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Abstract: The granulation of bismuth oxide (BO) by alginate (Alg) and the iodide adsorption efficacy
of Alg–BO for different initial iodide concentrations and contact time values were examined. The
optimal conditions for Alg–BO granulation were identified by controlling the weight ratio between
Alg and BO. According to the batch iodide adsorption experiment, the Alg:BO weight ratio of 1:20
was appropriate, as it yielded a uniform spherical shape. According to iodide adsorption isotherm
experiments and isotherm model fitting, the maximum sorption capacity (qm) was calculated to be
111.8 mg/g based on the Langmuir isotherm, and this value did not plateau even at an initial iodide
concentration of 1000 mg/L. Furthermore, iodide adsorption by Alg–BO occurred as monolayer
adsorption by the chemical interaction and precipitation between bismuth and iodide, followed
by physical multilayer adsorption at a very high concentration of iodide in solution. The iodide
adsorption over time was fitted using the intraparticle diffusion model. The results indicated that
iodide adsorption was proceeded by boundary layer diffusion during 480 min and reached the
plateau from 1440 min to 5760 min by intraparticle diffusion. According to the images obtained using
cross-section scanning electron microscopy assisted by energy-dispersive spectroscopy, the adsorbed
iodide interacted with the BO in Alg–BO through Bi–O–I complexation. This research shows that
Alg–BO is a promising iodide adsorbent owing to its high adsorption capacity, stability, convenience,
and ability to prevent secondary pollution.

Keywords: bismuth oxide; alginate; granulation; iodide adsorption

1. Introduction

At present, nuclear energy is being widely used as a reliable and clean energy source
for electricity. Despite those advantages, nuclear accidents, such as those of the Chernobyl
and Fukushima nuclear power plants, may release dangerous radioisotopes such as Cs-
134, Cs-137, I-129, and I-131 into the environment [1,2]. The recovery of radioactive
iodine (I-129 and I-131) from the environments is challenging owing to its high radioactive
toxicity, solubility, and mobility [3,4]. Moreover, the considerably longer half-life of I-129
(1.57 ± 0.006 × 107 years) than that of I-131 (8 days) means that it may expose humans and
other living organisms to chronic toxicity [5,6]. In aqueous systems, iodine (I2) mainly
occurs as iodide (I−) and iodate (IO3

−), depending on the pH, with iodide being the
dominant species at neutral pH [7–9]. The release of radioactive iodide is attributable to the
dissolution of CsI, which is typically used as nuclear fuel in light-water reactors [10]. The
iodine is mainly released as a gaseous contaminant due to its high volatility, but it can be
easily dissolved in the resulting water form of radioactive iodide ions. Therefore, effective
strategies to remove radioactive iodide from the aqueous medium must be established to
ensure the safety of the nuclear industry and environment.

Many researchers have examined iodide adsorption with mineral-based, metal-based,
polymer-based, and carbon-based adsorbents in aqueous systems [11–16]. Bismuth-based
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adsorbents, e.g., bismuth oxide (BO), basic bismuth nitrate, and bismuth subcarbonate,
have attracted considerable research interest because of their high selectivity for iodide
and low toxicity and cost [17–19]. The high iodide selectivity of bismuth-based adsorbents
is attributable to the formation of effective Bi–O–I compounds as a novel waste form [20].
It was reported that ~76% of the removal capacity was still maintained in the presence
of chloride when iodide adsorption on mesoporous bismuth oxide was performed with
6 mM chloride ions [17]. The stable adsorption behavior under a wide pH range of 4–11
was also verified using Microrosette-like δ-Bi2O3 [21]. However, powdered adsorbents are
challenging to separate and recycle. Granulation of the powdered form of particulate matter
was considered an effective process for enhancing its practical applicability [22–25]. Many
researchers have attempted to prepare granules of adsorbents through pellet molding
methods by applying strong compressive force as a facile methodology. Notably, the
equipment for pellet molding is expensive, and the process requires the application of
high pressure, which may block the pores on the surface or change the internal structure
of the adsorbents [26]. To address these problems, bismuth-based adsorbents were fixed
on a substance or granulated using polymers [27]. Among various polymers, alginate
(Alg) extracted from brown algae is a promising candidate owing to its environmental
friendliness, low cost, and easy preparation method by simply dropping it on a crosslinking
agent such as Ca2+ ions [28]. Owing to the ionotropic gelation of spherical drops, the
polyguluronate units in the alginate molecules form a chelated structure with metal ions.
Then, the chelate structure is transformed to become kinetically stable toward dissociation
while the polymannuronate units show normal cations binding [29]. According to the
two interactions, granulation by Alg leads to the formation of spherical-shaped beads [30].
Spherical Alg granules are convenient to use as adsorbents in practical applications. They
can help avoid secondary pollution resulting from dissolution, as reported in several articles
with various powder adsorbents, such as iron oxide, clay, and activated carbon [31–33].

