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Abstract: Hypoxia is potentially one of the essential triggers in the pathogenesis of wet age-related 
macular degeneration (wetAMD), characterized by choroidal neovascularization (CNV) which is 
driven by the accumulation of subretinal mononuclear phagocytes (MP) that include monocyte-de-
rived cells. Here we show that systemic hypoxia (10% O2) increased subretinal MP infiltration and 
inhibited inflammation resolution after laser-induced subretinal injury in vivo. Accordingly, hy-
poxic (2% O2) human monocytes (Mo) resisted elimination by RPE cells in co-culture. In Mos from 
hypoxic mice, Thrombospondin 1 mRNA (Thbs1) was most downregulated compared to normoxic 
animals and hypoxia repressed Thbs-1 expression in human monocytes in vitro. Hypoxic ambient 
air inhibited MP clearance during the resolution phase of laser-injury in wildtype animals, but had 
no effect on the exaggerated subretinal MP infiltration observed in normoxic Thbs1−/−-mice. Recom-
binant Thrombospondin 1 protein (TSP-1) completely reversed the pathogenic effect of hypoxia in 
Thbs1−/−-mice, and accelerated inflammation resolution and inhibited CNV in wildtype mice. To-
gether, our results demonstrate that systemic hypoxia disturbs TSP-1-dependent subretinal im-
mune suppression and promotes pathogenic subretinal inflammation and can be therapeutically 
countered by local recombinant TSP-1. 

Keywords: age-related macular degeneration; hypoxia; macrophages; mononuclear phagocytes; 
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1. Introduction 
Age-related macular degeneration (AMD) is characterized by sizeable deposits of 

lipoproteinaceous debris called soft drusen (early AMD), choroidal neovascularisation 
(wet AMD, late form), or by an extending lesion of the retinal pigment epithelium (RPE) 
and photoreceptors (geographic atrophy, GA, late form) [1]. 

A common feature of early and both advanced forms of AMD is their association 
with chronic accumulation of mononuclear phagocytes (MPs) in the subretinal space, 
which is physiologically immunosuppressive and devoid of MPs, at least in part due to 
the presence of immune-suppressive retinal pigment epithelium cells (RPE) [2]. The MP 
infiltrate is composed of displaced resident macrophages (Mφ), such as microglial cells 
(MCs) and choroidal Mφs, and monocyte (Mo)-derived inflammatory Mφs (iMφs) [3]. 
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Functional studies in animal models show that the subretinal accumulation of iMφs play 
a critical role in neovascularization and photoreceptor degeneration that characterize late 
AMD [2]. However, the reasons for the establishment of non-resolving pathogenic inflam-
mation in AMD is not clear, but may be found in the downstream consequences of AMD-
risk factors. 

AMD is a common, complex disease that results from the interplay of age, environ-
mental risk factors and genetic variants [2]. We recently demonstrated that the two main 
genetic AMD-risk variants, CFH Y402H and a haplotype of 10q26, curb TSP-1 activation 
of CD47 that is necessary for homeostatic MP elimination and the resolution of acute in-
flammation in the subretinal space [4,5]. Accordingly, TSP-1 deletion leads to increased 
subretinal inflammation accompanied by increased CNV in laser-injured mice [5–7]. 

Hypoxia, among other contributing mechanisms such as oxidative stress and dys-
functional autophagy, has long been supposed to be an important trigger of AMD [8]. Late 
AMD, in particular wet AMD is preceded by choriocapillary dropout, reduced ocular 
blood flow, and drusen deposits that impede with the oxygen supply from the choroid to 
RPE and photoreceptors [9]. From a systemic point of view, AMD is associated with hy-
pertension, atherosclerosis, cardiovascular disease [10], and emphysema [11] that are all 
associated with systemic hypoxia [12]. Indeed, hypoxia can activate MPs and induce in-
flammatory cytokines such as CCL2, TNFα, IL-1β, and IL-6 [13], all shown to be impli-
cated in subretinal inflammation [3,14–18]. Pre-activation of circulating Mos promoting 
subretinal chronic inflammation could therefore be one of the mechanisms that link sys-
temic hypoxia to AMD. 

