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Abstract: Few studies have examined the correlation between sperm miRNA levels and clinical
outcomes of intracytoplasmic sperm injection (ICSI). In this study, we aimed to assess the correlation
of sperm miR-34b, miR-34c, miR-122, and miR-429 levels with ICSI outcomes in men with terato-
zoospermia and asthenozoospermia. TaqMan microRNA quantitative polymerase chain reaction was
used to evaluate the relative expression of miRNAs in sperm. The relative miRNA levels quantified
using a comparative method found that the four miRNAs were not associated with fertilization rate
and early embryo development. However, revels of miR-34b and miR-34c in teratozoospermia sperm
of the live birth group were significantly higher than those in the non-live birth group. Receiver
operating characteristic curve analysis revealed that the optimal cut-off delta cycle threshold val-
ues of miR-34b and miR-34c were 8.630 and 7.883, respectively. Statistical analysis found that the
levels of miR-34b and the miR-34c in teratozoospermic and asthenozoospermic sperm above the
thresholds were not associated with the fertilization rate and the high-quality embryo rate above
50%; however, they were more likely to exhibit higher implantation, pregnancy, and live birth rates.
miR-34b and miR-34c were significantly associated with ICSI clinical outcomes in male factor infertil-
ity, especially teratozoospermia. Further validation is required before it becomes a clinically valid
reference indicator.

Keywords: sperm; microRNA; intracytoplasmic sperm injection; teratozoospermia; asthenozoospermia;
male factor infertility

1. Introduction

MicroRNAs (miRNAs) are a class of small non-coding RNAs that regulate post-
transcriptional repression by pairing to the 3′-untranslated regions of messenger RNAs
(mRNAs) of protein-coding genes [1], participate in various physiological responses, and
affect cell growth, development, meiosis, apoptosis, differentiation, and other processes [2].
They are widely present in male testis, seminal plasma, and sperm [3] and play an essential
role in regulating genes involved in spermatogenesis [4].

Studies have found that miRNA expression in the male reproductive system is associ-
ated with infertility [5–8]. Human miR-34 and miR-449 family miRNA levels are reduced
in human testes with abnormal spermatogenesis. Bioinformatics analysis showed five
miRNAs (hsa-mir-34b*, hsa-mir-34b, hsa-mir-34c-5p, hsa-mir-449a, and hsa-mir-449b*)
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are involved in spermatogenesis and target specific genes associated with apoptosis, cell
proliferation, and differentiation [5]. Dysregulation of miR-34b, miR-34c-5p, miR-429, and
miR-122 was found in purified human sperm and testicular tissue from subfertile and
non-obstructive azoospermia (NOA) males [6]. Seven miRNAs, including miR-34c-5p,
miR-122, miR-146b-5p, miR-181a, miR-374b, miR-509-5p, and miR-513a-5p, were identified
as altered expression profile in the seminal plasma of infertile men [7]. In addition, seminal
plasma miR-34, miR-122, and miR-509 are down-regulated in NOA and oligozoospermia
patients compared with fertile controls [8].

miR-34 is a conserved miRNA family whose members, including miR-34a, miR-34b,
and miR-34c [9], regulate cellular senescence, apoptosis, and cell cycle [10–12]. miR-34b
and miR-34c are expressed in male gonads [13–15]. The target genes of the miR-34 family
correspond to many cell cycle regulators. In rhesus monkey testes, the predicted target
gene NOTCH1 of miR-34b and miR-34c is a crucial regulator of germ cell differentiation
and survival [16]. In addition, the DAZL gene, critical for mouse germ cell differentiation,
may also be a target gene of miR-34b and miR-34c [17]. miR-34c directly targets TGIF2 and
NOTCH2 and has been shown to play an essential role in spermatogenesis in male germ
cells [18]. miR-34b and miR-34c deficiency impair meiosis and the late stages of spermato-
genesis, resulting in oligoasthenoteratozoospermia in mice [19]. Furthermore, miR-34c has
been shown to play an essential role in the first cleavage division of mouse zygotes [20]. It
has also been correlated with clinical outcomes in patients with intracytoplasmic sperm
injection (ICSI) [21] and in vitro fertilization (IVF) [22].