Considering these aspects, in this study, BO was prepared using the solvothermal
method and then granulated with Alg to realize iodide adsorption in an aqueous system.
Specifically, Alg–BO was prepared in a facile manner by dropping the Alg and BO sus-
pension into a calcium chloride (CaCl2) solution to achieve a uniform spherical shape.
The granulation of BO by Alg was characterized by powder X-ray diffraction (PXRD),
Fourier-transform infrared (FT-IR), Brunauer–Emmett–Teller (BET) surface area analysis,
and microscopic analysis. The optimal conditions for granulation were identified by control-
ling the weight ratio of Alg to BO through batch iodide adsorption experiments. Moreover,
iodide adsorption isotherm experiments were conducted, and the results were fitted using
the Langmuir and Freundlich models for the adsorption isotherm. According to the kinetic
experiment results fitted with the intraparticle diffusion model, iodide adsorption occurred
through boundary layer diffusion in the initial stage and then through intraparticle diffu-
sion. The effect of pH on iodide adsorption, as well as the integrity of granules, was also
investigated. After iodide adsorption, the Alg–BO sample was characterized via PXRD,
FT-IR, and scanning electron microscopy (SEM) assisted by energy-dispersive spectroscopy
(EDS) to evaluate the structural changes and adsorbed iodide distribution.

2. Results and Discussion
2.1. Optimization of Alg–BO Preparation Conditions for Iodide Adsorption

The granulation conditions were optimized by preparing Alg–BO considering five
weight ratios of Alg to BO (1:5, 1:10, 1:20, 1:30, and 1:40). As shown in Figure S1, the beads
prepared with weight ratios ranging from 1:5 and 1:20 were spherical with a diameter of
approximately 0.3 mm. When the ratio was increased to 1:30 and 1:40, the shape of Alg–BO
was slightly elongated and irregular. At higher BO ratios, the Alg was inadequate to
establish a stable structure once it reacted with the calcium ions in the bath. Similar results
have been observed for halloysite–alginate and organoclay–alginate nanocomposites [33,34].
The sphericity of grains of the filtration bed applied for water treatment was considered an
important parameter for column design as it affects the bed porosity. Siwiec (2007) reported
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that high sphericity could bring lower porosity in the filter bed [35]; therefore, a denser
adsorbent bed could be expected. Furthermore, as adsorption performance is affected by
the adsorbent mass in the unit bed volume, the bed filled with spherical granules could
expect a higher performance and lifetime. These results indicated that Alg:BO ratios of 1:5
to 1:20 were suitable for stable bead formation.

The iodide adsorption capacity of the prepared Alg beads with/without BO was
evaluated through simple batch adsorption experiments (Figure 1). The Alg beads without
BO exhibited 0% iodide adsorption capacity even after 24 h. When BO was introduced,
the iodide adsorption capacity gradually increased with the weight ratio (from 3.7 mg/g
(1:5) to 6.9 mg/g (1:30)) after 24 h. However, when the weight ratio was increased to 1:40,
the adsorption capacity decreased by approximately 25%. These results were attributable
to the aggregation of BO particles when the amount of BO was increased in the Alg
matrix for granulation [36,37]. Considering these preliminary iodide adsorption results for
different ratios of Alg and prepared BO, Alg–BO with a weight ratio of 1:20 was selected
for further study.
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Bi2O3 and (101), (111) for Bi2O2.33—were well developed through the solvothermal prepa-
ration method. After the granulation of BO with Alg, the characteristic diffractions asso-
ciated with the two BO forms were preserved, and the small diffractions from Alg disap-
peared owing to the small amount of Alg used (weight ratio of 1:20). The PXRD patterns 
indicated that the granulation of the prepared BO with Alg did not significantly influence 
the BO crystal structure.  

Figure 1. Iodide adsorption capacity of parent alginate (Alg) and beads prepared with different
Alg and bismuth oxide (BO) weight ratios (initial iodide concentration: 20 mg/L, initial adsorbent
concentration: 1 g/L, and contact time: 24 h).

2.2. Characterization of Prepared Alg–BO

The Alg–BO (1:20) selected in the previous analysis was characterized by PXRD,
FT-IR, and SEM. The PXRD patterns of parent Alg exhibited small diffraction at 31.8◦,
corresponding to (111) diffraction (asterisk in Figure 2), and broad, amorphous diffraction
in the range of 20◦–45◦, consistent with the previously reported result [38]. The prepared
BO consisted of two types of bismuth oxide forms: γ-Bi2O3 (PDF No. 00-027-0052) and
Bi2O2.33 (PDF No. 00-027-0051). The major diffractions of the two types of BO—(110), (200)
for γ-Bi2O3 and (101), (111) for Bi2O2.33—were well developed through the solvothermal
preparation method. After the granulation of BO with Alg, the characteristic diffractions
associated with the two BO forms were preserved, and the small diffractions from Alg
disappeared owing to the small amount of Alg used (weight ratio of 1:20). The PXRD
patterns indicated that the granulation of the prepared BO with Alg did not significantly
influence the BO crystal structure.
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Figure 2. Powder X-ray diffraction patterns of Alg, BO, and Alg–BO (asterisk indicates (111)
diffraction from Alg; black and red Miller indices indicate two bismuth oxide forms: Bi2O2.33 and
γ-Bi2O3, respectively).