Here we show that TSP-1 is the most downregulated transcript in monocytes of mice 
exposed to systemic hypoxia, which strongly reduces the elimination of subretinal MPs. 
Using TSP-1-deficient mice and recombinant TSP-1, we demonstrate that the hypoxia in-
duced inhibition of MP elimination is dependent on downregulation of TSP-1. Im-
portantly, we demonstrate that intravitreal injections of recombinant TSP-1 completely 
reversed the pathogenic effect of hypoxemia, accelerated inflammation resolution, and 
inhibited CNV in vivo. 

2. Material and Methods 

2.1. Laser-Injury Model, Intravitreal Injections, and Hypoxia 
Male C57BL6/J animals (Janvier-labs, Le Genest-Saint-Isle, France), aged 10 to 12 

weeks, were used in this study. Wild type and Thbs1−/− mice were obtained from the Jack-
son laboratories. All mice were either negative or backcrossed to eliminate the Pde6brd1, 
Gnat2cpfl3, and Crb1rd8 mutations. Animals were housed in the animal facility under specific 
pathogen-free condition, in a 12/12 h light/dark (100–500 lux) cycle with water and normal 
diet food available ad libitum. Laser-coagulations were performed with a Vitra Laser 
(Quantel Medical, Coumon -d’Auvergne, France) mounted on a surgical microscope as 
previously described [19]. Briefly, four equidistant impacts (532 nm, 450 mW, 50 ms, and 
250µm) per eye were applied in the mid-periphery. In certain experiments the eyes were 
intravitreally injected 4 and 7 days after photocoagulation using glass capillaries (Eppen-
dorf, Hamburg, Germany) and a microinjector, with either 2 µL of PBS, or recombinant 
human TSP-1 (R&D Systems, Minneapolis, MN, USA, 10µg/mL = 80 nM). The mice were 
sacrificed at the indicated time points and immune-stained RPE/Choroidal flatmounts 
were analyzed. Ambient hypoxia 10%O2/90%N2 was administered using an Oxycycler for 
the indicated times. Control mice breathing normoxic air were housed in the same room 
under identical conditions. For qPCR analyses, mice were exposed to hypoxia for 40 h 
then euthanized and cell sorting was performed immediately after the end of the hypoxic 
challenge as previously described [4]. All experimental procedures were approved by the 
Ministere de l’éducation nationale, de l’enseignement supérieur et de la recherche 
(APAFIS#2636-2015110914346299v2). 
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2.2. Monocyte RPE Co-Cultures 
Monocyte/RPE co-cultures were performed as previously described [16,17]. Briefly, 

primary porcine RPE cells were seeded at a density of 75 000 cells/well in DMEM-FCS20%-
PS1% and cultured for 4 days before use. We previously characterized these primary RPE 
cell cultures, showing that they form tight junctions and phagocytose photoreceptor outer 
segments, stain positive for ZO1, and express retinol dehydrogenase 5, transthyretin, 
transferrin [16,17]. Monocytes were prepared from human blood from healthy volunteers 
after written informed consent (approved by the Direction Générale pour la Recherche et 
l’Innovation of the Ministère de l’Enseignement et de la Recherche (Dossier n°14.007) and 
by the Commission Nationale de l’Informatique et des Libertés (N/Ref.: 
IFP/MKE/AR144088)). Briefly, CD14+ peripheral blood Mos were isolated by negative se-
lection using the EasySep Human Monocyte Enrichment Cocktail (StemCell Technolo-
gies) as previously described [5]. In vitro hypoxia conditions were created using a hypoxia 
incubator chamber (Stemcell technologies, Saint Egrève, France) filled with 2% O2, 5%CO2, 
and 93% N2, and de-pressurized after 1 h of culture (hypoxic conditions) and compared 
to standard normoxic cell culture conditions (5%CO2, 19.9%O2, 75.1%N2). RPE cells were 
serum-starved for 24 h prior to co-culture with hMos (100 000 cells/well) under normoxic 
or hypoxic conditions for 24 h. In some experiments each cell type was pre-incubated for 
24 h in normoxic or hypoxic conditions for 24 h followed by 24 h normoxic co-culture. 
Ultra-low adherence surface 96-well culture plates (Corning, Amsterdam, Netherlands) 
were used throughout to permit Mo transfer after 24 h of pre-incubation by gently pipet-
ting them off the low adherence culture plates. After culture, the plates were fixed in 4% 
PFA and stained with goat anti-human OTX2 (R&D, 1/500) (specific of RPE cells) and rab-
bit anti-human hematopoietic transcription factor PU-1, 1/200 (specific of mononuclear 
phagocytes) and nuclei were counterstained with Hoechst (1/1000, Sigma-Aldrich, Saint-
Quentin-Fallavier, France) as previously described [16,17]. Twenty-five fields per well 
were analyzed and recorded using the Arrayscan software (HCS iDev Cell Analysis Soft-
ware, Thermo Fisher Scientific, Les Ulis, France). 

