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Abstract: Integrin αIIbβ3, a glycoprotein complex expressed at the platelet surface, is involved in 

platelet aggregation and contributes to primary haemostasis. Several integrin αIIbβ3 polymorphisms 

prevent the aggregation that causes haemorrhagic syndromes, such as Glanzmann thrombasthenia 

(GT). Access to 3D structure allows understanding the structural effects of polymorphisms related 

to GT. In a previous analysis using Molecular Dynamics (MD) simulations of αIIb Calf-1 domain 

structure, it was observed that GT associated with single amino acid variation affects distant loops, 

but not the mutated position. In this study, experiments are extended to Calf-1, Thigh, and Calf-2 

domains. Two loops in Calf-2 are unstructured and therefore are modelled expertly using 

biophysical restraints. Surprisingly, MD revealed the presence of rigid zones in these loops. 

Detailed analysis with structural alphabet, the Proteins Blocks (PBs), allowed observing local 

changes in highly flexible regions. The variant P741R located at C-terminal of Calf-1 revealed that 

the Calf-2 presence did not affect the results obtained with isolated Calf-1 domain. Simulations for 

Calf- 1+ Calf-2, and Thigh + Calf-1 variant systems are designed to comprehend the impact of five 

single amino acid variations in these domains. Distant conformational changes are observed, thus 

highlighting the potential role of allostery in the structural basis of GT. 

Keywords: secondary structure; sequence–structure relationship; structural alphabet; bleeding 

disorder; flexibility; molecular dynamics; Glanzmann thrombasthenia; blood group; human 

platelet antigens 

 

1. Introduction 

Integrins are a large protein family composed of heterodimeric receptors composed 

of α and β subunits [1]. A total of 24 different combinations of α and β subunits are found 

in human cells. The human integrin αIIbβ3 is an essential complex implicated in 

fibrinogen-dependent platelet aggregation and thrombus formation, thus maintaining 

primary hemostasis [2]. 

Each subunit of the αIIbβ3 structure can be defined in 3 regions with the largest one, 

i.e., the extracellular ectodomain (959 and 693 residues in α and β subunits respectively), 

being a single spanning transmembrane region and a small C-terminus cytoplasmic 

region. The αIIbβ3 structure is found in an inactive conformation of αIIbβ3, i.e., its closed 

structure having been successfully crystallized [3]. It is hypothesized that the presence of 

fibrinogen stimulates the pathways resulting in the opening of the αIIbβ3 structure. The 

opening results in a separation of the two subunits, maintaining an interface at one 

position that is critical for the binding of fibrinogen [4] (see Figure 1 of [5] for more 

details). The association of the transmembrane helices with αIIb and β3 subunits plays a 
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critical role in maintaining the inactive state [6]. 

As the human integrin αIIbβ3 is a platelet surface fibrinogen receptor, it is responsible for 

platelet aggregation and, therefore, its deficiency/dysfunction is linked to life-threatening 

bleeding disorders. The first one is a rare autosomal recessive genetic disease associated with 

impaired αIIbβ3 expression and/or function, namely Glanzmann thrombasthenia (GT). 

Bleeding occurs as the platelet aggregation and thrombus formation fails in the absence or 

functional impairment of integrin αIIbβ3. This rare disease is associated to more than 350 

different genetic variations, and many lead to amino acid substitutions (polymorphism) in 

every region of the two subunits. ClinVar lists 129 different ones for β3 

(https://clinvarminer.genetics.utah.edu/variants-by-gene/ITGB3/condition/Glanzmann%20th

rombasthenia accessed on 16 November 2021) and 236 for αIIb 

(https://clinvarminer.genetics.utah.edu/variants-by-gene/ITGA2B/condition/Glanzmann%20

thrombasthenia accessed on 16 November 2021). These variants have different consequences. 

Some prevents the expression of integrin αIIbβ3 on the surface of platelets whereas others limit 

its expression, resulting in a reduced number of integrins on the platelet surface. The latter 

limits the efficiency of signal transduction [7,8], resulting in weak interactions for thrombus 

formation. It must also be noted that some rare gain-of-function mutations affecting the 

structure of αIIb or β3 can give rise to macrothrombocytopenia associated with autosomal 

dominant, moderate-to-severe bleeding syndromes [9]. 

The second one is Fetal/Neonatal Alloimmune Thrombocytopenia (FNAIT). Some 

natural missense mutations at specific positions in αIIbβ3 neither affect the expression nor 

the function of the protein, but define Human Platelet Alloantigens (HPA) systems. 

Fetal/neonatal platelets are destroyed by maternal antibodies in mothers who lack an 

HPA allele inherited from the father. FNAIT clinical consequences range from no 

symptoms to intracranial hemorrhages with a risk of neurological sequelae and/or 

fetal/neonatal death [10,11]. Up to now, 35 HPA systems and alloantigens are described 

(formerly at EBI, now at 

https://www.versiti.org/medical-professionals/precision-medicine-expertise/platelet-anti

gen-database#hpa-database accessed on 16 November 2021). The effects of these amino 

acid substitutions on αIIbβ3 structure remain largely unknown. 

Our research group has been interested in understanding how amino acid 

substitutions in GT can structurally impact αIIbβ3. As integrins have a large size and 

complex organization, a limited number of structures have been resolved so far. 

Strikingly, they all have impressive conservation of protein folds, even if they all are 

evolutionary distant and associated to different biological pathways. Using whole αIIbβ3 

ectodomain (PDB id 3FCS [4]) in closed conformation, we have showed that the amino 

acid variant located in β3, Lys253Met (K253M), generated by a GT mutation, impaired 

key ionic interactions between the αIIb β-propeller and the β3 βI-like domain [12]. 

HPA-1 is the most frequent HPA associated to FNAIT in the Caucasian population. It 

is associated with an amino acid polymorphism located in β3, Leu33 and Pro33; it defines 

the HPA-1a and 1b alleles, respectively. Interestingly, a very rare third isoform also exists, 

i.e., Val33. Molecular dynamics (MD) simulations were used to compare the structures of 

these isoforms. This position remained surprisingly rigid inside a larger deformable region, 

underlying the possibility to express a specific epitope. The P33-β3 variant presented a 

higher mobility and specific conformations of I-EGF-1, I-EGF-2 and PSI domains [13], 

showing that V33 isoform behaves as an intermediate between L33 and P33 [14]. 