miR-122, primarily expressed in polysomes of late-stage male mouse germ cells, is
involved in the post-transcriptional regulation of mRNAs in testis [23] and chromatin
remodeling during spermatogenesis [24]. miR-122 expression is associated with abnormal
sperm development and mediates suppression of protein expression associated with sperm
development [24]. Its levels are upregulated in the semen of infertile males with semen
abnormalities [25] compared with the normal semen of healthy males. Its expression is
significantly increased in the sperm of men with severe and moderate oligoasthenotera-
tozoospermia compared with normozoospermia [26]. However, miR-122 levels are lower
in the sperm of oligozoospermic and asthenozoospermic men than in normozoospermic
men [27,28]. These results appear to be somewhat conflicting and require further study.
Furthermore, in bovine sperm, miR-122 expression is elevated in low motile sperm [29].

Sperm miR-429 levels are upregulated in asthenozoospermic men, and it may regulate
sperm motility and viability by inhibiting the expression of heat shock protein A4L [30]. In
addition, the expression of miR-429 in sperm and testicular tissues of azoospermic patients
is higher than that of normal controls [6]. miR-429 level in seminal plasma is significantly
increased in azoospermic men compared with normozoospermia males [31]. It is also
elevated in spermatozoa and seminal plasma of oligozoospermia and asthenozoospermia
males [27].

Although there have been many studies on the functional roles of specific miRNAs
during spermatogenesis and their expression levels in abnormal spermatozoa, the associa-
tion between sperm miRNAs and artificial reproductive technology treatment and clinical
outcomes after embryo implantation in patients has not been widely studied. This study
aimed to investigate the correlation between the expression levels of four crucial miR-
NAs, miR-34 b/c, miR-122, and miR-429, in spermatozoa and clinical outcomes using ICSI
patient samples.

2. Results
2.1. Physiological Data Analysis of Subjects

This study included 81 couples receiving ICSI treatments (81 cycles, 1 cycle for each
pair). Male patients were between 27–55 years old, with an average age of 39.11, and their
wives were between 27–46 years old, with an average age was 36.94. The average infertility
period was 3.48 years. Of the 81 ICSI specimens, 57 were male factor infertility, including
49 teratozoospermia and 22 asthenozoospermia, of which 14 were both teratozoospermia
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and asthenozoospermia. An additional 24 samples entered the course of treatment not due
to male factors, including poor fertilization rates in the previous cycle, egg freezing and
thawing for fertilization, and some older patients with unexplained infertility (Figure 1).
Oligozoospermia has screened out this classification because there was insufficient sperm
for analysis.
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Figure 1. Distribution of sperm samples. Numbers indicate the number of cases. Abbreviations:
Astheno, asthenozoospermia; ICSI, intracytoplasmic sperm injection; MF, male factor; nMF, non-male
factor; Terato, teratozoospermia.

Women’s mean estradiol (E2) levels on the day they received human chorionic go-
nadotropin (hCG) were 1812 pmol/L, while progesterone (P4) was 0.59 nmol/L and
luteinizing hormone (LH) was 2.94 IU/L. Among the clinical results, 39 specimens had
chemical pregnancy after implantation (48%), 33 clinical pregnancies (41%), 30 measurable
fetal heartbeats (38%), and 25 live births (31%). There were no significant differences in
the physiological values, including the number of eggs retrieved, implanted oocytes, the
fertilization rate, and the clinical outcomes among various groups (Table 1).

Table 1. Patient characteristics.