2.3. Gene Expression Analysis 
For whole transcriptome analysis, Ly6Chigh bone-marrow monocytes sorted from 

normoxic and 40 h hypoxic mice were prepared. After cell lysis, RNA was extracted using 
the Qiagen RNA Mini Kit with RNase (ribonuclease)–free DNase (deoxyribonuclease) I 
digestion. RNA quality and quantity were evaluated using BioAnalyzer 2100 with the 
RNA 6000 pico Kit (Agilent Technologies, Leuven, Belgique). RNA sequencing libraries 
were constructed from 200 ng of total RNA using a modified TruSeq RNA Sample prepa-
ration kit protocol. Pass-filtered reads (using Trimmomatic) were mapped using HiSAT2 
and aligned to human reference genome GRCh38.95 [20]. The count table of the gene fea-
tures was obtained using HTSeq. Normalization and differential expression analysis val-
ues were computed with DESeq2 [21]. TPM were determined using Libinorm using htseq 
mode [22]. Protein coding mRNAs with greater than 100 TPM in the normoxic group and 
a false discovery rate <0.05 were selected. For reverse transcription and real-time quanti-
tative polymerase chain reaction (RT-qPCR) total RNA from human and mouse Mos, 
mouse MCs, and eye-cup were extracted and PCR was performed using StepOne Plus 
real-time PCR system (Applied Biosystems) as previously described [4]. Results were nor-
malized using house-keeping gene RPS26. PCRs were performed in 45 cycles of 15 s at 95 
°C, 45 s at 60 °C. Primers for RT-PCR were purchased from IDT technology (primer se-
quences at request).  
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2.4. Immunohistochemistry, CNV and MPs Quantification  
RPE and retinal flatmounts were stained and quantified as previously described [3] 

using polyclonal rabbit anti- IBA-1 (Wako, Neuss, Germany) and goat anti-mouse ColIV 
(Biorad, Mitry-Mori, France; 1/100) and appropriate secondary antibodies and counter-
stained with Hoechst if indicated. Preparations were observed with a fluorescence micro-
scope (DM5500, Leica, Nanterre, France).  

2.5. Statistical Analyses 
Graph Pad Prism 7 (GraphPad Software) was used for data analysis and graphic rep-

resentation. All values are reported as mean  ±  SEM. Statistical analyses were performed 
by Mann–Whitney test for comparison of mean values. The n and p-values are indicated 
in the figure legends. 

3. Results 
3.1. Hypoxia Increases the Infiltration of Subretinal MPs after Laser-Injury 

The subretinal space can be visualized by flat-mount preparations and is physiolog-
ically avascular and devoid of IBA1+MPs. Laser-injury induces the infiltration of sub-
retinal IBA1+MPs, with a maximal recruitment three to four days after the injury, followed 
by an inflammation resolution phase characterized by dwindling MP numbers and cho-
roidal neovascularization (CNV) formation [14]. 50–70% of the lesional MPs are derived 
from circulating Mos and the remainder from resident macrophages (microglial cells and 
choroidal macrophages) [5,23]. Depletion of circulating Mo [5,23,24] and inhibition of Mo-
recruitment [25–29] very significantly inhibits CNV formation. Importantly, the infiltrat-
ing MPs are observed within the injured tissue in close contact with the forming CNV, but 
also in the subretinal space, adjacent to physiologically immunosuppressive RPE cells, 
that are potent inducers of MP death [4,14–16]. 