Pagani and collaborators show that, under flow-dynamic conditions, the P33 variant 

displays prothrombotic properties, with increased platelet adhesion and aggregation, 

thrombus formation, and outside in signaling the triggering of the opening of αIIbβ3 

structure. MD simulations of the ectodomain of the L33 and P33 isoforms underlined that 

the P33 weakens interdomain interactions at the knee in regards to L33 dynamics, and 

alters the structural dynamics of the integrin to a more unbent and splayed state [15]. 

Mansour and collaborators were interested in the mechanism of deformation of its 

structure in response to the presence of the Glanzmann N2D mutation located in the 
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β-propeller domain of the αIIb chain. This mutation induces the loss of αIIbβ3 expression at 

the platelet surface. The latter affects a Ca2+ binding site that plays an important role in 

the conformational stability of the integrin and its affinity for the ligand [16]. Laguerre 

and collaborators focused on the β3 P163S GT variant and underlined a change in the 

potential interface with αIIb [17]. Nurden and collaborators studied missense mutations of 

β3 involved in GT and showed that it affects the structure of the two chains: αIIb and β3. 

These changes correspond to the loss of molecular interactions that lead to structural 

changes. However, these in silico analyses had their limitations due to (i) very short 

simulation times, (ii) often conducted using a single simulation, and (iii) the absence of 

ions essential for local protein structures structuring [18]. 

The lower leg domains in the αIIb subunit, Thigh, Calf-1, and Calf-2 (see Figure 1), 

have a conserved immunoglobulin fold, which is well known for its rigid β-sheet 

structure. Thus, it makes them ideal for analyzing the impact of GT variants on the local 

structure. Using new strategies in MD, in 2017, we studied the effect of seven variants of 

the αIIb Calf-1 domain, which are known to impair αIIbβ3 integrin expression in GT. 

Surprisingly, at the aa (amino acid) variation/substitution positions, no difference in 

terms of local conformations was observed for these variants. On the other hand, some 

loops (mainly loops 2 and 8) were strongly impacted in their dynamics for all these 

variants, leading to the question of allostery/long-range interaction [5]. 

A similar analysis with a new GT variant G540D of β3 I-EGF-3 discovered in Turkish 

families revealed a strong impact in terms of dynamics. The GT variant showed disorder 

tendencies in the second part of I-EGF-3 whereas it was rigid or slightly flexible at most [19]. 

 

Figure 1. The three domains of integrin αIIbβ3: Thigh, Calf-1 and Calf-2. It is visualized with PyMOL 

[20]. The Thigh domain is colored in magenta, Calf-1 in purple and Calf-2 in yellow. The Knee region 

is colored dark green with Ca2 + ion represented by a grey sphere. The N-terminus is indicated by a 

red sphere, and the C-terminus by a yellow sphere. 

As mentioned above, MD simulations of isolated αIIb Calf-1 domain showed that 

seven GT variants have distant structural impacts instead, i.e., long-range allosteric 

effects. In the present study, we extend the analysis of the Calf-1 domain with its adjacent 

domains. Firstly, the potential impact of the forcefield (ff) is evaluated. Then, the 

neighboring domains from the large structural assembly of integrin αIIbβ3 are added to 

Calf-1. Studying the Calf-1 + Calf-2 and Thigh + Calf-1 domains together also tests whether 

the clipping had an effect on the analysis previously conducted with the isolated Calf-1 

(see Figure 1). Finally, different GT and HPA variants are modelled into these rigid 

domains and each mutation is studied for its potential effect on the local and distant 

structures. All the MDs performed are of equivalent length and can therefore be 

compared (see Figure 2 for a description of the 11 new systems). 
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Figure 2. The 11 new systems studied. The black line indicates the position of the mutation. 

2. Results 

2.1. Structural Modeling of the Calf-2 Domain 

In this study, the Calf-2 domain (residues 744 to 952) has to be completed as the 

structural information for 2 regions is missing in the selected template (unresolved in the 

crystallographic structure). The first region is 11 residues long (positions 763–775) 

whereas the second one is 34 residues long (positions 840–873). The second region is long 

enough to be beyond the scope of default loop-modelling algorithms [21], with no 

repetitive secondary structure [22,23] and high flexibility content [24–26]. To expertly 

model these, sequence homologs were mined using PSI-BLAST [27] and structurally 

similar molecules were identified using the FATCAT algorithm (Flexible structure 

AlignmenT by Chaining Aligned fragment pairs allowing Twists) [28]. Models were 

generated with MODELLER. After carefully selecting the templates, additional distance 

restraints were added to ensure that loops were not directly interacting with the rest of 

the structure. All the generated models were inspected manually and, finally, the model 

that was least impacted by completion had a low Root Mean Square Deviation (RMSD) to 

the template and the correct loop geometry was selected. This model has an excellent 

overall RMSD value of 0.2 Å with X-ray structure (see Supplementary Results R1 for 

more details and Figure S1). 

2.2. Designing the Calf-1 + Calf-2 Simulation System 

2.2.1. Molecular Dynamics 

As described above, in a previous study, Calf-1 was also analyzed for GT variants, 

but without any other partner. Moreover, the previous study was conducted with an 

older version of Gromacs. Therefore, at first, the 850 nanosecond simulations were 

performed again to ensure the quality of our planned experiments (see Figure 2). No 

difference was spotted in the Root Mean Square Fluctuation (RMSF) of the Calf-1 domain 

simulated under the newer version of Gromacs and the older version. Moreover, the 

upgraded simulation setup of 1 microsecond also did not show any significant impact 

(see Supplementary Material for more details). 

After acquiring confidence in the structural model of Calf-1 + Calf-2 domains, their 

validation was also performed using MD simulations followed by associated analysis. In 

order to compare the RMSF of the simulated Calf-1 + Calf-2 system, at first the B-factor 

profile for the same system was studied (as shown in Figure 3). It is worth mentioning 

that B-factors are the thermal factors derived from the X-ray data and are directly 

proportional to the mean square displacement of an atom. Since the RMSF also takes into 

account the root of mean square fluctuation of an atom, it can be compared to the B-factor 

values to assess the flexibility profiles. 
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Figure 3. Representation of the Calf-1 and Calf-2 domains according to the mobility of atoms, rep-

resented by B-factor values. They range from less mobile (thin line, blue) to more mobile (thick 

coating, red). 