Items All nMF MF Terato. Astheno. p-Value

N 81 24 57 49 22 NS

Women’s age (y) 36.94 ± 4 37.08 ± 4 36.88 ± 4 36.78 ± 4 37.14 ± 4 NS

Men’s age (y) 39.11 ± 6 38.38 ± 6 39.42 ± 5 39.31 ± 5 40.64 ± 5 NS

Infertility year 3.48 ± 3 3.42 ± 3 3.51 ± 3 3.61 ± 3 3.59 ± 2 NS

Oocyte retrieved no. 10.43 ± 6 9.96 ± 4 10.63 ± 6 11.00 ± 7 10.05 ± 5 NS

Good embryo no. 1.35 ± 2 1.04 ± 1 1.47 ± 6 1.43 ± 2 1.41 ± 2 NS

Transferred embryo no. 2.36 ± 1 2.50 ± 1 2.30 ± 1 2.31 ± 1 2.23 ± 1 NS

E2 on hCG day (pmol/L) a 1812 ± 991 1634 ± 863 1851 ± 1060 1875 ± 1113 1822 ± 938 NS

P4 on hCG day (nmol/L) a 0.59 ± 0.36 0.54 ± 0.23 0.61 ± 0.40 0.62 ± 0.41 0.69 ± 0.54 NS

LH on hCG day (IU/L) a 2.94 ± 6 4.13 ± 9 2.33 ± 2 2.14 ± 1.96 3.18 ± 2 NS
a Does not include egg freezing and thawing samples.

2.2. Sperm miRNA Levels in Men with Teratozoospermia or Asthenozoospermia

The relative levels of miR-34b/c, miR-122, and miR-429 in spermatozoa were not
significantly different between the teratozoospermia group and the non-teratozoospermia
group (Figure 2a). Sperm from asthenozoospermic (<40% motility) men had significantly
higher levels of these four miRNAs than non-asthenozoospermic men (p = 0.0010, 0.0008,



Int. J. Mol. Sci. 2022, 23, 12381 4 of 14

0.0378, and <0.0002, respectively) (Figure 2b). Comparing teratozoospermic and astheno-
zoospermic sperm samples, asthenozoospermic sperm showed significantly higher levels
of miR-34b/c and miR-429 than teratozoospermic sperm (p = 0.0174, 0.0259, and 0.0068,
respectively) (Figure 2c).
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Figure 2. Relative expression levels of miRNAs in spermatozoa with differential morphology and
motility. (a) Scatter plot showing sperm relative levels of miR-34b/c, miR-122, and miR-429 of each
man in the K < 4 and K ≥ 4 groups. Kruger value (K) serves as a criterion for identifying sperm
morphology. * p < 0.05. K < 4, n = 49; K ≥ 4, n = 32. (b) Scatter plot showing sperm relative levels of
miR-34b/c, miR-122, and miR-429 for each individual in motility m < 40% and ≥40 groups. m < 40%,
n = 22; m ≥ 40%, n = 59. * p < 0.05, *** p < 0.001. (c) Differential relative levels of miR-34b/c, miR-122,
and miR-429 between spermatozoa from teratozoospermia-only (n = 35) and asthenozoospermia-only
(n = 8) men. The data are shown as mean and SEM. A, asthenozoospermia; T, teratozoospermia.
* p < 0.05, ** p < 0.01.

2.3. Comparison of Sperm miRNAs Levels in Different Groups of Fertilization Rate and Early
Embryonic Development

Relative expression levels of miR-34b, miR-34c, miR-122, and miR-429 in astheno-
zoospermic sperm showed no differences between egg fertilization rates >75% and ≤75%
(Figure 3a). Additionally, the groups with a good-quality embryo rate above 50% also did
not differ from those with a good-quality embryo rate below 50% for these four miRNAs
(Figure 3b).
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Figure 3. Relative levels of sperm miRNAs in different groups of egg fertilization rates and early
embryonic development. Differences in relative levels of miRNAs: (a) asthenozoospermia sperm
samples between egg fertilization rates >75% and ≤75%, (b) asthenozoospermia sperm samples
between good-quality embryo rates ≥50% and <50%, (c) teratozoospermia sperm samples between
egg fertilization rates >75% and ≤75%, and (d) teratozoospermia sperm samples between good-
quality embryo rates ≥50% and <50%. The data are shown as mean and SEM. FR: fertilization rate;
GE: good-quality embryo.

There were no differences between these four miRNAs in teratozoospermia and egg
fertilization rate (Figure 3c). Additionally, the groups with a good-quality embryo rate
above 50% still did not differ from those with a good-quality embryo rate below 50% for
these four miRNAs (Figure 3d).