Moreover, FT-IR spectroscopy was performed to identify the changes in the chemical
properties of BO, Alg, and Alg–BO after granulation (Figure 3). In the FT-IR spectra
of BO, characteristic stretching vibrations of O−H, C−H, and −CH2 were observed at
approximately 3500–3200 cm−1 and 2800–3200 cm−1. The vibrations of (CH2)n, C−O,
and C−O−C groups appeared at 700–1000 and 1100–1200 cm−1. The peaks at 1285 and
1641 cm−1 were attributable to the –COOH and C=O ester functional groups, respectively.
The vibrations at 700–650 cm−1 originated from the metal-oxygen (Bi–O) vibrations. All
vibrations attributable to BO were consistent with those observed in previous studies in
which BO was prepared using the solvothermal method with an organic solvent such
as ethanol or ethylene glycol [39,40]. Moreover, the intense vibration at 1543 cm−1 was
attributable to the NO3 group, which indicated the existence of NO3 functional groups on
the BO surface [39,41]. The spectra of the sodium alginate powder exhibited characteristic
asymmetric and symmetric stretching vibrations of the carboxylate group (COO−) in Alg
at 1407 and 1596 cm−1, respectively. The Alg–BO prepared by polymerization of Alg with
CaCl2 exhibited characteristic vibrations attributable to both BO and sodium alginate [33].
Moreover, the C=O vibrations resulting from the ionic bonding between calcium ions
and Alg was observed at approximately 1641 cm−1 as a shoulder, owing to the intense
symmetric stretching vibrations of the carboxylate groups [42]. According to the PXRD
and FT-IR results, BO was successfully incorporated with Alg by the polymerization and
appeared in a bead form.

To investigate the morphology of Alg–BO, SEM images of the surface and cross-section
were obtained (Figure 4). As shown in Figure 4A,B, Alg–BO appeared as a spherical bead
with a diameter of approximately 0.2–0.3 mm. The Alg–BO surface was smooth with
BO particles (approximately 2–4 µm) aggregated with polymeric alginate. According to
the cross-sectional images (Figure 4C,D), spherical BO particles (2–4 µm) were packed
homogeneously in the Alg–BO, with irregular nanoparticles sized tens to hundreds of
nanometers. The aggregates of rod or plate-like nanoparticles in the intraparticle pores
likely enhanced the iodide adsorption.
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Figure 4. SEM images of the (A,B) surface and (C,D) cross-section of prepared Alg–BO.

According to the N2 adsorption–desorption hysteresis loop of Alg–BO (Figure 5), it
can be classified as an H3 hysteresis loop based on the IUPAC classification [43]. This
H3 hysteresis loop is known to be attributed to aggregates or agglomerates of particles
with a nonuniform size and/or shape. This result corresponds quite well to the SEM
images. The obtained specific surface area (SSA) was determined as 61.15 m2/g. This value
shows an 18-44-times-higher SSA value than the previously reported SSA of bismuth oxide
powder [44]. The increment in SSA might be attributed to Alg polymer, which makes it
possible to form intraparticle pores between BO particles. In addition, the detailed pore
width and pore volume calculated by the BJH method showed that the pores of Alg–BO
were distributed in the range of 50 Å to 500 Å and mainly formed around 250 Å.



Int. J. Mol. Sci. 2022, 23, 12225 6 of 15

Int. J. Mol. Sci. 2022, 23, x FOR PEER REVIEW 6 of 16 
 

 

a nonuniform size and/or shape. This result corresponds quite well to the SEM images. 
The obtained specific surface area (SSA) was determined as 61.15 m2/g. This value shows 
an 18-44-times-higher SSA value than the previously reported SSA of bismuth oxide pow-
der [44]. The increment in SSA might be attributed to Alg polymer, which makes it possi-
ble to form intraparticle pores between BO particles. In addition, the detailed pore width 
and pore volume calculated by the BJH method showed that the pores of Alg–BO were 
distributed in the range of 50 Å to 500 Å and mainly formed around 250 Å.  

 
Figure 5. Nitrogen adsorption–desorption hysteresis loop of Alg–BO (inset graph shows the pore 
volume distribution). 