To evaluate the influence of hypoxia on subretinal neuro-inflammation we exposed 
laser-injured mice to 10% or 20.9% of ambient oxygen. As young, otherwise healthy, mice 
quickly adapt to hypoxia, increasing their hematocrit [30] we either exposed the mice dur-
ing the early phase (d0–4) or during the inflammation resolution phase, when MP elimi-
nation exceeds the recruitment rate (d4–10; experimental design Figure 1A). Quantifica-
tion on RPE/choroidal flatmounts of subretinal IBA-1+ (green) MPs on Collagen-4+ (Coll4+, 
red) CNV and on the surrounding RPE (0–500 µm from the lesion) revealed that hypoxia 
did not significantly alter the density of subretinal MPs in the RPE-denuded lesions, di-
rectly adjacent to the endothelial cells of the CNV. However, it significantly increased the 
accumulation of IBA1+MPs that accumulate on the immunosuppressive RPE at d4 (190% 
increase) and induced a continued accumulation of MPs from d4 to d10, when the MP 
accumulation started to resolve in normoxic mice (460% increase at day 10; Figure 1B–D). 
Additionally, the size of Coll4+CNV was significantly increased at d10 (Figure 1E). 

To test whether hypoxia altered RPE-induced Mos elimination in vitro, we incubated 
equal numbers of peripheral blood Mos with primary RPE cells for 24 h under normoxic 
(20.9%O2) or hypoxic (2%O2) conditions and stained the co-culture with an anti-PU1- and 
anti OTX2-antibodies that allows the differentiation of PU1+OTX2neg Mo and 
OTX2+PU1negRPE cells in this cell culture system. Automated quantification of PU1+Mos 
and OTX2+RPE cells revealed that hypoxic conditions significantly increased the number 
of surviving Mos after 24 h of co-culture, but had no effect on the number of RPE cells 
(Figure 1E). Interestingly, 24 h hypoxic pre-incubation of Mo (Figure 1F), but not RPE cells 
(Figure 1G), followed by 24 h normoxic co-culture, similarly increased the number of re-
maining PU1+Mos.  

Taken together, our experiments show that systemic hypoxia, induced by reduced 
ambient air oxygen, is sufficient to significantly increase subretinal MP accumulation and 
CNV after laser-injury. Interestingly, these differences were observed in the RPE-adjacent 
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MP population surrounding the injury only and were more pronounced when the hy-
poxia was administered during the inflammation resolution phase. These results sug-
gested that hypoxia interferes with the RPE-induced MP elimination. Our in vitro results 
show that hypoxia did not diminish immunosuppressive signals from the RPE but signif-
icantly increased Mos resistance to RPE-induced elimination. 