For Calf-1 and Calf-2 domains, these values show that regions associated with high 

values are located at the loops connecting the β-strands. As per expectations, the β-sheets 

are on average rigid, thus forming the core of the immunoglobulin fold in Calf-1 and 

Calf-2. The Calf-1 domain has 4 regions with high flexibility at loop 2 (620–621), loop 5 

(667–670) and loop 8 (711–712). These values of the Calf-1 domain are in good agreement 

with the RMSF values calculated in the isolated analysis of the Calf-1 domain. In contrast, 

Calf-2 is much more flexible at these β-strands: β-strand 8 (positions 898–908) shows high 

values of B-factors, thus indicating some disorder in the local structure. In addition, the 

loops closer to the ones located just before the membrane show very high values of 

B-factors, especially at loop 9 (901–921). In addition, the Calf-2 loops that have large 

missing regions have very high B-factor values for the modeled residues, making their 

study under a simulated environment much more stimulating. 

2.2.2. Assessing the Impact of the Adjunction of the Calf-2 Domain to Calf-1 

A logical question that arises with such kind of analysis is the potential effect of 

cutting structural domains and studying them in isolation. In order to address it, the 

dynamic behavior of the Calf-1 domain was compared with the neighboring Calf-2 

domain to see if the inclusion of the latter leads to any changes in the dynamics of Calf-1. 

In our analysis, Calf-1 is the only domain that was studied in isolation as well as in 

combination with Calf-2. 

Figure 4 summarizes this by comparing RMSF and a protein block entropy value 

(see Section 4.4), namely Neq, values of both systems. RMSF is often used to determine 

flexible mobile regions; generally, they correspond to loops. Compared to the behavior of 

Calf-1 alone, the most mobile regions are similar; however, the mobility is rather 

amplified for the Calf-1 & Calf-2 system. This can be explained by the inclusion of highly 

mobile region of loop 9, which can impact the mean values. Nonetheless, this difference 

does not change the general behavior of the domain. Indeed, the correlation in RMSF 

values is extremely high (0.96, see Figure 4a) and such is also the case with the Neq values 

(0.91, see Figure 4b). It is noteworthy that the ΔPB values (this measure corresponds to 

the sum of difference between protein block distribution observed at one position, see 

Section 4.4, Equation 2) show variations in areas 622–625 (loop 2), 639–641 (loop 3), 712–

715 (loop 8) and 726–728 (loop 9). Compared to the B-factor values, these variations are 

consistent with loops 2 and 8. The positions can slightly vary; hence, loop 3 is not 

associated with a high B-factor value. However, these mobile regions are observed 
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whether Calf-1 is associated with Calf-2 or not. Thus, it can be concluded that the 

dynamics of the two systems are comparable, and the association of Calf-1 with Calf-2 

does not significantly impact the behavior of Calf-1 dynamics. 

 

Figure 4. Calf-1 vs. Calf-1 + Calf-2. (a) RMSF values of Calf-1 alone and of the Calf-1 & Calf-2 system. 

(b) Same representation for Neq values. 

2.2.3. MD Simulations: Potential Impact of the Change in Forcefields 

Another classical question is the possibility to have an impact of the selected 

forcefield on the simulation experiments. Although it is an open-ended debate, the effects 

have to be tested as we have been dealing with multiple simulation experiments 

performed on different simulation systems (the Calf-1, Calf-1 + Calf-2, Thigh + Calf-1; see 

Figure 2) over a spectrum of time. Therefore, to address this issue, the Calf-1 simulation 

experiment performed in Gromos ff was compared to the results obtained from Calf-1 

simulation experiment performed in OPLS-AA ff. Figure 5a shows that the RMSF 

variations are almost identical; the difference in RMSF is on average only 0.24 nm with a 

correlation of 0.96. Figure 5b shows the correlation of the values of Neq. The correlation is 

comparatively weaker (0.73), but more precisely, the same moving zones are identified 

for the two forcefields. Therefore, the use of protein blocks allows a more precise analysis 

than the classical RMSF. 

ΔPB shows that there are more than 20% of the residues with a ΔPB greater than 1 

(see Figure 5c). These regions correspond to positions 620–630 (loop 2), 640–645 (loop 3) 

and 652–657 (loop 4) of the Calf-1 domain and positions 742–747 (loop 1), 761–775 (loop 

3), 788–795 (loop 4), 850–862 (start of completed loop 7), 865–875 (end of completed loop 

7), 910–925 (loop 9) and 931–945 (loop 10) from Calf-2. These variations are localized 

within the loops of both domains. All these positions showing significant variations 

correspond to transitions between PBs b (N-cap of β-strands) and c (β-strands) and PBs h 

and i (i.e., PB loops). To understand the observed higher ΔPB values, focused profiles 

were analyzed for the region 783–813, which forms the interface of Calf-1 and Calf-2 and 

lies just upstream of the modeled loop in Calf-2. 
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Figure 5. OPLS ff vs. Gromos ff. (a) RMSF and (b) Correlation between the Neq values of each res-

idue in Calf-1 simulated with OPLS ff (x-axis) to Calf-1 simulated in Gromos ff (y-axis). (c) ΔPB be-

tween the simulations performed in these two forcefields. (d) PBs occurrence map [29] of positions 

783 to 813 for (1) OPLS ff, and (2) Gromos ff, with corresponding (3) focused ΔPB profile. 

Figure 5d shows an example of these changes of PBs (heatmaps) and the difference 

between the two forcefields in terms of frequency. Each pixel in the heatmap depicts the 

frequency of the conformation acquired at that position over simulation time: red 

indicates higher frequency whereas blue shows lower frequency in a spectrum from red 

to yellow to blue (see also Figure S2). The interesting case of residue 796 (framed in 

black), representing the greatest value of ΔPB (≈1.6), shows a difference between the 

types of PBs. Indeed, for residue 796, with the use of the OPLS ff, the occurrence of PBs b 

(N-cap of β-strands), d (core of β-strand) and h (loop) is 60%, 20% and 20%, respectively, 

which would indicate a rather extended structuring, whereas with the use of Gromos ff, 

the proportion of PB h is 100%, i.e., a true loop region. So, for this residue, the 

conformation is different according to the forcefield, i.e., difference of 80% for the PB h. A 

plausible explanation can be the positioning of the residue right at the beginning of the 