2.3. Iodide Adsorption Performance of Alg–BO 
2.3.1. Adsorption Kinetics 

The iodide adsorption efficacy as a function of the contact time (5–5760 min) was 
evaluated with the initial iodide concentration being 20 mg/L. As shown in Figure 6, the 
prepared Alg–BO gradually adsorbed iodide for 480 min, and the capacity plateaued after 
1440 min. This sustained adsorption, unlike that of powdered BO, was attributable to the 
granulation with Alg, which covered the BO surface. The kinetic results were fitted using 
pseudo-first-order (Equation (5)) and second-order (Equation (6)) kinetic models. Accord-
ing to the R2 values obtained using the two kinetic models, Alg–BO followed the pseudo-
second-order instead of the pseudo-first-order kinetic model. Moreover, the kinetic pa-
rameters indicated that the adsorption rate and capacity of Alg–BO were 0.0007 g/mg·min 
and 6.792 mg/g, respectively. 

Figure 5. Nitrogen adsorption–desorption hysteresis loop of Alg–BO (inset graph shows the pore
volume distribution).

2.3. Iodide Adsorption Performance of Alg–BO
2.3.1. Adsorption Kinetics

The iodide adsorption efficacy as a function of the contact time (5–5760 min) was evalu-
ated with the initial iodide concentration being 20 mg/L. As shown in Figure 6, the prepared
Alg–BO gradually adsorbed iodide for 480 min, and the capacity plateaued after 1440 min.
This sustained adsorption, unlike that of powdered BO, was attributable to the granulation
with Alg, which covered the BO surface. The kinetic results were fitted using pseudo-first-
order (Equation (5)) and second-order (Equation (6)) kinetic models. According to the
R2 values obtained using the two kinetic models, Alg–BO followed the pseudo-second-
order instead of the pseudo-first-order kinetic model. Moreover, the kinetic parameters
indicated that the adsorption rate and capacity of Alg–BO were 0.0007 g/mg·min and
6.792 mg/g, respectively.
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Figure 6. Iodide adsorption kinetics of Alg–BO and results of nonlinear fitting using pseudo-first- (red
line) and pseudo-second-order (blue line) models. Initial iodide concentration = 20 mg/L; adsorbent
concentration ≈ 1.4 g/L; contact time = 5–5760 min.

The intraparticle diffusion model was applied to clarify the adsorption mechanism
between iodide and Alg–BO, and the results are summarized in Figure S2 and Table S1.
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The intraparticle diffusion model involves three steps: (i) film diffusion of the liquid
adsorbate onto the adsorbent surface, (ii) diffusion of the surface adsorbate into pores,
and (iii) adsorption onto the inner surfaces of the pores [45]. As shown in Figure S2, the
adsorption kinetics corresponded to intraparticle diffusion during 5760 min. The Alg–
BO exhibited gradual adsorption through boundary layer diffusion during 480 min and
reached the plateau from 1440 min to 5760 min, indicating intraparticle diffusion. This
result implies that iodide ions steadily diffused into the intraparticle space of the Alg–BO
beads for 5760 min. These results were consistent with those derived from the cross-section
SEM images (Figure 4C,D), in which intraparticle pores were observed between spherical
BO particle aggregates.

2.3.2. Adsorption Isotherms

To evaluate the iodide adsorption capacity of the prepared Alg–BO, iodide adsorp-
tion isotherm experiments were carried out with iodide solutions having various initial
concentrations (10, 20, 50, 100, 200, and 1000 mg/L) (Figure 7). The obtained results were
analyzed using Langmuir (Equation (3)) and Freundlich (Equation (4)) isotherm models
(Figure 7 and Table 1). As summarized in Table 1, the qm for the Langmuir isotherm model
was 111.8 mg/g, with high correlation coefficients (R2 values; 0.9561). It is worth noting
that this qm was approximately 9.0 times higher than the reported powdered bismuth
oxide and 510 times larger than that for the polyacrylonitrile encapsulated bismuth oxy-
hydroxide nanocomposite, as summarized in Table 2. Moreover, the separation factor (RL;
dimensionless constant) was calculated as the following equation [46]:

RL =
1

(1 + aLC0)
(1)

where C0 is the highest initial adsorbate concentration (mg/L) and aL is the Langmuir
constant (L/mg). The calculated RL indicated the adsorption isotherm and could be
interpreted as unfavorable (RL > 1), linear (RL = 1), favorable (0 < RL < 1), or irreversible
(RL = 0). The RL of Alg–BO was 0.385, implying that the iodide adsorption on Alg–BO
was favorable. Additionally, the Freundlich isotherm model was used to interpret the
adsorption data considering a heterogeneous adsorption system. According to the fitting
parameters and n value (1.750), Alg–BO represented a favorable iodide adsorbent. The
R2 value for the Freundlich model was higher than that of the Langmuir model (0.9921).
Therefore, the iodide adsorption by Alg–BO has been noted to correspond to monolayer
iodide adsorption through the chemical interaction and precipitation between bismuth and
iodide [47,48], followed by physical multilayer adsorption at a very high concentration of
iodide in solution.
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Table 1. Isotherm fitting and kinetic fitting parameters of iodide adsorption by Alg–BO.

