
at p < 0.05.

In the cortex in the epileptic focus and perifocal zone, the initiator caspase-9 expression
was higher, and full-length caspase-3 was lower than in the biopsies from the control group.
Caspase-3 (full-length form) and caspase-9 expression in the underlying white matter has
changed similarly to values of the cortex (Figures 4 and 5).

In biopsies of the cortex and white matter, proapoptotic protein p53 expression was
higher than in biopsies of people without epilepsy (Figures 4 and 5).
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The content of S536 phosphorylated p65 subunit of NF-kB in the epileptic focus
increased in the gray and white matter compared with the control group. The content
of phosphorylated p105 subunit (p50 precursor) of NF-kB was significantly higher in the
cortex and underlying white matter of the epileptic focus compared with the control group
(Figures 4 and 5).

2.4.2. WB. Perifocal Zone

TNF-α expression in the perifocal zone, both in the cortex and in the white matter of
the temporal lobe, exceeded its expression in biopsies of people without epilepsy. In the
perifocal zone of the epileptic focus, FAS expression was increased only in the cortex. In the
white matter, only an upward tendency was observed; however, no significant differences
were found in comparison with people without epilepsy (Figures 4 and 5).

In the cortex in the perifocal zone, caspase-9 and full-length caspase-3 expression
showed the same tendency as in the epileptic focus, but less pronounced. Caspase-9
expression has increased, and full-length caspase-3 expression has decreased in the cortex
and white matter in DRE patients compared with the control group (Figures 4 and 5).

The proapoptotic protein p53 expression in the cortex and white matter in the perifocal
zone was increased compared with people without epilepsy (Figures 4 and 5).

The content of phosphorylated p65 subunit NF-kB has remained unchanged, and the
content of phosphorylated p105 subunit NF-kB has increased in the cortex and white matter
of the perifocal zone compared with the control group (Figures 4 and 5).

2.5. Multiplex Biochemical Analysis of the Cytokine Profile

We have found that in plasma samples from DRE patients, the content of proinflam-
matory IL-1β, its natural antagonist IL-1RA, interferon IFN-γ, and anti-inflammatory IL-10
did not differ from their content in healthy people. The level of the immunoregulatory
cytokine IL-2 and the chemoattractant proinflammatory IL-8 has decreased in DRE patients.
The content of IL-7, which is involved in the maturation and proliferation of lymphoid
cells, and proinflammatory cytokines (TNF-α, IL-4, sCD40L) was increased.

3. Discussion

We have previously shown the presence of apoptosis and neuroinflammation in the
temporal lobe of DRE patients [9,10,21].

3.1. Glial Apoptosis

It is believed that astrocytes play an important, possibly central role in epileptogene-
sis [22]. The astrocyte membrane contains ionotropic glutamate receptors. The saturation of
these receptors induces in cells the synthesis of NO (nitrogen oxide) synthase and glial acid
fibrillar protein (GFAP), which protects neurons from overexcitation and death. However,
the long-term presentation of epileptogenic stimuli causes a massive generation of NO in
astrocytes, which has a toxic effect [23].

We have estimated the apoptosis of oligodendroglia and neurons in cortical biopsies
in epilepsy (TEM). In our study, the pronounced presence of active caspase-3 in the studied
biopsies from DRE patients was detected mainly in gliocytes and only in a small part of
neurons (ICH) in only 20% of cases.

In the experiment, the presence of caspase-3 in the hippocampus and temporal lobe
increased after an epileptic seizure in neurons [16,24] and was rarely detected in rat as-
trocytes [14]. It has been suggested that astrocyte apoptosis is activated during and after
seizure-induced neuronal apoptosis and may contribute to neuronal death and epileptogen-
esis [24]. A study on rat oligodendrocyte culture has shown that oligodendrocyte apoptosis
in the epileptic model was higher than in the control [15].

The main function of oligodendrocytes is to form the axon myelin sheaths. In epilepsy,
the number of mature oligodendrocytes and the amount of myelin are reduced [25]. Mass
demyelination of fibers in epileptic focus [12,26] causes transverse neurotransmission and
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generalization of nerve impulses with the simultaneous involvement of various brain
regions in epileptogenesis [12]. In the rat hippocampus, the loss of myelin and oligoden-
drocytes begins during the acute phase and progresses in the latent and chronic phases of
epileptogenesis [27].