β-strand. Nonetheless, no real difference in β-sheets (rigid) is observed, except for a slight 

fluctuation between the two main PBs identifying the core β-strand (PBs c and d). In 

conclusion, the main behaviors are not impacted by the change in forcefields of 

simulation systems under study in this paper. 
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2.2.4. Dynamics of Expertly Modeled Loops of the Calf-2 Domain 

After addressing the concerns about the selective bias in our designed simulation 

experiments, it is particularly interesting to analyze the behavior of modeled loops 

(positions: 763–775 for Calf-2′s completed loop 1 and positions 840–873 for loop 2 

numbered as they were modeled; see Figure 6a). In the overall simulation system, these 

correspond to loop 3 and loop 7, respectively.
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Figure 6. Calf-2 completed loops. (a) Sequence of the Calf-2 domain: in blue: the first completed loop; in red: the second one. (b) and (f) show the RMSF values for 

two loops. (c) and (g) show the Neq values for the two loops. (d) and (h) are the 3-D representation of different conformations of the two modeled loops. (e) and (i) 

show the conservation logo maps of these two loops. The red lines on the graphs indicate the boundaries of the completed loops and in black dot lines the limits of 

entire loops.
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The values of RMSF for loop 1 are quite high and even higher for loop 2 (see Figure 

6b,f). Figure 6e,i represent the distribution of PBs observed at each position. The height of 

letters indicates the relative frequency of PB at that position, i.e., one big letter means 

only one type of PB, and small and numerous letters show higher diversity. Neq values 

have been scaled in regard to flexible and disordered regions [30,31]. Neq value higher 

than 8 is considered as disordered position, whereas values less than 8 but greater than 6 

are considered highly flexible, and values around 4 show inherent flexibility. Figure 6c,g 

show that these loops are not completely disordered, but they have specific regions. In 

regard to a specific rigid region encompassed between highly disordered regions [5,31], 

they were analyzed in depth [32]. The first completed loop begins with a slightly 

deformable region (before position 767, Neq is around 2), before going to the restricted 

disorder position 768, and the rest of the loop is between flexible and highly flexible. The 

second loop, the longest one, has more highly flexible parts, and few disordered ones, i.e., 

positions 837 (in the resolved one) and position 865. Interestingly, this long loop 

encompasses two small, rigid and slightly deformable regions (around positions 845 and 

867). The 3D visualization shows some examples of these important sampling (see Figure 

6d,h). RMSF and Neq contrasts highlight the existence of locally rigid zones in these loops. 

Hence, Figure 6e,i show that regions 771–772 and 773–774 of loop 1, and 844–846 and 

865–867 of loop 2 mainly have PB d signature corresponding to extended regular 

structures. These regions are influenced by the dynamics and the great flexibility of their 

surrounding loops, i.e., PBs b, f, and k are observed for the two loops indicating these 

areas are much more deformable (as seen in [33]). 

2.3. Modeling Punctual Mutations to Generate Structural Variants of Interest 

2.3.1. Analyses of the Variants 

Out of the multiple Calf-2 and Thigh domain variants that are related to GT, a 

selected few were tested. These were selected based on their potential impact on the 

subunit structure. The two Calf-2 variants generated by two independent punctual 

mutations S926L and H798P [12] prevent the expression of integrin complex at the 

surface of COS-7 cells by altering the αIIb subunit structure. The variant D560A is 

referenced in the dbSNP (Single Nucleotide Polymorphism database, Acc: rs778608263) 

with a PolyPhen score of 0.999 indicating that the substitution is highly deleterious. The 

R520W variant of the Thigh domain and was detected in Indian patients who had GT [34]. 

Its deleterious effects have been confirmed by in vitro studies. The PolyPhen score for 

this variant is 1, indicating a highly negative impact on its phenotype. Finally, the S472N 

variant located in the Thigh domain was selected as a control to our simulation 

experiments. This mutation does not contribute to GT, but rather induces fetomaternal 

alloimmunization (HPA-24). It has a PolyPhen score of 0 and the expression of αIIbβ3 is 

unaffected, thus structural impacts are expected to be significantly minimal. 

2.3.2. Assessing the Structural Impact of the GT Variant P741R 

The variant P741R is located at the end of Calf-1 and almost at its junction with the 

Calf-2 domain. At this position, a Proline residue that is known for introducing kinks in 

the backbone is substituted by a positively charged Arginine. The previous study carried 

out with an isolated Calf-1 domain did not allow to conclude whether the allosteric effects 

observed were a result of the P741R substitution or a bias introduced by the absence of 

the Calf-2 domain. As explained in Sections above, a very good correlation is found 

between the RMSF values for the Calf-1 system and Calf-1 + Calf-2 system (0.95, see Figure 

S3a). Interestingly, local variations are found at the same place for both systems. 

Moreover, the values of Neq show an excellent agreement between the 2 systems with a 

correlation of 0.90 (see Figure S3b). PB d (core of β-strand) is found in same proportion, 

0.9, which indicates that the association of Calf-2 to Calf-1 has no quantifiable impact on 

the results obtained previously with an isolated Calf-1 domain (see Figure S3c–f). 
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It is therefore possible to analyze the structural effects of the P741R variant using 

either of the two forcefields. Figure 7a shows how close the RMSF values obtained are 

using the two forcefields for Arg741 MD simulations; the correlation equals to 0.94 

underlying the excellent similarity between the results obtained with the two forcefields. 

Neq correlation is observed to be slightly lower, i.e., 0.74 (see Figure 7b), but is expected. 

The PBs’ heatmap shows a slight dispersion of PB d towards PBs b, c, l, and m, especially at 

the extremities of repetitive structures that represents connecting loops. Hence, 20% of 

the residues show significant local variations in the loops, with a value of ΔPB greater 

than 1 (see Figure 7c). This indicates a difference in number of occurrences of PBs. 

Regarding the P741R substitution, the main PB is PB d observed in both the cases. With 

the use of OPLS ff, its occurrence is approximately 100%, whereas with Gromos ff, it is 

90% (see Figure 7d–g), which is not a significant difference. This shows that selected 

forcefield does not affect the local structure dynamics for the P741R variant. 

 

Figure 7. P741R variant. (a) RMSF and (b) Neq for the simulations with two forcefields (OPLS in red, 

Gromos in black). (c) Corresponding ΔPB between the two forcefields for the variant, with zoom on 

position 741. (d) and (e) depict the PB maps for residue 741 of the wild-type system and for the 

variant respectively (see also Figure S4), and (f) and (g) show the corresponding conservation Logo. 