 
Figure 1. Hypoxia increases Mo resistance to RPE-induced elimination. (A) schematic representa-
tion of the experiments: mice were laser injured and either exposed to 10% O2 hypoxia from d0–d4 
and evaluated for the presence of subretinal IBA1+MPs at d4 or exposed to 10% O2 hypoxia from 
d4–d10 and evaluated for MPs and the extent of Collagen 4+CNV at d10. Mice raised in normal 
20.9% ambient O2 served as controls. (B) Representative images of Collagen 4 (Coll4; red) and IBA-
1 (green) immuno- stained RPE/choroid flatmounts of 10 days post laser-injured normoxic and hy-
poxic (d4–d10) mice. (C,D) Quantification of the density of subretinal IBA-1+ MPs per impact: (B) 
directly within the RPE-denuded lesion and (C) counted at a distance of 0–500µm to Coll4+CNV on 
the apical side of the RPE surrounding the lesion at d4 and d10 of normoxic and hypoxia-exposed 
2-month-old mice (room air white columns, 10% O2 hypoxia d0-d4 orange columns; 10% O2 hypoxia 
d4–d10 blue columns) (n = 9–10 eyes; $ p = 0.0503; * p < 0.0001 Mann–Whitney versus their normoxic 
controls). (E) Quantification of the Coll4+CNV surface at d10 of normoxia and hypoxia-exposed (d4–
d10) laser-injured mice (n = 9–10 eyes; * p = 0.0060 Mann–Whitney versus normoxic control). (F) 
Representative pictures of PU-1 OTX-2 co-stained co-cultures of PU1+human monocytes (green) and 
OTX-2+RPE cells (red) under normoxic-(20%O2; white columns) and hypoxic-(2%O2; black columns) 
conditions and their automated quantifications after 24 h co-culture (n = 5 wells; * p = 0.0079 Mann–
Whitney versus the normoxic condition), (G) quantifications of PU1+human monocytes after 24 h of 
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hypoxic (black column) or normoxic (white column) pre-incubation of Mo followed by 24 h of 
Mo/RPE coculture (n = 5 wells; * p = 0.0079 Mann–Whitney versus the normoxic condition) (H) au-
tomated quantifications of PU1+human monocytes after 24 h of hypoxic (black column) or normoxic 
(white column) pre-incubation of RPE followed by 24 h of Mo/RPE coculture. The in vivo results 
presented in (B–E) summarize two independently carried out experiments, the in vitro experiments 
(F–H) were repeated a minimum of five times and gave similar results. All values are reported as 
mean  ±  SEM. IBA-1: ionized calcium adapter molecule 1; Coll4: Collagen 4; PU1: hematopoietic 
transcription factor; OTX-2: Orthodenticle Homeobox 2; scale bar A = 400 µm, E = 500 µm. 

3.2. Hypoxia Decreases Thbs1-Expression in Mos 
To identify potential hypoxia-induced downstream mediators of increased Mos re-

sistance to RPE-induced elimination we sequenced the transcriptome of FACS sorted 
CD45+CD11B+Ly6GnegLy6Chigh Mos from bone marrows of 3-month-old mice that were 
raised in room-air or had been exposed to 10% ambient O2 for 40 h (Figure 2A). A 40 h 
exposure time was chosen for this experiment as normal mice quickly adapt to hypoxic 
conditions and to detect differences that occur prior to the inflammatory changes ob-
served in Figure 1. In the transcripts that are robustly expressed in normoxic Mo (>100 
transcripts per million), our analysis identified 18 transcripts that were more than two-
fold overexpressed and 19 transcripts that were more than two-fold underexpressed in 
Mos from hypoxic mice compared to Mos from room air raised mice. 

 
Figure 2. Hypoxia decreases Thbs1- expression in Mos. (A) Scatter dot blot of the protein coding 
mRNAs of FACS sorted CD45+CD11B+Ly6GnegLy6Chigh Mos from bone marrows of five 3-month-old 
mice that were raised in room-air or five age-matched mice that had been exposed to 10% ambient 
O2 for 40 h. Only transcripts with a TPM greater than 100 in the normoxia group and a false discov-
ery rate (FDR) smaller than 0.05 are depicted. The transcripts are plotted according to their expres-
sion levels (y-axis) and the log2-fold induction by hypoxia (x axis). The identified 18 transcripts that 
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were more than two-fold overexpressed and the 19 transcripts that were more than two-fold under-
expressed in Mos from hypoxic mice compared to Mos from room air raised mice are indicated. (B) 
Quantitative RT-PCR of Retina/RPE/Choroid, magnet sorted retinal microglial cells (MC), and mag-
net sorted bone marrow monocytes (BM-Mo) from room-air-(white columns) and 40 h hypoxia- 
(10%O2; black columns) exposed mice. (n = 5 mice/group * p = 0.0032; Mann–Whitney versus the 
normoxic control). (C) Quantitative RT-PCR of human Mo exposed to normoxic culture conditions 
(white columns) or the indicated hours of 2%O2 (black columns) (n = 5 wells/group, representative 
of two independent experiments, * p = 0.0079 (3 h) and 0.0159 (12 h); Mann–Whitney versus the 
normoxic control). All values are reported as mean  ±  SEM. Thbs1: Thrombospondin 1. 