2.4. Relative Expression Levels of Sperm miRNAs in Different Clinical Outcome Groups after ICSI

In the hCG-positive (hCG+) group, only the miR-34c level was significantly higher
in teratozoospermia sperm miRNAs than in the hCG- group (p = 0.0157) (Figure 4a). The
delta threshold cycle (∆Ct) values were used for statistical analysis. The area under the
ROC curve was 0.66 (p = 0.0520) (Figure 4b). In the gestational sac-positive (sac+) group,
only the miR-34c level was significantly higher in teratozoospermia sperm miRNAs than in
the sac- group (p = 0.0448) (Figure 4c). The area under the ROC curve was 0.67 (p = 0.0451)
(Figure 4d). There were no differences in the expression of the four miRNAs between hCG-
and hCG+, sac- and sac+ in asthenozoospermia sperm (data not shown).
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Figure 4. Relative expression levels of miR-34b and miR-34c in spermatozoa of teratozoospermia
patients in clinical pregnancy and non-pregnant groups. (a) The scatter plot shows microRNA
relative levels in each patient with or without urine hCG. (b) ROC curve analysis of miR-34c. (c) The
scatter plot shows microRNA relative levels in each patient with or without a gestational sac under
ultrasound detection. (d) ROC analysis curve of miR-34b. AUC denotes the area under the curve.
The data are shown as mean and SEM. * p < 0.05.

There were no statistical differences in levels of the four miRNAs in male factor sperm
(Figure 5a) and asthenozoospermic sperm (not shown) between the live birth group and
the non-live birth group. However, the levels of miR-34b and miR-34c in teratozoospermic
sperm in the live birth group were significantly higher than those in the non-live birth
group (p = 0.0084 and 0.0033, respectively) (Figure 5b). For the ability of ROC to predict live
birth, the AUCs for miR-34b and miR-34c were 0.76 (95% confidence interval (CI): 0.61–0.90,
p = 0.0033) and 0.74 (95% CI: 0.59–0.90, p = 0.0055), respectively (Figure 5c).

Using ROC analysis to estimate live births, the optimal ∆Ct cutoffs for miR-34b and
miR-34c were determined to be 8.630 (sensitivity: 0.9412, specificity: 0.5313) and 7.883
(sensitivity: 0.6471, specificity: 0.8750), respectively.

We then used the miR-34b ∆Ct value of 8.630 as the threshold for reclassifying terato-
zoospermia specimens. ∆Ct value > 8.630 is miR-34b positive, and less than 8.630 is miR-34b
negative. As shown in Table 2, there were no significant differences in the fertilization rate
and good-quality embryo rate between the two groups. However, the rates of implantation,
hCG+, sac+, fetal heartbeat (FHB)+, and live birth were significantly higher in the miR-34b
(+) group compared with the miR-34b (−) group. In contrast, while the miscarriage rate
was much lower in the miR-34 b (+) group, it did not reach statistical significance.
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Figure 5. Relative expression levels of miRNAs in male factor sperm and teratozoospermic sperm in
live birth and non-live birth groups. (a) Scatter plot showing sperm miRNA relative levels for each
male factor patient with or without live birth. (b) Scatter plot showing sperm miRNA relative levels
for each teratozoospermia patient with or without live birth. (c) ROC curve analysis of miR-34b/c.
The data are shown as mean and SEM. LB, live birth; nLB, non-live birth; AUC, area under the curve.
** p < 0.01.

Table 2. Comparison of sperm miR-34b levels and ICSI outcomes in men with teratozoospermia.

ICSI Outcomes miR-34b(−) 1 miR-34b(+) 2 p-Value

Cycle (n = 49) 18 31
Normal fertilization rate (per MII, %) 74.01% 82.42% 0.0696

More than 50% good-quality embryo rate (%) 5.56% 22.58% 0.2293
Implantation rate (per embryo, %) 5.50% 43.52% 0.0003

hCG+ rate (per embryo transfer, %) 27.78% 67.74% 0.0090
Sac+ rate (per embryo transfer, %) 16.67% 64.52% 0.0025

FHB+ rate (per embryo transfer, %) 16.67% 58.06% 0.0069
Live birth rate (per embryo transfer, %) 5.56% 51.61% 0.0014

Miscarriages rate (%) 40.00% 14.28% 0.2357
1 miR-34b (−), ∆Ct ≤ 8.630; 2 miR-34b (+), ∆Ct > 8.630.