The squares in black, the arrows in red and the line in blue mark the position of residue 741. 

2.3.3. Analysis of the GT H798P and S926L Variants of the Calf-2 Domain 

To go further downstream towards Calf-2 domain, two new systems containing 

substitutions associated with Glanzmann thrombasthenia were simulated, i.e., H798P 

(His to Pro) and S926L (Ser to Leu). The variant H798P arises due to a substitution of the 

Histidine residue at position 798 by a Proline. The side chain of Proline interacts with its 
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own backbone, thus limiting the possibility of other side-chain-to-side-chain interactions. 

Thus, the substitution can have a substantial effect on backbone conformation. However, 

the substitution of a polar Serine residue by non-polar Leucine at 926 may not have a 

significant structural impact on the backbone. 

The comparison of RMSF observations (see Figure S5) show the exceptionally 

similar flexibility profile of the variants and the wild-type system. The most important 

variations are in the loops of the two domains: residues 620–623 (loop 2), 667–669 (loop 

5), 711–713 (loop 8) and 731–733 (loop 9) of the Calf-1 domain, in the two modeled loops 

(completed loop 1: 763–775 and completed loop 2: 840–873) and regions 784–786 (loop 4), 

919–921 (loop 9) and 934–35 (loop 10) at the Calf-2 domain. The variants do not undergo 

much change in their conformations. 

Local Structural Changes due to H798P 

Figure 8 summarizes the main information on the comparison for this system. The 

distribution of RMSF and Neq values show a good correlation (0.97 and 0.98, 

respectively). The most important variations are observed in the loops and especially in 

the two that were modeled. Compared to the WT system, the differences in Neq are found 

at residues 669–670 (loop 5), 713–715 (loop 8) and 728–730 (loop 9) of the Calf-1 domain. 
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Figure 8. H798P GT variant. (a) Neq of the wild system (H798, color in black) and GT variant (P798, 

color in red). (b) ΔPB between the two systems. The mutated residue is indicated by a black line, 

and the residue with the strongest ΔPB by arrows. PB occurrence maps are shown around position 

748 and 943 (c) and (f) for the wild-type and (d) and (e) for the variant. (g) Interactions of residue 

H798 (cyan) and (h) of residue P798 (light cyan); in orange, the residues interact in the same way in 

the wild-type and the variant; in violet, the new interacting residue. (i) Same representation for the 

residue L943 in the wild-type and (j) for the variant. Representation of the Calf-1 and Calf-2 do-

mains according to the flexibility measured by values of Neq for (k) wild-type and (l) for the variant, 

moving from the least flexible (thin line, blue) to the most mobile (thick line, red). The most mobile 

parts representing high values of Neq are circled in red. 

A slight decrease in the flexibility of these loops is observed due to the variant’s 

impact. However, a different trend is observed in Calf-2 at the level of two modeled loops 

(loop 1: 763–775 and loop 2: 840–873) and 916–918 (loop 9). These regions are inherently 

flexible, and their flexibility increases due to the impact of these variants (see Figure 8k,l). 

In contrast to our expectations, a large proportion of the residues, including the variant 
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impact site H798P, show low values of RMSF and Neq. Indeed, the ΔNeq of 0.2 also 

indicates that H798P position does not undergo any change compared to the wild system, 

and also represents a very low ΔPB of 0.02 (see Figure 8b). The observation of PB 

occurrence maps from the wild system and that of the variant shows that the PBs 

predominantly present are PBs a (N-cap of the β-strand) and c (core of β-strand). It is 

noteworthy that there is a conservation of local structure at the position of this punctual 

mutation and the statistics indicate towards enhancement of β-strand formation (see 

Figure 8c,d). Such behavior is not unexpected as the β-strand formation is maintained by 

backbone hydrogen bonding and the substitution does not alter those interactions. On 

the other hand, the hydrogen interactions and ionic effects produced by Histidine 

disappear with the substitution by a Proline. Moreover, Proline, a non-polar amino acid, 

establishes a single hydrophobic bond with Leucine 797. Nonetheless, these interaction 

changes do not alter the structure of the domain at the variant site and indicates towards 

a conformational compensation mechanism. 

Non-Local Impact of the Single Amino Acid Variation in the Calf-2 Domain 

As it can be seen in Figure 8c,d, the PB profile does not change a lot between the 

wild-type and the variant. Rather, at the substitution site, H798P, the color changes 

indicate more rigidity instead. Therefore, it was interesting to observe structural changes 

that appeared at a distant site to the mutation site. Figure 8e,f highlights a residue 

Leucine 943 located in loop 10 of the Calf-2 domain that presents highest values of Neq 

and ΔPB of the system, 2.3 and 2.0, respectively. The majority PB f (C-ter of the β-strand) 

becomes less frequent in the variant and frequency of PBs defining helical turns begin to 

appear (PB l and m observed). Similar trends can be seen in the near vicinity of this site 

(Leu 943, color intensity of decreases from dark orange to pale yellow). A close inspection 

into the structure reveals that, whereas this residue shows no interaction in the wild-type, 

it establishes two new hydrogen-bond interactions in the variant. These interactions 

result in loss of PB f (50%) and a set of PB a and b (N-cap of β-strand) in equal proportion. 

The gained interaction of Leucine changes the PBs profile of this region by reducing the 

proportion of PB f. 

Two other interesting cases located on the Calf-1 domain were studied: Glycine 714 

and Asparagine 732. They are among the residues that show high values of Neq. The 

residue Gly714 exhibits, in the manner of the residue Leu943, stability at the level of its 

local conformation despite having differences in interactions in wild-type and variant 

systems. Indeed, it establishes a hydrophobic bond that reinforces the appearance of the 

PB g (loop) in the variant. On the other hand, the residue Asn732 does not show any 

change of interactions nor of structural conformation. Indeed, the ΔPB is very low (0.1). 

This residue shows the same local conformations in the wild and the variant system 

whereas maintaining high mobility, which remains similar in both. 