In an experiment in mice, myelin injury caused seizures after 9–12 weeks [26]. The
survival of oligodendrocytes depends on many factors, including the astrocytes condition,
which secretes growth factors important for the survival of neurons, glia, and glial prolif-
eration. For example, ciliary neurotrophic factor protects oligodendrocytes and reduces
demyelination [28].

We have established that oligodendrocytes are mainly subjected to apoptosis in DRE.
The oligodendrocyte loss leads to an imbalance of excitation and inhibition in the brain
and provokes the formation of an epileptic focus or aggravates epilepsy severity [25].
This confirms the close interaction of all brain cellular elements and the need for their
comprehensive study in pathology, in particular in epilepsy.

3.2. Neuronal Apoptosis and Signaling Apoptotic Pathways

In temporal lobe epilepsy, the extrinsic apoptotic pathway predominates since caspase-
8 activation precedes mitochondrial dysfunction and caspase-9 activation [29]. Caspase-8
inhibitors have a more pronounced neuroprotective effect in the hippocampus than caspase-
9 inhibitors [30] and prevent cytochrome C release and caspase-9 activation [16].

Caspase-8 inhibition reduces neuronal death in vitro [31] and in vivo [24]. It was found
that within 1–4 h after the seizure onset, Bax clusters are formed in the outer mitochondrial
membrane, which coincides with cytochrome C release and confirms the mitochondrial
pathway activation [11]. After the seizure in the rat hippocampus, cytochrome C, and
Apaf-1 complexes were found, which activate procaspase-9 and trigger apoptosis, and also
indicate mitochondrial pathway activation [16].

In our work, an increased caspase-9 expression and a reduced caspase-3 expression
in biopsies of the cortex and white matter in the epileptic focus indicates the apoptosis
mediated by the mitochondrial pathway. The caspase-9 and caspase-3 content in the gray
and white matter of the perifocal zone has shown the same tendency as in the epileptic
focus but is less pronounced. An increased p53 content may also point to a mitochondrial
pathway, which indicates DNA damage in the cells of the cortex and white matter in the
epileptic focus and perifocal zone.

3.3. Proinflammatory Factors and Apoptosis

In our study, TNF-α and FAS-L overexpression in the cortex and white matter from
DRE patients may indicate the activation of immune cells in the brain. The increased
expression of proinflammatory TNF-α and FAS-L by these cells can activate the extrinsic
apoptotic pathway in the cortex and white matter of the epileptic focus. In addition,
FAS-L-mediated activation of immune cells in the white matter of the temporal lobe of
DRE patients may lead to demyelination. In the perifocal zone, neuroinflammation also
proceeds, but less intensively.

TNF-α binds to TNFR1 receptor and activates TRADD [32]. TRADD initiates compet-
itive survival pathways caused by phosphorylation of the inhibitor protein with which
NF-kB is associated. This may explain the different effects of TNF-α on apoptosis. FAS/FAS-
L system initiates only the apoptosis [33].

3.4. Protective NF-κB Pathways

NF-κB transcription factor plays a role in chronic inflammatory diseases [31]. NF-
κB homodimers p50 and p52 are gene repressors, while p65, c-Rel, p50, and p52 in any
combinations are activators [34].

In our study, the content of phosphorylated subunits p65 and p105 (p50 precursor)
NF-kB has increased in the cortex and white matter in the epileptic focus. Phospho p65
content in the cortex and white matter in the perifocal zone has not changed. Phospho
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p105 content in the cortex and white matter in the perifocal zone has increased. It can
be assumed that an increased content of phospho p65 in the epileptic focus indicates
the activated transcription of proinflammatory and antiapoptotic genes under TNF-α
influence. This often leads not to cell death but to their survival. The increased content of
phospho p105 against the background of an unchanged level of phospho p65 indicates the
suppression of survival pathways in the perifocal zone. Thus, the survival mechanisms do
not prevent apoptosis mediating by the extrinsic pathway in the perifocal zone.