Next, we grouped the teratozoospermia samples using the miR-34c ∆Ct value of 7.883
as a threshold. Compared with miR-34c (−) group, there were no significant differences in
the fertilization rate and high-quality embryo rate, but the implantation, hCG+, sac+, FHB+,
and live birth rates were significantly increased in the miR-34c (+) group. The miscarriage
rate in the miR-34c (+) group was relatively lower, the same trend as that in the miR-34b (+)
group (Table 3).
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Table 3. Comparison of sperm miR-34c levels and ICSI outcomes in men with teratozoospermia.

ICSI Outcomes miR-34c (−) 1 miR-34c(+) 2 p-Value

Cycle (n = 49) 34 15
Normal fertilization rate (per MII, %) 78.24% 81.87% 0.4582

More than 50% good-quality embryo rate (%) 14.71% 20.00% 0.6869
Implantation rate (per embryo, %) 20.56% 49.93% 0.0092

hCG+ rate (per embryo transfer, %) 38.24% 86.67% 0.0021
Sac+ rate (per embryo transfer, %) 32.35% 80.00% 0.0043

FHB+ rate (per embryo transfer, %) 26.47% 80.00% 0.0012
Live birth rate (per embryo transfer, %) 17.65% 73.33% 0.0003

Miscarriages rate (%) 36.35% 8.33% 0.1550
1 miR-34c (−), ∆Ct ≤ 7.883; 2 miR-34c (+), ∆Ct > 7.883.

Additionally, we applied the thresholds to all male factor subjects. Higher sperm miR-
34b levels showed significantly higher implantation, sac+, fetal heartbeat, and live birth
rates (Table S1). Higher sperm miR-34c levels indicated higher implantation, chemical preg-
nancy, clinical pregnancy, fetal heartbeat, and live birth rates (Table S2). Miscarriage rates
were similarly low when sperm had higher levels of these two miRNAs (Tables S1 and S2).
If thresholds were used in all ICSI samples in this study, miR-34c showed higher potency
than miR-34b in all clinical outcomes (see Tables S3 and S4).

Next, we built two-group multivariate regression models, 1 and 2, to predict the live
birth probability for the teratozoospermia samples. Logistic regression analysis included
miRNA expression levels and other factors that may affect live birth, including the number
of oocytes received, good-quality embryos, number of implanted embryos, days of embryo
transfer, female age, and year of infertility. Then, a table of regression coefficients of the
equation models was established based on variables (Table S5). The results showed that
in addition to the ∆Ct values of miR-34b and -34c (p = 0.026 and 0.015, respectively), the
days of embryo transfer (p = 0.017 and 0.016, respectively) in models 1 and 2 were also
significantly associated with live birth. These findings suggest that sperm miR-34b and
-34c are critical predictors of ICSI clinical outcomes.

For self-validation of logistic regression models, data were examined using the two
models to obtain estimated live birth rates. We drew ROC curves based on the predicted
and actual values. The miR-34b AUC was 0.887 (95% CI: 0.7855 to 0.9902), diagnostic
sensitivity was 76.47%, and specificity was 87.50% (Figure S1a). The miR-34c AUC was
0.9007 (95% CI: 0.7991 to 1.000); the diagnostic sensitivity was 88.24%, and specificity was
90.63% (Figure S1b).

3. Discussion

This study found that the differential expression levels of miR-34b and miR-34c in
spermatozoa of men with teratozoospermia may be highly correlated with clinical outcomes
of ICSI, especially implantation, pregnancy, and live birth rates, suggesting that sperm
miR-34b and miR-34c levels could be used as indicators to predict ICSI clinical outcomes.
This study was characterized by a relatively higher mean age of both men and women,
with an average of 39.11 years for men and 36.94 years for women. A previous study
on multiple male factor infertility, mainly oligoasthenoteratozoospermia in younger men,
with an average age of 32.85 years in men and 31.14 years in women, found that sperm
miR-34c levels were significantly correlated with rates of implantation, pregnancy, and live
birth [21]. To date, there are only two research papers on the correlation between sperm
miRNA levels and ICSI outcomes, which are studies at different ages. The present study
may provide valuable information for middle-aged patients seeking assisted reproduction.