Interestingly, the most downregulated gene in Ly6highMos from hypoxic animals was 
thrombospondin 1 (Thbs-1, TSP-1) that we previously showed is necessary for homeo-
static MP elimination and the resolution of acute inflammation in the subretinal space 
[4,5]. Quantification by RT-PCR of Thbs1-mRNA on extracts from retina/RPE/choroid, 
magnet-sorted retinal MCs, and magnet-sorted bone-marrow Mos from room-air control 
animals and mice exposed for 40 h to 10%O2 hypoxia revealed that the hypoxic conditions 
did not alter the expression in the chorioretinal tissue or resident MCs, but confirmed the 
significant downregulation of Thbs1- transcription in Ly6highMos (Figure 2B). Addition-
ally, the strong induction of THBS1 in freshly (3 h and 12 h) cultured human Mos (hMos) 
was significantly blunted when the early differentiating hMos were cultured in 2%O2 (Fig-
ure 2C). 

These results suggest that Mo exposed to hypoxia in vitro and from hypoxic animals 
(Figure 1) might have a reduced capacity to activate their CD47 receptor, due to decreased 
TSP-1-expression, necessary for their RPE-induced elimination from the subretinal space. 

3.3. TSP-1 is Necessary for Hypoxia-Induced Inhibition of Inflammation Resolution after Laser-
Injury 

To evaluate whether TSP-1 is required for hypoxia to impair inflammation resolution 
we submitted wildtype-, and Thbs1−/−- mice to laser injury and exposed the mice to ambi-
ent hypoxia during inflammation resolution (d4–d10) or kept them in room air. In room 
air raised mice, the quantification of IBA-1+ (green) MPs (counted on the RPE at a distance 
of 0–500µm to Coll4+CNV, red staining) on RPE/choroidal flatmounts at d10, revealed a 
significantly greater number of subretinal MPs in Thbs1−/−-mice (Figure 3A) in accordance 
with their role in subretinal MP elimination we previously described in laser-injury [5], 
and in subretinal adoptive transfer experiments, after a light challenge and with age [4]. 
As shown in Figure 1, hypoxia during inflammation resolution significantly increased the 
number of subretinal MPs in wildtype-mice at d10, to numbers observed in Thbs1−/−-mice 
kept in room-air. However, hypoxia failed to further increase the elevated levels in 
Thbs1−/−-mice, showing the necessity of the presence of TSP-1 for systemic hypoxia to im-
pede inflammation resolution in our experimental conditions. In terms of Coll4+CNV for-
mation in room-air exposed animals, we observed increased CNV formation in Thbs1−/−-
mice compared to wildtype mice as previously described [5,7], but again failed to alter the 
extent of CNV in Thbs1−/−-mice (Figure 3B). 

Next, we next injected wildtype mice intra-vitreally four days after laser-injury with 
PBS or recombinant TSP-1 (rTSP-1), and exposed them to hypoxia until sacrifice at d10. 
Quantification of IBA-1+ (green) MPs surrounding the lesion on RPE/choroidal flatmounts 
at d10, revealed that the local injection of rTSP-1 completely reversed the effect of hypoxia 
during the inflammation resolution phase (Figure 3C). Concomitantly, the intravitreal ad-
ministration of rTSP-1 significantly reduced the exaggerated CNV in this condition (Fig-
ure 3D). 