Iodide isotherm models

Alg–BO

Langmuir Freundlich

qm (mg/g) aL (L/mg) R2 KF n R2

111.8 0.0016 0.9561 1.358 1.750 0.9921

Iodide kinetic models
Pseudo-first-order equation Pseudo-second-order equation

qe (mg/g) k (min−1) R2 qe (mg/g) k2 (g/mg·min) R2

6.166 0.00358 0.8743 6.792 0.0007 0.9048

Table 2. Summarized iodine species adsorption capacity of various adsorbents.

Material Sample
Type

Iodine
Species

Adsorption
Capacity (mg/g)

Initial Iodide
Concentration (mg/L)

Sample
Dosing(g/L)

Contact
Time Ref

Activated bismuth oxide Powder I− 100 200 1.0 4 h [49]
Bismuth oxide Powder I− 12.3 200 1.0 4 h [49]

Cu2O Powder I− 0.3 13 50 5 d [50]
Cu2S Powder I− 2.54 13 20 8 d [51]

Mg-Al (NO3) LDH Powder I− 10.1 342.33 20 4 h [52]
Modified zeolite Powder I− 3.6 10–500 10 24 h [53]

Ag/Cu2O Powder I− 25.4 2.6–26 1.0 12 h [54]
Cu/Cu2O Powder I− 22.9 2.6–39 1.0 12 h [55]

silver nanoparticles-
impregnated

zeolite
Powder I− 19.54–20.44 75–450 5.0 900 min [56]

Polyacrylonitrile-
bismuth

oxyhydroxide
Bead IO3

− 0.216 1.0 5.0 24 h [57]

Polyacrylonitrile-
bismuth

subnitrate
Bead IO3

− 0.199 1.0 5.0 24 h [58]

Cu/Cu2O-immobilized
cellulosic filter Filter I− 10.32 1–25 2.0 15 h [59]

3D Graphene-Formicary-
like δ-Bi2O3

Aerogels
Filter I− 259.08 13–130 1.0 12.5 min [60]

Nano-cellulose hydrogel
coated flexible

titanate-bismuth oxide
membrane

Filter I− 225.9 500 - 360 min [61]

Alg–BO Bead I− 111.8 10–1000 1.0 24 h This study

The obtained qm value was compared to the reported value in the literature in Table 2.
For the powder-type adsorbents, the copper-based adsorbents showed ≤2 mg/g of ad-
sorption capacity, while zeolite and LDH showed ≤10 mg/g of adsorption capacity with a
low selectivity toward iodide. The adsorption capacity could be enhanced by combining
elemental silver or elemental Cu (22.9–25.4 mg/g). On the other hand, bismuth oxide
(BO), which can be prepared in a simple procedure, showed 12.3–100 mg/g of iodide
adsorption capacity.

For the structured BO, polyacrylonitrile-based BO beads showed a very low iodide
adsorption capacity due to their low BO content and low tested initial concentration.
Even though the reaction condition was different, our result using Alg–BO showed that
111.8 mg/g of iodide adsorption capacity was one of the best results among bead-type
adsorbents. This enhanced iodide adsorption capacity might be due to the 18-44 times
larger SSA of Alg–BO than the SSA of powdered BO, which makes it possible to form
intraparticle pores as a result of granulation with Alg [44]. Of course, several articles
present higher adsorption performances using cellulose nanofiber and graphene, but our
work still presents a meaningful result with a comparably high adsorption performance
using a simple preparation method based on natural polymer, alginate.
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2.3.3. Effect of pH

The iodide adsorption capacity as a function of initial pH was evaluated by simple
batch adsorption experiments (Figure 8). At pH 4, the iodide adsorption capacity of Alg–
BO exhibited a statically similar iodide adsorption capacity based on a t-test with a 95%
confidence level. However, when the initial pH was increased to 10, the iodide adsorption
capacity decreased by around 15%, from 6.42 mg/g to 5.47 mg/g. This decrement in
iodide adsorption capacity at higher pH (pH 10) was attributed to the surface charge of
bismuth oxide in Alg–BO. The point of zero charge (pHpzc) for BO was around pH 9.4,
meaning that BO’s surface charge was shifted from positive to negative [62] at pH 10. Due
to the negatively charged BO in Alg–BO, the adsorption of iodide could be interrupted by
charge–charge repulsion, and it might lead to a decrement in iodide adsorption capacity.

Int. J. Mol. Sci. 2022, 23, x FOR PEER REVIEW 10 of 16 
 

 

 
Figure 8. Iodide adsorption capacity as a function of initial pH of iodide solution (left) and photo-
graphs of Alg–BO after iodide adsorption (right). Initial iodide concentration = 20 mg/L; initial pH 
4, 7, and 10; adsorbent concentration = 1 g/L; contact time = 24 h. 