There are limited studies on the levels of the four miRNAs studied in this paper in
male factor infertility sperm. Oligozoospermic and asthenozoospermic men have lower
sperm miR-34b levels than normozoospermic men [27,32,33]. Sperm miR-34c levels were
significantly lower in men with idiopathic infertility than in men with normal semen



Int. J. Mol. Sci. 2022, 23, 12381 9 of 14

parameters [21]. The expression level of miR-122 in the sperm of oligozoospermic and
asthenozoospermic men was lower than that of normozoospermic men [27,28]. It has also
been reported that miR-122 levels were significantly increased in spermatozoa of men
with severe and moderate oligoasthenoteratozoospermia compared with normozoosper-
mia [26]. In addition, miR-429 levels increased in asthenozoospermic and oligozoospermic
sperm [27,30]. Experiments in bulls found that miR-34 b/c levels were increased in high
motile semen, while levels of miR-122 were decreased [29]. We did not attempt to compare
the levels of these four miRNAs between teratozoospermic, asthenozoospermic, and nor-
mozoospermic sperm but instead focused on correlations with morphology and motility.
We found that miR-34b/c, miR-122, and miR-429 levels were significantly elevated in
asthenozoospermic men. In addition, the relative expression levels of miR-34 b/c and
miR-429 in asthenozoospermic sperm samples were considerably higher than in terato-
zoospermic sperm samples. These findings suggest that sperm-specific miRNA levels may
be associated with sperm motility.

Higher expression levels of miR-34c in sperm may result in good embryo outcomes,
as found in humans [21], mice [20], and bovine [34,35]. In our study, we found that
asthenozoospermic sperm had higher miR-34c expression than non-asthenozoospermic
sperm; however, our patient’s population is relatively older and is the case of ICSI, which
means that these men may have unexplained infertility before they come to the hospi-
tal for ICSI treatment even if their sperm motility is normal. Thus, it cannot be seen
that asthenozoospermic sperm have higher expression of miR-34c than normal sperm in
this study. Further studies are needed to verify relative expression levels of miR-34c in
asthenozoospermia and normozoospermic sperm.

Sperm-derived miRNAs may affect fertilization and early embryonic development
before implantation [20,36,37]. A previous study showed that sperm with high expression
of miR-191 had higher fertilization rates [38]. However, no correlation was found between
miR-34b/c levels and fertilization rates [21]. We found that the sperm miRNAs studied here
were not associated with >75% egg fertilization rates. Cui et al. found that an increased
expression level of miR-34c in spermatozoa might be associated with preimplantation
embryonic development [21]. Additionally, our study showed that sperm miR-34b/c,
miR-122, and miR-429 were not related to early embryonic development. However, when
miR-34b/c is higher than a certain threshold, the implantation and pregnancy rates increase
significantly, and the miscarriage rate decreases, indicating that the quality of early embryos
should be better. Theoretically, miR-34b/c could have specific effects on early embryonic
development. A previous study found that sperm miR-34c may affect early embryonic
development [21]. Although our results showed a trend towards an effect, they did not
reach a statistically significant difference and may require more cohorts to confirm in
the future.

Mouse studies have shown that sperm miR-34c is essential for the first cell division
of early embryos [20]; however, another paper reported that it is not required for the first
cleavage division [37]. In human studies, sperm miR-34c levels have been found to correlate
with early embryo development [21], but another paper reported no correlation [38]. For
bovines, one study showed that microRNA-34c expression in donor cells affects early
development of somatic cell nuclear transfer embryos [35]. Another study suggested
that miR-34 may be required in bovine gametes developing both sexes and embryos [34].
Additionally, also, the expression of miR-34c-3p in bull spermatozoa correlates with fertility
rates [39].