Local and Non-Local Structural Impacts due to S926L 

The second GT variant is generated by a substitution of Serine residue at position 

926 by a Leucine. The patterns in Neq variations (comparison to WT) are similar to those 

observed in the H798P variant. Indeed, these variations affect residues 669–671 (loop 5), 

711–713 (loop 8) and 729–731 (loop 9) of the Calf-1 domain, the two modeled loops (1: 

positions 763–775 and 2: 840–873) and residues 916–918 (loop 9) of domain Calf-2. These 

regions are observed to be even more mobile in this variant. The mutated residue does 

not undergo change in terms of Neq (see Figure 9a) and retains local conformational 

stability with a low ΔPB of 0.07 (see Figure 9b) having a high occurrence of PB d (β-strand 

element, see Figure 9c,d). Hence, no difference in local conformations for this residue is 

observed between the wild-type and mutated forms. On the other hand, a hydrophobic 

interaction appears in the variant (see Figure 9h), thus reinforcing the structuring of this 

region into a β strand. The Arginine 917 located ten residues upstream of the mutated 
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residue exhibits a higher ΔPB of 1.5 (max. value 2.0). This is a strong destabilization, 

which is observed particularly by the low frequency of PBs p, o, m, d and c. Hydrogen 

interactions that were not present in the wild-type appear in the variant. These alter the 

local conformation at the residue 917. Appearance of a PB h to the disadvantage of PB d 

can be seen in Figure 9f–e, thus pushing the local structure into coiled conformation. The 

Glycine 714 and Asparagine 732 residues studied in the H798P variant of the Calf-1 

domain were also analyzed in the case of the S926L variant as they again present high Neq 

values in this case. As in the H798P variant, S926 also shows low ΔPB indicating that the 

local structure at the mutated site is conserved. However, increase in flexibility is 

observed at distant sites indicating a compensatory effect to adjust the impact on 

structural mutation sites. 

 

Figure 9. S926L GT variant. (a) Neq of the wild system (S926, color in black) and GT variant (L926, 

color in blue). (b) ΔPB between the two systems. The mutated residue is indicated by a black line, 

and the residue with the strongest ΔPB by arrows. PB occurrence maps are shown around position 

926 and 917 (c) and (f) for the wild-type and (d) and (e) for the variant. (g) Interactions of residue 

S926 (cyan) and (h) of residue L926 (light cyan); in orange, the residues interact in the same way in 
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the wild-type and the variant; in violet, the new interacting residue. (i) Same representation for the 

residue R917 in the wild-type and (j) for the variant. Representation of the Calf-1 and Calf-2 domain 

according to the flexibility measured by values of Neq for (k) wild-type and (l) for the variant, 

moving from the least flexible (thin line, blue) to the most mobile (thick line, red). The most mobile 

parts representing high values of Neq are circled in red. 

Thus, the analysis of the different GT variants in context of Calf-2 shows a more 

complex story than for those analyzed in Calf-1 previously. Indeed, the mutated residues 

are, as for Calf-1, still particularly stable and above all comparable to their WT equivalent. 

Calf-1 showed long-range implications in a quasi-systematic way. However, in Calf-2 

domain, such effects are tenuous but do exist. The variants affected the modeled regions 

and a small loop with varying intensities; however, in the isolated Calf-1 study, these 

effects were quite prominent. This analysis also shows the impact of the variants on the 

Calf-1 domain. Although the impact is very small, the long-range effects of mutations in 

the structure of integrin αIIb are again underlined. 

2.3.4. Dynamics of Thigh and Calf-1 Domains 

In this last part, the regions upstream of the Calf-1 domain were analyzed. Between 

the Thigh and Calf-1 domains is located a short region called “knee”. Being highly flexible, 

this short region acts as a joint and is considered crucial for the opening of the structure 

of the αIIb chain [35] during the hemostasis process. In this region, the crystallographic 

structures reveal the presence of a Ca2+ ion (see Figure S6c). Therefore, Gromos ff was 

used, as Ca2+ was better parameterized in this forcefield. Four systems were used for MD 

simulations (the wild-type and three structural variant systems: D560A, R520W and 

S472N). The analysis of the MD simulations of these systems shows a high stability for 

both for the temperature and the pressure expressed as energies (potential, kinetic and 

total). The only surprise comes from the displacement of the Ca2+ ion out of its initial 

place during some dynamics. 

As per the crystal coordinates, Ca2+ ion binds to the four residues Cys 602, Asp 605, 

Val 607 and Glu 642 (see Figure S6c). Interactions with these four residues were identified 

as “borderline” (weak bonds) or even “outlier” by the web server CheckMyMetal [36]. 

The web server highlights the possibility of binding with water molecules. The residue 

coordinates involved in the interaction with Calcium ion are not all conserved within 11 

simulations (see Figure S6a). The interactions with residue Val 607 are maintained in all 

systems with a high proportion of 84.5% of simulation time. The Asp 605 residue is found 

to be involved with Ca2+ in ~65% of the simulation time. On the other hand, the 

proportion becomes lower for the Glu 642 residue and even lesser for Cys 602 (32% and 

9% respectively; see Figure S6b). These results were found to be consistent with a similar 

study [37,38]. 

The most mobile regions, for the -d-type and the three variants, were identified 

using RMSF (see Figure S7); they corresponded to loops. A correlation of 0.98 exists 

between the RMSF values of the wild-type and each of the three variants. The most 

mobile regions, for the Thigh domain, are located at the residues 480–482 (loop 1), 499–501 

(loop 2), 540–542 (loop 6) and 580–582 (loop 8). For metal–residue interactions located in 

the Calf-1, the most mobile regions were identified in 626–628 (loop 2), 681–683 (loop 6) 

and 716–718 (end of loop 8). The average ΔNeq shows that the local structural mobility is 

slightly enhanced at the Calf-1 domain than at Thigh domain for the D560A variant (0.45 

and 0.56, respectively). Similar values were observed for the simulations of R520W 

variant (Calf-1: 0.42 and Thigh: 0.48). The S472N variant system does not have differences 

in the two domains; the two ΔNeq averages are quite close with 0.4 for the Calf-1 domain 

and 0.35 for the Thigh domain. 