2.4. Characterization of Alg–BO after Iodide Adsorption 
The crystal structure and morphological changes of Alg–BO after iodide adsorption 

were investigated with PXRD and EDS-mapping-assisted SEM. In the PXRD patterns (Fig-
ure S3), characteristic diffractions attributable to two different types of BO (Bi2O2.33 and γ-
Bi2O3) were observed. The relative intensity of diffractions slightly decreased (approxi-
mately 20%), but the crystal structure of Alg–BO was preserved even after 24 h.  

To visualize the distribution of the adsorbed iodide ion in Alg–BO, EDS-mapping-
assisted SEM was performed (Figure 9). Before iodide adsorption, bismuth (yellow dot) 
and oxygen (blue dot) were homogeneously distributed on the BO particles, as observed 
in the SEM images. After exposure to the iodide solution, iodide ions (magenta dots) ap-
peared not only on the surface but also in the cross-section. On the surface of Alg–BO, 
iodide ions appeared homogenously with bismuth and oxygen. Interestingly, the cross-
sectional EDS mapping images indicated that the iodide was distributed only with bis-
muth. According to the EDS images, the adsorbed iodide ions interacted with BO in Alg–
BO. In addition, from the FT-IR spectra of Alg–BO after iodide adsorption, the character-
istic vibrations at 1641, 1596, 1543, 1407, 1285, 1124, 1082, and 1025 cm−1 attributed by al-
ginate and BO were well-maintained after iodide adsorption (Figure S4). From the FT-IR 
spectra, iodide adsorption did not affect the chemical properties of Alg-BO.  

 
Figure 9. Element mapping images obtained by scanning electron microscopy of Alg–BO before and 
after iodide adsorption (blue: oxygen, yellow: bismuth, and magenta: iodide). 

Figure 8. Iodide adsorption capacity as a function of initial pH of iodide solution (left) and pho-
tographs of Alg–BO after iodide adsorption (right). Initial iodide concentration = 20 mg/L; initial
pH 4, 7, and 10; adsorbent concentration = 1 g/L; contact time = 24 h.

2.4. Characterization of Alg–BO after Iodide Adsorption

The crystal structure and morphological changes of Alg–BO after iodide adsorption
were investigated with PXRD and EDS-mapping-assisted SEM. In the PXRD patterns
(Figure S3), characteristic diffractions attributable to two different types of BO (Bi2O2.33
and γ-Bi2O3) were observed. The relative intensity of diffractions slightly decreased
(approximately 20%), but the crystal structure of Alg–BO was preserved even after 24 h.

To visualize the distribution of the adsorbed iodide ion in Alg–BO, EDS-mapping-
assisted SEM was performed (Figure 9). Before iodide adsorption, bismuth (yellow dot) and
oxygen (blue dot) were homogeneously distributed on the BO particles, as observed in the
SEM images. After exposure to the iodide solution, iodide ions (magenta dots) appeared
not only on the surface but also in the cross-section. On the surface of Alg–BO, iodide ions
appeared homogenously with bismuth and oxygen. Interestingly, the cross-sectional EDS
mapping images indicated that the iodide was distributed only with bismuth. According
to the EDS images, the adsorbed iodide ions interacted with BO in Alg–BO. In addition,
from the FT-IR spectra of Alg–BO after iodide adsorption, the characteristic vibrations
at 1641, 1596, 1543, 1407, 1285, 1124, 1082, and 1025 cm−1 attributed by alginate and BO
were well-maintained after iodide adsorption (Figure S4). From the FT-IR spectra, iodide
adsorption did not affect the chemical properties of Alg-BO.

Based on the previous study, bismuth oxide can form Bi–O–I bonding directly through
chemisorption via Bi–O–I complexation (Figure 10) [48,59,63]. The chemisorption mech-
anism could lead to less desorption of bound iodide from the adsorbent; therefore, it is
promising for handling radioactive contaminants.
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Figure 9. Element mapping images obtained by scanning electron microscopy of Alg–BO before and
after iodide adsorption (blue: oxygen, yellow: bismuth, and magenta: iodide).
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Furthermore, the bismuth ion concentration in the supernatant was quantified to
evaluate the stability of Alg–BO. The amount of dissolved bismuth ions was 2.6 µg/L,
which was significantly low, indicating that the BO in Alg–BO was highly stable in the
iodide solution for 24 h. Therefore, according to the iodide adsorption and characterization
results, Alg–BO represents a promising iodide adsorbent, which has a controllable size and
contents, can be easily managed, and can, thus, be applied in various fields.