We also found a significant correlation between sperm miR-34b/c above threshold
levels and ICSI outcomes in teratozoospermia patients (Tables 2 and 3). These outcomes
include implantation, pregnancy, and live birth rates. The miscarriage rate, although not
statistically significant, is relatively low. If the samples included patients with astheno-
zoospermia, miR-34-b/c still showed a significant correlation (Tables S1 and S2). When
non-male factor samples were also included in the classification, only miR-34c revealed
effective pregnancy and live birth rates (Table S3).
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In screening for live births, the results in Tables 2 and 3 show that miR-34c is more
effective than miR-34b (miR-34c+ vs. miR-34b+, 73.33% vs. 51.61%, respectively). The
positive likelihood ratios for miR-34c and miR-34b are 5.12 and 2.00, respectively. In
addition, the samples belonging to the miR-34c+ group also belonged to the miR-34b+
samples; this situation is present in teratozoospermia samples (n = 49) and all ICSI samples
(n = 81). The results of the multivariate logistic analysis also found that miR-34c had a
more significant effect on live birth than miR-34b under various variables (AUC, 0.9007 vs.
0.8879, respectively).

A previous study also found that sperm miR-34c levels were a good indicator of
clinical outcomes in male infertile patients. Most had multiple sperm disorders and were
treated with ICSI [21]. A study of IVF of normal sperm samples and the eggs of female
partners with defective fallopian tubes found that sperm miR-34c levels were significantly
correlated with clinical outcomes of IVF in the presence of normal sperm and eggs [22].
These findings and our study results suggest sperm miR-34c may be a promising biomarker
for ICSI and IVF outcomes.

4. Materials and Methods
4.1. Sperm Sample Collection and Processing

Sperm samples were obtained from male partners of couples who underwent ICSI for
infertility through assisted reproductive technology at MacKay Memorial Hospital Repro-
ductive Medicine Center. Screening criteria for ICSI treatment include male factor infertility,
poor fertilization rate in the previous IVF cycle, unexplained infertility, or patients with
frozen and thawed eggs. Exclusion criteria are azoospermia and samples with a total sperm
count of less than 5 × 106/mL after washing. Samples were obtained by masturbation
after participants had abstained from sex for 3 days. After liquefying the semen samples
for 30 min at room temperature on the day of ICSI treatments, all semen samples were
analyzed for the main semen parameters according to the World Health Organization
2010 guidelines [40]. There are two test subgroups of the experiment: teratozoospermia is
defined according to Kruger’s Strict Criteria (Kruger, K < 4%), while asthenozoospermia is
defined as progressive motility + non-progressive motility <40%. The remaining sperm
after ICSI is temporarily stored in a fresh Quinn’s Advantage Fertilization medium at
room temperature. After confirmation of oocyte fertilization, sperm samples were counted
and held at −80 ◦C to quantify miRNA levels. The study was approved by the MacKay
Memorial Hospital’s Institutional Review Board (approval number: 17MMHIS060), and
informed consent was obtained from each participant.

4.2. Assisted Reproductive Technology

Controlled ovarian stimulation was initiated on the third day of the menstrual cycle
for three consecutive days following the baseline pelvic ultrasound scan. All subjects
received a fixed starting dose of 300 IU of recombinant follicle-stimulation hormone (r-FSH)
(Gonal-F; Merck Serono Biopharma). Subsequent daily r-FSH doses were then adjusted
based on ovarian response. A gonadotropin-releasing hormone antagonist (Cetrotide;
Merck Serono Biopharma) was added to the stimulation protocol when at least one follicle
reached 14 mm in diameter. We then triggered final oocyte maturation using 6500 IU of
recombinant hCG (Ovidrel; Merck Serono Biopharma) or 6500 IU of recombinant hCG
and 0.2 mg of triptorelin (Decapeptyl; Ferring Pharmaceuticals) when at least two leading
follicles reached 18 mm in diameter. The choice of triggering method was based on the
attending physician’s discretion. Oocyte retrievals were performed under transvaginal
ultrasound guidance, 35 to 36 h post triggering. Standard ICSI was performed. According
to embryo development, it is transferred between day 2 and day 5 after oocyte retrieval.