Concerning D560A, the mutated residue is located in a flexible region. ΔPB equals to 

0.8. The main PB is PB p (end of α-helix) for the wild-type and the variant, (60% and 70% 

respectively), i.e., only the less frequent conformations change in the variant system. The 
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substitution of Aspartate by an Alanine results in the loss of an ionic bond. However, this 

does not change the PB profiles from the wild-type system given that the Asp560 is 

located in an already flexible region. Amongst other changes induced by this 

substitution, Glutamate 711 located in Calf-1 loop 8 shows a ΔNeq of 3.59, the highest for 

this system, and is associated with the maximum ΔPB of 0.91. This region is one of the 

most mobile ones counted among the top 5% of the most fluctuating regions in all the 

systems under study. The main PB in the wild-type is PB f (end of β-strand) with a 

proportion of 50%, in the variant; this frequency drops to 20% with an increase in the PB k 

(start of the helix) to 30%. This can be visualized in the variant by the appearance of new 

hydrogen interactions in the variant when compared to WT. 

For the second one, R520W, the mutated residue does not undergo any change in Neq 

compared to the wild-type system; its ΔNeq is 0.18 and has a ΔPB of 0.50. The variant has 

slightly more helical conformation with a proportion of PB m (helical core) that increases 

from 30% in the wild-type system to 50% in the variant. In counterpart, the proportion of 

PB f (after of β strand) decreases from 50% to 40%. The substitution of an Arginine by a 

Tryptophan makes it possible to create hydrophobic and aromatic interactions to 

compensate the loss of both ionic bonds at positions D560 and R520. In the Thigh domain, 

Glutamine 514 in loop 3 shows the highest ΔNeq of 3.81 of this system and is associated 

with the maximum ΔPB of 1.18. This region is mainly formed by an α-helix in the variant 

with a large proportion of PB k (90%) compared to the wild-type (40%). The gain of a 

second hydrogen bond allows the strengthening of the α-helical structure in this region. 

The third variant system contains a polar Serine substituted by polar Asparagine at 

position 472. The variant S472N is not associated to GT, but to the blood group HPA. 

Local conformations at this position are quite similar with majority PBs b and i, resulting 

in a low ΔPB of 0.20. The substitution does not induce any conformational change. 

However, gain of two more hydrogen bonds by Asparagine substitution makes it 

possible to maintain a similar PB profile. Among the distant positions, Glutamate 578 of 

loop 7 (Thigh) shows a maximum ΔPB of 1.28, which should indicate a spike in flexibility. 

However, this residue is found in a naturally flexible region. The majority block is i and is 

present more in the wild-type form (50% vs. 30%). There is a loss of helical structure with 

an increase in the frequencies of PBs f and e (after β-strand) in the variant. The correlation 

between the Neq values of the wild-type form and those of the variants D560A, R520W 

and S472N is 0.93, 0.90 and 0.95 respectively, i.e., there is no significant difference 

between wild-type and variants. 

The three variants do not undergo change in their local conformations compared to 

the wild-type. This study shows that the punctual mutations investigated have little or no 

effect on the structural conformations locally and/or in the immediate environment of the 

impacted sites. On the other hand, the MDs reveal that some regions distant from mutation 

sites may be affected (large increases in Neq). These allosteric phenomena concern all the 

domains studied to date, the Calf-1, Calf-2 and Thigh domains, either alone or together. The 

deformability observed is mainly localized in the loops connecting the β-strands forming 

the core of the immunoglobulin fold. Finally, our study suggests that these allosteric 

mechanisms occur regardless of the clinical context, GT or HPA polymorphisms. 

3. Discussion 

The objective of this study was to look at the effect of amino acid substitutions 

(missense mutations) on the structure of integrin αIIbβ3 in pathological contexts linked to 

Glanzmann thrombasthenia or in fetomaternal alloimmunization following our previous 

research on Calf-1 alone. We have previously shown that the mutations (i) did not change 

the local protein conformations, and (ii) did not change their dynamics whereas (iii) the 

effects were always found far away from these sites displaced to the connecting loops [5]. 

To proceed in a systematic manner, we decided to analyze the potential effect of 

forcefields on the simulated systems. Observation of the dynamics of the Calf-1 domain 

through the prism of the protein blocks showed subtle changes between the two 
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simulations performed using two different forcefields. These differences are small, but 

not negligible, as they mostly affect loops that are highly flexible/deformable. The 

β-sheets, the core of the Calf-1 structure, maintain their conformational stability and do 

not undergo any change in terms of PB distributions. 

Integrin structure is made of a succession of well-described structural domains, 

which can be easily cut by protein peeling approach [39–41]. Hence, different 

combinations of domains from integrin αIIbβ3 have been tested, namely Calf-1, Calf-1 + 

Calf-2 and Thigh + Calf-1. Crystal coordinates for Calf-2 domain have missing regions 

located in the large connecting loops of the immunoglobulin fold. They were completed 

using restraints guided by biophysical expertise and then subjected to MD simulations. 

The dynamics of the completed loops revealed high intrinsic flexibility, but not any 

disorder (as defined by Neq measure [30,31,42]). It is interesting to note that some 

segments are more rigid than others, which underwent large amplitude of 

conformational changes. It also showed that the significant loop flexibility does not affect 

the overall stability of the Calf-1 & Calf-2 structure. 

Located close to the connection of Calf-1 to Calf-2, P741R mutation was analyzed 

again in this work to validate the observations from previous context (isolated Calf-1). 

MD simulations provided similar results with or without the presence of Calf-2 domain, 

thus validating the possibility to use only sub-domains in the analysis of this big complex 

structure. 

The six studied variants do not cause any major conformational modification at the 

sites of the mutated residues and their immediate vicinity. On the other hand, local 

structural differences appear in other places of the domain, as seen in our previous work 

[5,32]. All of the results, after comparing simulated trajectories of wild-type-to-variant 

systems underlined potential structural allosteric mechanisms. In most of the variants, a 

minimal local structural change was observed at the impact site, whereas flexibility 

profiles changed maximally at distant sites. A common observation is that the structural 

impact caused by loss of interactions at the impact site is balanced out by compensatory 

interactions assisted by adjustments in the connecting loops. Thus, loops act as 

compensatory back-up for integrins. This study was carried out with associated domains 

(Calf-1 + Calf-2 and Thigh + Calf-1) for variants of the Thigh and Calf-2 domains, which 

correlates well with the previous results. These variants have subtle-to-no effects on the 

structure at the substitution sites, but induce notable allosteric effects. The variants 

associated with Glanzmann thrombasthenia slightly affect the local structural 

conformations as they are compensated by modifications of nearby molecular 

interactions. Moreover, the largest changes are observed at a distance from the mutated 

sites noted by an increase in the mobility or deformability of the most flexible regions. So, 

it is particularly interesting to note that, even if the RMSF of all the systems have very 

similar profiles, the Neq values of some particular loops are impacted and that helped to 

identify long-distant changes more efficiently. It should be noted that the replicates of the 

different systems were analyzed independently and showed that they were particularly 

similar with both the RMSF and the Neq. 