3.5. Blood Cytokines

We have observed a decreased level of IL-2 in blood plasma in epilepsy. IL-2 promotes
the neuron regeneration and stimulates the proliferation and differentiation of oligodendro-
cytes [35]. IL-2 deficiency can cause autoimmune inflammation with neuron damage [36].
The cytokines circulation (TNF-α, IL-1, IL-8) in the bloodstream usually indicates an acute
phase of the body’s response to inflammation, which is regulated by proinflammatory
(IFN-γ, IL-12) or anti-inflammatory (IL-10) cytokines [37]. We have found that the level
of proinflammatory TNF-α, IL-7, and sCD40L increased in the blood plasma of DRE pa-
tients, and the anti-inflammatory IL-4 level has also increased compensatory. This probably
reflects the systemic immune reaction associated with brain damage.

4. Materials and Methods
4.1. Study Design and Patients

The study follows a case-control design. Biopsies of 30 patients with focal DRE (24–55
years old) were studied. All patients were treated at Polenov Neurosurgical Institute,
Almazov National Medical Research Centre (ANMRC), St. Petersburg, Russia (2013–2020).
The work was carried out according to the principles of voluntariness and confidentiality
in accordance with Federal Law “On the Basics of Health Protection of Citizens in Russian
Federation” 21.11.2011 N 323-FZ, Helsinki Declaration on Human Rights and approved
by the ethical committee of ANMRC. Written consents of the subjects are available. The
pre-surgical stage of diagnostics was carried out according to the algorithm of the standard
diagnostic complex for examining DRE patients, including clinical observation, study of
neurological, neuropsychological and mental status, electrophysiological and neuroimag-
ing investigations. The type of epileptic seizures was established in accordance with
International League Against Epilepsy (2017). The patients with complex partial seizures
with secondary generalization prevailed; simple partial seizures were much less.

Inclusion criteria were patients with focal DRE associated with focal cortical dysplasia;
age 18 and over; epileptiform activity predominantly in the temporal lobe of the brain;
established drug resistance of the disease (seizures persist after the use of two approved
antiepileptic drugs basic for this form of epilepsy in the maximum tolerated doses in the
form of sequential monotherapy or in combination); absence of a primary pathological
substrate; confirmation of the diagnosis using invasive electroencephalographic monitoring;
signed informed consent for the collection, transportation, storage and examination of
biological materials.

Exclusion criteria: other structural epilepsies associated with tumors, vascular malfor-
mations, encephalitis; cerebrovascular diseases; autoimmune diseases of the brain; epilepsy
with damage to other parts of the brain (frontal, parietal lobe); acute infectious, chronic
inflammatory diseases.

The patients were found to have atrophy, mainly of frontal and temporal lobes, gliosis
and cystic-gliosis changes in the brain, focal cortical dysplasia, and hippocampal scle-
rosis. The patients underwent anterotemporal resections, resections of cortical epileptic
focus under the electrocorticography control. Biopsies of the cortex and white matter of
the temporal lobe, obtained intraoperatively, served as material for electron microscopic,
histological, immunohistochemistry (IHC), and Western blotting (WB).
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The material of the comparison group for histological study, IHC (cortex and white
matter of temporal lobe), was obtained during autopsies in the first 6 h after death from 6
patients who died from somatic diseases, such as acute myocardial infarction, gastric ulcer
complicated by bleeding, mesenteric thrombosis, pulmonary embolism. These patients had
no history of neurological disorders. Biopsy material of comparison group for histological
studies, WB was obtained from 15 patients who were operated on after traumatic brain in-
jury and had no epileptic history. These patients received reconstructive surgical treatment,
such as plasty of the bones defect of the cranial vault and excision of adhesions in the area
of the glio-mesodermal scar in the long-term period of the trauma (0.6–1 year). Patients
with acute traumatic brain injury were not included in the study.

To detect cytokine and chemokine levels, blood plasma samples were taken from 6
DRE patients (20–32 years old). Five healthy volunteers (23–35 years old) were included in
the comparison group.

The data that support the findings of this study are available on request from the corre-
sponding author. The data are not publicly available due to privacy or ethical restrictions.