3. Materials and Methods
3.1. Materials

Bismuth (III) nitrate pentahydrate (Bi(NO3)3·5H2O; 98%), potassium iodide (KI; 99.5%),
sodium hydroxide (NaOH; 97%), hydrochloric acid (HCl; 35%), and ethanol (94.5%) were
purchased from Samchun Chemicals Co., Ltd. (Seoul, Korea). Sodium alginate was obtained
from Junsei Chemical Co., Ltd. (Tokyo, Japan). CaCl2 was obtained from Dongyang
Chemical Co., Ltd. (Yeongam-gun, Korea). Ethylene glycol (C2H4(OH)2; 99.8%) was
purchased from Sigma-Aldrich Co., LLC (St. Louis, MO, USA). All chemicals were used
without purification. Ultrapure water (deionized water; DI) was produced using a water
purification system (Synergy®, Merck, Kenilworth, NJ, USA).

3.2. Synthesis of Bismuth Oxide (BO)

To prepare BO, 0.97 g of bismuth (III) nitrate pentahydrate, ethanol (34 mL), and
ethylene glycol (17 mL) (ethanol: ethylene glycol = 2:1 v/v%) were added to a 100 mL
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glass beaker and stirred with a magnetic stirrer for approximately 30 min until the bismuth
nitrate completely dissolved. The prepared solution was transferred to a stainless-steel
autoclave with a Teflon liner and hydrothermally treated in an oven at 160 ◦C for 10 h. The
product (50 mL) was collected by centrifugation (6000 rpm for 5 min) in a conical tube. The
obtained slurry was washed four times with a mixed solution of DI water and ethanol (1:1
v/v%) and dried in an oven at 60 ◦C.

3.3. Granulation of Bismuth Oxide by Alginate (Alg–BO)

BO was granulated by dropping the Alg/BO mixed slurry into a CaCl2 solution,
as described in our previous work [33]. First, the sodium alginate was dissolved in DI
(10 mg/mL) by stirring for over 30 min with a mechanical stirrer. Subsequently, powdered
BO was added to the Alg solution, with five weight ratios of Alg to BO considered (1:5, 1:10,
1:20, 1:30, and 1:40). This suspension was stirred for 2 h, transferred (5 mL) to a syringe,
and added to a 2 w/v% CaCl2 solution dropwise through a syringe pump (NE4000, NEW
ERA; 1.5 mL/min) with vigorous stirring. The beads generated in the CaCl2 solution were
stabilized by stirring for 30 min, washed with DI water, and stored in a conical tube with DI.

3.4. Characterization

The PXRD patterns were obtained in the range of 20◦ to 80◦, using the Bruker DE/D8
Advance (Bruker AXS GmbH, Berlin, Germany) with a 5 mm air-scattering slit and 2.6 mm
equatorial slit, in timestep increments of 3.9 ◦/min. The FT-IR attenuated total-reflectance
(ATR) spectroscopy (Spectrum two, Perkin Elmer, UK) results for a dried bead were
obtained in the range of 450–4000 cm−1 with eight scans and a resolution of 4 cm−1.
The size and morphology of the Alg–BO were determined through high-resolution field
emission SEM (HR-SEM) using a Hitachi SU8010 (Hitachi High-Technologies Corporation,
Tokyo, Japan) assisted by EDS (X-Max, Horiba, Kyoto, Japan) along with a 10 kV accelerated
electron beam and a working distance of 8 mm. To perform the SEM/EDS analysis, the
prepared Alg–BO was lyophilized and attached to a piece of carbon tape. To obtain cross-
section images, the lyophilized Alg–BO was sliced using a surgical knife. Subsequently, the
sample surface was coated with a Pt/Pd layer (approximately 10 nm thickness) by using a
high-resolution sputter coater. Inductively coupled plasma-mass spectrometry (ICP-MS;
Agilent 7900, Agilent Technologies, Inc., CA, USA) was performed to quantify the BO
released in the supernatant after iodide adsorption. The nitrogen adsorption–desorption
isotherm hysteresis loop and Brunauer–Emmet–Teller (BET) surface area were obtained
by a 3Flex physisorption analyzer (Micromeritics, Norcross, GA, USA). The average pore
volume and width were determined using the Barrett–Joyner–Halenda (BJH) method.

3.5. Iodide Adsorption Experiments
3.5.1. Optimization of Granulation Conditions for Alg–BO

The variation in the iodide adsorption efficacy with the Alg:BO ratio was determined
through a simple batch test to optimize the granulation conditions for Alg–BO. Approx-
imately 40 mg of Alg–BO (1:5, 1:10, 1:20, 1:30, and 1:40 of wt%) was added to a 40 mL
potassium iodide solution (20 mg I/L) and continuously agitated using a vertical shaker
for 24 h. The initial pH of the iodide solution was adjusted to 7.0 using HCl and NaOH.
The supernatant was collected using a syringe filter (polyethersulfone (PES), 0.45 µm). The
iodide concentration in the supernatant was quantified by ultraviolet (UV) absorbance at a
wavelength of 225 nm using a UV–visible spectrometer (UV-vis spectrometer, Genesys 50,
Thermo Fisher Scientific, USA). After the adsorption experiments, the amount of iodide
ions adsorbed per weight of adsorbent qe (mg/g) was determined using Equation (2).