In conclusion, this new study shows that analyses of variants associated with 

pathologies of integrin αIIbβ3 can be apprehended using molecular dynamics experiments. 

The impact of forcefields or adjacent domains is limited. Additionally, it is surprising to 

observe that some variants have the highest impact on adjacent domains as well, 

underlining the well-connected organization of the integrin’s structure. This makes them 

a potential candidate to study structural allostery and its mechanistic propagation. 

4. Materials and Methods 

4.1. Structural Data 

The Thigh (+knee), Calf-1 and Calf-2 domains of αIIb were extracted from a 2.55Å 

resolution crystal structure of αIIbβ3 integrin (PDB code 3FCS [4]). The Calf-1 is a domain 
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of 141 residues (positions 603–743); it is followed by Calf-2, a domain of 216 residues 

(positions 744–959) and preceded by Thigh (+knee), a domain of 216 residues (positions 

452–602). All missing atoms and missing residues were completed using Modeler 

software v.9.18 [43]. The GT aa substitutions were introduced in the integrin structure by 

in silico mutagenesis using special wizard tool in PyMOL software [20] and the SCWRL 

method [44]. The effects of all mutations were studied exclusively. Calf-1 loop locations 

are Loop 1: 603–612, Loop 2: 620–629, Loop 3: 639–646, Loop 4: 653–57, Loop 5: 663–673, 

Loop 6: 678–683, Loop 7: 691–696, Loop 8: 707–715, and Loop 9: 724–735. Calf-2 loop 

locations are Loop 1: 742–747, Loop 2: 755–757, Loop 3: 761–776 (completed using 

Modeler), Loop 4: 788–795, Loop 5: 805–812, Loop 6: 821–824, Loop 7: 829–884 (completed 

using expert modeling), Loop 8: 893–897, Loop 9: 909–921 and Loop 10: 931–945. 

4.2. Studied Variants 

Six different variants were studied. P741R Calf-1 domain variant studied in this 

paper is involved in GT and has been analyzed in our previous study [5]; it severely 

impaired αIIbβ3 expression (less than 5%). H798P and S926L were located in the Calf-2 

domain, whereas D560A, R250W, and S472N in the Thigh domain. PolyPhen-2 

(Polymorphism Phenotyping v2) [34] was used to predict the possible deleterious effect 

on the expression/function of an amino acid substitution in the structure. 

4.3. Molecular Dynamics 

MD simulations were conducted using GROMACS 5.1.1 software [45] with the 

OPLS-AA ff [46] and Gromos 54a7 ff [47], where applicable. Before starting any 

simulation experiments, each structural variant was energy minimized for 500 steps of 

steepest descent and 500 steps of conjugate gradient optimized by SHAKE algorithm, 

using GROMACS suite. WT and variant forms of Calf-1 alone, Calf-1 + Calf-2 and Thigh + 

Calf-1 were soaked in a rhombic dodecahedral simulation box with TIP3P water 

molecules and neutralized with Cl- ions. The MD protocol was standardized through our 

previous works [5,33]. After 1 nanosecond (nsec) of equilibration (with position restraints 

on the protein), each system was simulated through 11 independent production runs for 

a total of 850 nanoseconds as in [5]. Molecular conformations were saved every 100 

picosecond (psec) for downstream analysis. The first 5 nsec of each MD simulation were 

discarded, as the residues at the extremities could not be taken into calculations. 

Trajectory analyses were conducted with the GROMACS software, in-house Python and 

R scripts. Root mean square deviations (RMSD) and root mean square fluctuations 

(RMSF) were calculated on Cα atoms only. Residue interactions were analyzed using the 

online tool PIC (protein interactions calculator) [48]. A total of 11 new different systems 

were tested for this study (see Figure 2 for summary of the 11 different systems 

simulated). 

4.4. Protein Block Analysis 

Protein blocks (PBs) are a structural alphabet composed of 16 local prototypes [42]. 

Each specific PB is characterized by the φ, ψ dihedral angles of five consecutive residues 

with each PB assignment focused on the central residue. Obtained through an 

unsupervised training approach and performed on a representative non-redundant 

databank, PBs give a reasonable approximation of all local protein 3D structures [49]. PBs 

are very efficient in tasks, such as protein superimpositions [50] and MD analyses [32]. 

They are labeled from a to p; PBs m and d can be roughly described as prototypes for 

α-helix and central β-strand, respectively. PBs a to c primarily represent β-strand N-caps 

and PBs e and f representing β-strand C-caps; PBs a to j are specific to coils; PBs k and l to 

α-helix N-caps whereas PBs n to p to α-helix C-caps. The PB assignment was carried out 

using our PBxplore tool (available at GitHub) [29]. 
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PB assignments were conducted for each residue of the Calf-1 domain and over 

every snapshot extracted from MD simulations. The equivalent number of PBs (Neq) is a 

statistical measurement similar to entropy that represents the average number of PBs for 

a residue at a given position. Neq is calculated as follows [42]: 

16

x 1

exp( ln )x xeqN f f


   (1)

where fx is the probability of PB x. A Neq value of 1 indicates that only 1 type of PB is 

observed, whereas a value of 16 is equivalent to a random distribution. To underline the 

main differences between the wild-type (WT) and a variant for each position, a ΔNeq 

value is computed. ΔNeq is the absolute difference between corresponding Neqs. 

However, a same ΔNeq value can be obtained with different types of blocks in similar 

proportions. To detect a change in PB profile, a ΔPB value was calculated. It corresponds 

to the absolute sum of the differences for each PB between the probabilities of a PB x to be 

present in the WT and the variant forms (x goes from PB a to PB p). ΔPB is calculated as 

follows [5]: 

16
var

x 1

| ( ) |WT
x xPB f f



    (2)

where fWTx and fvarx are the percentages of occurrence of a PB x in, respectively, the WT 

and the variant structures. A value of 0 indicates perfect PBs identity between WT and 

variant, whereas a score of 2 indicates a total difference. 
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