These experiments strongly suggest that the promotion of pathogenic subretinal in-
flammation by systemic hypoxia is at least in part mediated by the downregulation of 
TSP-1, which inhibits subretinal MP elimination. They also demonstrate that the pro-in-
flammatory effect of systemic hypoxia can be reversed pharmacologically by local drug 
administration. 
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Figure 3. TSP-1 is necessary for hypoxia-induced inhibition of inflammation resolution after laser-
injury. (A) Representative images of Collagen 4 (Coll4; red) and IBA-1 (green) immuno-stained 
RPE/choroid flatmounts of 10 day post laser-injured 2-month-old mice of the indicated strains, 
raised in 20.9% ambient O2 (normoxia, white columns) or exposed to 10% O2 hypoxia (d4–d10, blue 
columns) and quantification of subretinal IBA-1+MPs per impact on the RPE counted at a distance 
of 0–500µm to Coll4+CNV of the indicated strains (n = 9–10 eyes; * p = 0.0002; † p = 0.0114; Mann–
Whitney versus the normoxic C57BL6/J mice, hypoxic Thbs1−/− mice were not significantly different 
from hypoxic C57BL6/J mice). (B) Quantification of the Coll4+CNV surface at d10 of normoxic and 
hypoxia-exposed (d4–d10) laser-injured mice of the indicated strains (n = 9–10 eyes; * p < 0.0001; † p 
= 0.0114; Mann–Whitney versus the normoxic C57BL6/J mice). (C) Representative images of Coll4 
(red) and IBA-1 (green) immuno- stained RPE/choroid flatmounts of 10 day post laser-injured, 2 
month-old, wildtype mice exposed to 10% O2 hypoxia (d4–d10) that were intravitreally injected at 
d4 and d7 with 2µL of PBS, or 2µL of PBS containing recombinant Thrombospondin 1 protein (TSP-
1, 10µg/mL) and the quantification of subretinal IBA-1+MPs per impact on the RPE counted at a 
distance of 0–500µm to Coll4+CNV at d10 (n = 9–10 eyes; * p = 0.0001; versus the hypoxic PBS-treated 
mice). (D) CNV surface at d10 of the treated, hypoxia-exposed (d4–d10), laser-injured mice (n = 9–
10 eyes; * p = 0.00143; Mann–Whitney versus the hypoxic PBS-treated mice). All values are reported 
as mean  ±  SEM. PBS: Phosphate buffered saline; rTSP-1: Recombinant thrombospondin 1; scale bar 
= 400µm. 

4. Discussion 
There are many reasons to suspect that local hypoxia plays a role in the pathogenesis 

of AMD: drusen and pseudo-drusen deposits increase the distance of the choriocapillaries 
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to the photoreceptors, the choriocapillary blood flow is reduced in intermediate and late 
AMD, and CNV is preceded by choriocapillary dropout [9]. Intriguingly, there might also 
be a role for systemic hypoxia as AMD is associated with hypertension, atherosclerosis 
and cardiovascular disease [10] that are all associated with systemic hypoxia [12]. Hypoxic 
pre-activation of circulating Mos [13] could thereby promote subretinal chronic inflam-
mation and AMD. We here show that hypoxic ambient air (10% O2) was sufficient to in-
crease the infiltration induced by laser injury in vivo. Experimental mice were exposed to 
not more than six days of hypoxia in either the “recruitment”- or “resolution”-phase, as 
our preliminary data showed that longer-term exposition to 10% ambient O2, air had only 
marginal effects on subretinal inflammation and CNV likely because these young, healthy 
mice adapt to experimental hypoxia by erythrocytosis [30] similar to altitude adaptation. 
Interestingly, hypoxia increased the subretinal MP population that accumulates in the sur-
rounding of the injury, in direct contact with the immune-suppressive RPE, but not in the 
number of MPs directly adjacent to the endothelial cells of the CNV. Hypoxic exposure 
following the peak infiltration at d4 when inflammation resolution occurs in room-air, 
completely prevented the decrease of MP numbers and let to a further increase of the 
lesion-surrounding MPs at d10 that was accompanied by more sizeable CNV formation 
(Figure 1). These results suggested that RPE-induced MP elimination might be affected 
during hypoxia. We previously showed that MPs are quickly eliminated by the RPE in 
adoptive transfer experiments of Mo and MCs to the subretinal space and in Mo-RPE co-
cultures in vitro, and that their activation, due to Cx3cr1-deficiency, exogenous APOE, 
HTRA1, or LPS, significantly increased their resistance to RPE-induced death [4,5,15,16]. 
Similarly, we here show that hypoxia significantly reduced RPE-induced human Mo elim-
ination in co-culture in vitro and that this effect was due to an effect of hypoxia on Mos 
rather than the RPE (Figure 1).  