4.2. Histological Examination

Biopsies of the temporal lobe were fixed with 10% paraformaldehyde in 0.1 M sodium
phosphate buffer, dehydrated in a standard way, and embedded in paraffin. Paraffin
sections 5–7 µm thick were stained with hematoxylin and eosin (HE) by Spielmeir and
Nissl, then dehydrated and mounted with neutral balsam. Sections were analyzed with a
light microscope (Zeiss Axiolab, Carl Zeiss Inc., Berlin, Germany). The images at 200× and
400× magnification were used for the tissue morphological analysis.

4.3. IHC

Performed IHC studies of 20 patients with DRE to determine apoptosis by evaluating
the presence or absence of active caspase-3. IHC reactions were performed on paraffin-
embedded 5–7-µm-thick slices of the brain temporal lobe biopsies according to the standard
protocol. Rabbit polyclonal antibody to active caspase-3 (1:100, PC679, Merckmillipore,
Darmstadt, Germany) and EnVision polymer detection system (Dako, Santa Clara, CA,
USA) were used to detect apoptotic cells. We used active caspase-3 (IHC) to demonstrate
apoptosis. Full-length caspase-3 (WB), together with caspase-9, we used to study the
pathways of apoptosis. To test for antibodies, staining was performed with the positive
control for active caspase-3. Additionally, reactions lacking primary antibodies were done
to ensure the specificity of the observed staining.

4.4. Transmission Electron Microscopy (TEM)

Temporal lobe biopsies were fixed in a mixture of 4% paraformaldehyde and 0.5%
glutaraldehyde cooled to 4 ◦C (in 0.1 M cacodylate buffer, pH 7.2–7.4). Additional fixa-
tion was carried out with 1% osmium tetroxide, then the samples were dehydrated and
embedded in a mixture of epoxy resins (araldites). Ultrathin sections 50–60 nm were
made on ultratome (LKB-III, Sweden). The morphology was observed and recorded using
TEM (FEITecnai G2Spirit BioTWIN, The Netherlands) at an accelerating voltage of 80 kV,
provided by Collective Equipment Center of Sechenov Institute of Evolutionary Physiology
and Biochemistry, Russian Academy of Sciences (CEC IEPB, RAS).

4.5. WB

The study included 30 paired biopsies of cortex and white matter from the epilep-
tic focus and the perifocal zone of the temporal lobe from 30 DRE patients. To prevent
a decrease in the number of neurons as quickly as possible and at low temperatures, a
fragment weighing from 0.03 g to 0.05 g was taken from the studied biopsy specimens, a
lysate buffer was added to the fragment in a ratio of 1:10, which was mixed ex tempore
with protease inhibitors (Protease Inhibitor Cocktail, Sigma-Aldrich, Burlington, MA, USA)
and phosphatase (PhosSTOP, Sigma-Aldrich, Burlington, MA, USA) and then homoge-
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nized. The resulting homogenate was allowed to stand in the cold for 30 min. After the
destruction of the cell membrane, the samples were centrifuged for 15 min at a temperature
of 4 ◦C with a relative centrifugal acceleration of 12,000 g to precipitate the destroyed
membranes, organelles, and non-lysed cells. At the end of centrifugation, the resulting
supernatant was taken, mixed with Laemmli's buffer solution, and incubated for 5 min
at 95 ◦C. Under the action of sodium dodecyl sulfate, which is included in the buffer
solution, at a high temperature, not reaching up to 100 ◦C, denaturation of the proteins
contained in the samples occurs. As a result, an excess of negatively charged sulfonic acid
residues is formed, and the intrinsic charge of the protein molecule becomes insignificant.
Thus, the same ratio of negative charge to mass is achieved for any protein. After tissue
pre-treatment, the total protein concentrations were determined by Bio-Rad protein assay
(Bio-Rad Laboratories Inc., Hercules, CA, USA). The amount of proteins that have been
separated by electrophoresis was 2 microgram/mL. We used a 10% separating gel. We
used Rabbit polyclonal antibody to: NF-kB, p65 (phospho S536) ab86299, (1:500, Abcam,
Waltham, MA, USA); FAS (CD95) (ab82419), TNF-α (ab9739) FAS-L(CD178) (ab186671),
(1:1000, Abcam, Waltham, MA, USA); p53 (10442-1-AP), (1:1000, Proteintech, USA); Recom-
binant Rabbit Monoclonal Anti-NFkB p105/p50 antibody [E381] (ab32360) (1:1000, Abcam,
USA); Recombinant Rabbit Monoclonal Anti-Caspase-9 antibody [E23] (ab32539) (1:1000,
Abcam, Waltham, MA, USA); α/β-Tubulin Rabbit Polyclonal antibody #2148, (1:1000, Cell
Signalling); Rabbit polyclonal Caspase-3 antibody (full length form) #9662 (1:1000, Cell
Signalling, USA). Subsequently, the membranes were incubated with secondary anti-rabbit
or anti-mouse antibodies (1:10000; Sigma-Aldrich, Burlington, MA, USA), followed by
chemiluminescent detection (SuperSignal West Dura Extended Duration Substrate, Thermo
Scientific, Waltham, MA, USA). The specific reaction was assessed using a gel-documenting
system (ChemiDoc, BioRad, Hercules, CA, USA).