4.3. Fertilization and Determination of Clinical Outcomes

The retrieved mature oocytes, the metaphase II oocytes, were fertilized by ICSI. After
16–18 h, the number of pronuclei in the oocyte was checked, and the presence of two pronu-



Int. J. Mol. Sci. 2022, 23, 12381 11 of 14

clei was the criterion for successful fertilization. Fertilized eggs were cultured in the global
total medium (LifeGlobal) at 37 ◦C and 6% CO2, and the embryo quality was analyzed on
the second day after fertilization. High-quality embryos were defined as embryos with
4 uniformly sized dividing cells on day 2 or embryos containing 8–10 uniformly sized cells
with less than 10% fragmentation on day 3. This study denoted a good-quality embryo
as more than one high-quality embryo on day 2 or 3. According to the conditions of the
embryos and patients, we selected 1–3 embryos with the best grades for transfer (day
2–day 5) and tracked the clinical pregnancy outcomes after embryo transfer. Two weeks
after transfer, serum β-hCG was taken to confirm the biochemical pregnancy. Clinical
pregnancy was defined as the presence of an intrauterine gestational sac on ultrasound
4 weeks after transfer, and fetal heartbeat was detected by transvaginal ultrasound 5 weeks
after transfer. The implantation rate was defined as the number of gestational sacs observed
on ultrasound screening divided by the number of embryos transferred. Live birth was
defined as live births of an infant equal to or greater than one living fetus at the gestational
age >20 weeks.

4.4. TaqMan MicroRNA Quantitative Polymerase Chain Reaction

Sperm concentration was estimated using a Makler counting chamber under a mi-
croscope with 400 times magnification. Approximately 5 × 106 sperm was precipitated
by centrifuge at 15,000 rpm for 10 min at room temperature, and 700 µL QIAzol lysis
reagent (Qiagen, #217004) was added to the precipitated sperm sample and shaken to mix
well. Total RNA was extracted using the miRNA Isolation Kit (Qiagen, #217004). TaqMan
microRNA Reverse Transcription Kit (Thermo Fisher Scientific, #PN4366597) was used
to reverse-transcribe microRNAs to their complementary DNAs (cDNAs) using target-
specific stem-loop reverse transcription primers for miR-34b (#002102), miR-34c (#000428),
miR-122 (#002245), miR-429 (#001024), and RNU6B (#001093). Real-time quantitative poly-
merase chain reaction (qPCR) was conducted in a total volume of 20 µL, containing the
above-described cDNAs, the corresponding miRNA probes and primers, and the TaqMan
Universal Master Mix II (#4440038). All reactions were performed in triplicate and ran on
the 7500 Fast Real-Time PCR System (Applied Biosystems) under the following conditions:
95 ◦C for 10 min, followed by 40 cycles at 95 ◦C for 15 s and 60 ◦C for 1 min. The Ct
value was determined automatically by 7500 Fast System software version 2.0.1, and Ct
values <35 were included in the analysis. microRNA ∆Ct was calculated by subtracting the
Ct value of miRNAs from the Ct value of RNU6B. Relative quantification of microRNA
expression was calculated using the 2−∆Ct method [41]. The value of microRNA ∆Ct was
used to analyze the association of sperm microRNAs with ICSI outcomes statistically.

4.5. Statistical Analysis

Data are presented as mean ± standard error of the mean. Between-group variables
were analyzed using independent-samples t-tests and one-way ANOVA, as appropriate.
Fisher’s exact test was used to compare ratios between groups. Factors associated with live
birth were identified using logistic regression analysis. Receiver operating characteristic
curves were used to establish cutoff thresholds and diagnostic values. Analyses were
performed using GraphPad Prism version 6 (GraphPad, San Diego, CA, USA) and SPSS
software version 26 (IBM Corp., Armonk, NY, USA). A p-value < 0.05 was considered
statistically significant.

5. Conclusions

The differential expression levels of miR-34b and miR-34c in the sperm of terato-
zoospermic men above a certain threshold have significantly higher implantation, preg-
nancy, and live birth rates, suggesting that miR-34b and miR34c may be promising predic-
tors of ICSI outcomes.
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