Hypoxia can activate macrophages via the transcription factors hypoxia-inducible 
factor 1α and 2α (HIF-1α, HIF-2α), NF-κB and AP-1 that is formed by c-Jun and c-Fos [31–
33]. Intriguingly, the regimen also led to a significant decrease in Thbs1- transcripts in Mo 
(Figure 2). These alterations might be due to c-jun, which is increased by hypoxia [34] and 
represses Thbs1-tanscription [35]. 

We recently demonstrated that TSP-1 activation of CD47 sensitizes infiltrating sub-
retinal MPs to RPE induced death and elimination [4,5]. To test whether the hypoxia in-
duced deregulation of TSP-1 could be responsible for the inhibition of the elimination of 
MPs in contact with the RPE we first compared post-injury inflammation resolution in 
normoxic and hypoxic Thbs1−/−-mice to wildtype animals. At d10 room air raised Thbs1−/−-
mice, revealed a significantly greater number of subretinal MPs in accordance with its role 
in subretinal MP elimination others and we previously described [4–6] (Figure 3). The 
increased inflammation in Thbs1−/−-mice was accompanied by increased CNV corroborat-
ing previous results [5–7]. Contrary to wildtype mice, hypoxic conditions failed to alter 
subretinal MP infiltration or CNV in Thbs1−/−- mice, showing that it is strictly necessary 
for the pathogenic effect of systemic hypoxia. Indeed, when we locally replaced TSP-1 in 
laser-injured mice, we were able to prevent the exaggerated neuro-inflammation and ne-
ovascularization induced by the systemic hypoxia (Figure 3).  

In our experiments we exposed the mice to relatively short periods (4 to 6 days) of 
constant 10% O2 hypoxia. This experimental design allowed us to apply hypoxia sepa-
rately to the “recruitment”- or “resolution”-phase. Ten percent O2 constant hypoxia cor-
responds to the O2 partial pressure on Kilimanjaro (5895 m, 05.01.2021: https://hypox-
ico.com/altitude-to-oxygen-chart/) that tourists frequently climb without oxygen supple-
mentation, and can therefore be considered severe, but not extreme. Interestingly, a recent 
analysis of a cohort of 67 786 sleep apnea syndrome (SAS) patients, has shown a strong 
association of chronic systemic intermittent hypoxemia that characterizes this condition, 
with wet AMD [36]. Although chronic intermittent hypoxia differs significantly from the 
chronic hypoxia in emphysema or our experimental conditions, it is interesting to note 
that SAS patients also display reduced serum TSP-1 levels [37] and we observed decreased 
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TSP-1 transcription under hypoxic conditions in our experiments. Future studies using 
intermittent hypoxia and chronic hypoxia models are needed to determine similarities 
and differences between the two and also help to understand whether other AMD-risk 
factors such as age or genetic predispositions impede the adaptation to chronic hypoxia 
that we observed in young mice and which might prevent AMD in younger patients with 
chronic hypoxia. 

Taken together, our study shows that systemic hypoxia leads to the activation of 
monocytes, the deregulation of TSP-1 expression and ensuing increased subretinal inflam-
mation and production of pathogenic cytokines. Our study provides rationale for the im-
plication of hypoxia and in particular systemic hypoxia in neuro-inflammation in AMD, 
and opens avenues toward therapies inhibiting pathogenic chronic inflammation in late 
AMD. Most importantly, our study shows that local TSP-1 injection can efficiently counter 
the effect of systemic hypoxia and inhibit pathogenic chronic inflammation in late AMD. 
A similar approach might also be beneficial in other inflammatory degenerative diseases 
that are associated with chronic systemic hypoxia, such as atherosclerosis [38] or Alz-
heimer’s disease [39]. 
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