4.6. Multiplex Analysis

Research on Luminex MagPix (Merck, Millipore, Burlington, MA, USA) was conducted
according to the manufacturer’s recommended standards and protocol on the equipment
provided by CEC IEPB, RAS. All samples and standards were placed in two wells for each
sample. Detection was carried out using streptavidin–phycoerythrin solution. MILLIPLEX®

map human cytokine/chemokine magnetic bead panel kit 96 Well Plate Assay was used.

4.7. Statistical Analysis

Statistical analysis was carried out by Student’s t-test (p < 0.05).
IHC. Quantitative evaluation of the results of IHC reactions (the positive IHC staining

cells in temporal lobe sections) was carried out by counting in sections stained nuclei (%)
per 100 cells (x200) (light microscope Zeiss Axiolab, Carl Zeiss Inc., Germany). At least 10
fields were sampled in a section. There was normal distribution. Data are presented in the
format M ± m (arithmetic mean ± standard error). Statistical analysis was carried out by
Microsoft Office Excel 2010 (USA), and values are expressed as mean SE for IHC.

WB. Each protein band was quantified using ImageJ 1.46 and normalized to β-tubulin
expression. Statistical data processing was performed using GraphPad Prism 8.0.1. (USA).
Statistical processing of the data was performed using analysis of variance (ANOVA)
followed by pairwise comparison according to Tukey test because of the normal distribution
of the obtained parameters. Data are presented in the format M ± m (arithmetic mean ±
standard error).

Multiplex analysis. The normality test for all studied parameters was performed using
Shapiro–Wilk criterion. Quantitative indicators correspond to the normal distribution and
are presented in the form of an average value and a standard deviation. A comparison
of quantitative data was carried out using Student’s unpaired criterion. Statistical data
processing was carried out using GraphPad Prism 8.0.1. (USA).



Int. J. Mol. Sci. 2022, 23, 12561 14 of 16

5. Conclusions

Thus, we have confirmed the extrinsic and internal caspase-dependent apoptotic
pathways in the epileptic brain. The detection of many apoptotic cortical neurons in biopsies
with an insignificant presence of active caspase-3 may indicate a caspase-independent
pathway. Intense expression of TNF-α and FAS-L in the brain and elevated levels of TNF-α,
IL-7, IL-4, and sCD40L in the blood serum indicate neuroinflammation, which can cause
extrinsic apoptosis in the epileptic focus. We have shown the active participation of glia
apoptosis in epileptogenesis. With TEM, we have found that the main part of apoptotic glia
were oligodendrogliocytes, which, in particular, explains the well-known phenomenon of
myelin damage in epilepsy. The apoptosis and neuroinflammation are high in the epileptic
focus and decrease in the perifocal zone.

Thus, both neuronal and oligodendroglial apoptosis in the focal DRE, together with
neuroinflammation, affect the epilepsy progression, creating conditions for the develop-
ment and maintenance of a pathology. Further study of this issue opens up prospects for a
new therapeutic strategy.
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