qe

(
mg
g

)
=

(C0 − Ce)(m
V
) (2)

where C0 is the initial iodide concentration (mg/L), Ce is the equilibrium concentration after
adsorption (mg/L), m is the adsorbent weight (g), and V is the volume of the solution (L).
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3.5.2. Iodide Adsorption Isotherm and Kinetic Experiments

Iodide adsorption isotherm experiments were conducted with initial iodide concentra-
tions of 10, 20, 50, 100, 200, 400, and 1000 mg/L (pH 7). Approximately 30 mg of Alg–BO
was dispersed in 30 mL of each iodide solution (1 g/L) and continuously shaken using a ver-
tical shaker for 24 h. The sample was collected and quantified, as described in Section 3.5.1.
The obtained isotherm result was fitted using the Langmuir (Equation (3)) [64] and Fre-
undlich (Equation (4)) [65] isotherm models.

qe =
(qmaLCe)

(1 + aLCe)
(3)

qe = KF·C
( 1

n )
e (4)

where qe is the quantity of adsorbate adsorbed per unit weight of solid adsorbent, qm is the
maximum sorption capacity of the adsorbent (mg/g), Ce is the equilibrium concentration
of the adsorbate in solution (mg/L), and aL (L/mg) is the Langmuir affinity constant. KF is
the Freundlich constant indicating adsorption capacity, and n is the Freundlich constant
related to the favorability of the adsorption process.

Moreover, iodide adsorption kinetic experiments were conducted using 20 mg/L iodide
solutions (pH 7) and 1.4 g/L of adsorbent dose. The reaction vessel was closed and gently
stirred using a magnetic stirrer at 25 ◦C. The supernatant was collected and filtrated through
a 0.45 µm PES syringe filter at designed time points (5, 10, 30, 90, 150, 240, 480, 1440, 2880,
and 5760 min). The obtained supernatant was analyzed through a UV–vis spectrometer.
The kinetic results were analyzed using pseudo-first-order (Equation (5)) [66] and pseudo-
second-order [67] kinetic models (Equation (6)). Moreover, the intraparticle diffusion kinetics
model (Equation (7)) [68] was used to investigate the adsorption mechanisms.

qt = qe

(
1 − e−kt

)
(5)

qt =
k2q2

e t
1 + k2qt

e
(6)

qt = Kidt
1
2 + c (7)

where qt is the adsorbed amount at time t (mg/g), qe is the equilibrium concentration
(mg/g), k is the first-order rate constant (1/min), and k2 is the second-order rate constant
(g/mg·min). Moreover, Kid (mg/g·min1/2) is the intraparticle rate constant, and c (mg/g)
is the thickness of the boundary layer formed in the first interval.

3.5.3. Effect of pH

To evaluate the effect of initial iodide solution pH, the pH of 20 mg/L of iodide
solution was adjusted to pH 4 and 10 by HCl and NaOH, respectively. Around 30 mg of
Alg–BO was placed into 30 mL of pH-adjusted iodide solution (1 g/L of adsorbent dose)
and continuously agitated using a vertical shaker for 24 h. The sample was collected and
quantified, as described in Section 3.5.1.

4. Conclusions

The BO was successfully granulated with Alg. The optimal condition for the granula-
tion was determined considering different weight ratios of BO to Alg (1:5–1:40) in batch
iodide adsorption experiments. The weight ratio of 1:20 wt% was selected as the optimal
condition. According to the characterization results obtained through PXRD, FT-IR, and
SEM analyses, BO appeared in two forms: Bi2O2.33 and γ-Bi2O3, and was successfully
granulated with Alg, yielding spherical beams with a diameter of 3 mm. According to the
cross-sectional SEM images, irregular nanoparticles sized tens to hundreds of nanometers
were packed into a few millimeters of the granulated adsorbent. The intraparticle pores in
the granule could enhance the iodide adsorption. The iodide adsorption capacity of Alg–BO
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gradually increased and did not reach a plateau even at an initial iodide concentration
of 1000 mg/L. Moreover, the calculated qm was 111.8 mg/g. According to the isotherm
model analysis, iodide adsorption occurred as monolayer adsorption through the chemical
interaction and precipitation between bismuth and iodide, followed by physical multilayer
adsorption at a very high concentration of iodide in solution. Furthermore, the iodide
adsorption as a function of contact time was analyzed by fitting with the intraparticle
diffusion model through boundary layer diffusion during 480 min, reaching the plateau
from 1440 min to 5760 min by intraparticle diffusion. EDS mapping images of the surface
and cross-section after iodide adsorption indicated that the adsorbed iodide interacted
with BO in Alg–BO through Bi–O–I complexation. This research shows that Alg–BO is a
promising iodide adsorbent with a high absorption capacity, stability, and convenience,
and it can help prevent secondary pollution.
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