
Citation: Awida, Z.; Hiram-Bab, S.;

Bachar, A.; Saed, H.; Zyc, D.;

Gorodov, A.; Ben-Califa, N.; Omari,

S.; Omar, J.; Younis, L.; et al.

Erythropoietin Receptor (EPOR)

Signaling in the Osteoclast Lineage

Contributes to EPO-Induced Bone

Loss in Mice. Int. J. Mol. Sci. 2022, 23,

12051. https://doi.org/10.3390/

ijms231912051

Academic Editor: Daniel Arcos

Received: 14 August 2022

Accepted: 3 October 2022

Published: 10 October 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

 International Journal of 

Molecular Sciences

Article

Erythropoietin Receptor (EPOR) Signaling in the Osteoclast
Lineage Contributes to EPO-Induced Bone Loss in Mice
Zamzam Awida 1, Sahar Hiram-Bab 2, Almog Bachar 1, Hussam Saed 1, Dan Zyc 2, Anton Gorodov 1,
Nathalie Ben-Califa 1, Sewar Omari 1, Jana Omar 1, Liana Younis 2, Jennifer Ana Iden 2, Liad Graniewitz
Visacovsky 1, Ida Gluzman 2, Tamar Liron 2, Bitya Raphael-Mizrahi 2, Albert Kolomansky 1,3, Martina Rauner 4 ,
Ben Wielockx 5 , Yankel Gabet 2,*,† and Drorit Neumann 1,*,†

1 Department of Cell and Developmental Biology, Sackler Faculty of Medicine, Tel Aviv University,
Tel Aviv 6997801, Israel

2 Department of Anatomy and Anthropology, Sackler Faculty of Medicine, Tel Aviv University,
Tel Aviv 6997801, Israel

3 Department of Medicine A, Tel Aviv Sourasky Medical Center, Sackler Faculty of Medicine, Tel Aviv University,
Tel Aviv 6423906, Israel

4 Department of Medicine III & Center for Healthy Aging, Technische Universität Dresden,
01307 Dresden, Germany

5 Institute for Clinical Chemistry and Laboratory Medicine, Technische Universität Dresden,
01307 Dresden, Germany

* Correspondence: yankel@tau.ac.il (Y.G.); histo6@tauex.tau.ac.il (D.N.); Tel.: +972-3-6407684 (Y.G.);
+972-3-6407256 (D.N.)

† These authors contributed equally to this work.

Abstract: Erythropoietin (EPO) is a pleiotropic cytokine that classically drives erythropoiesis but
can also induce bone loss by decreasing bone formation and increasing resorption. Deletion of the
EPO receptor (EPOR) on osteoblasts or B cells partially mitigates the skeletal effects of EPO, thereby
implicating a contribution by EPOR on other cell lineages. This study was designed to define the role
of monocyte EPOR in EPO-mediated bone loss, by using two mouse lines with conditional deletion
of EPOR in the monocytic lineage. Low-dose EPO attenuated the reduction in bone volume (BV/TV)
in Cx3cr1Cre EPORf/f female mice (27.05%) compared to controls (39.26%), but the difference was not
statistically significant. To validate these findings, we increased the EPO dose in LysMCre model mice,
a model more commonly used to target preosteoclasts. There was a significant reduction in both the
increase in the proportion of bone marrow preosteoclasts (CD115+) observed following high-dose
EPO administration and the resulting bone loss in LysMCre EPORf/f female mice (44.46% reduction
in BV/TV) as compared to controls (77.28%), without interference with the erythropoietic activity.
Our data suggest that EPOR in the monocytic lineage is at least partially responsible for driving the
effect of EPO on bone mass.

Keywords: erythropoietin (EPO); osteoclasts; erythropoietin receptor (EPOR); bone; CD115

1. Introduction

The hormone erythropoietin (EPO) is produced predominantly by the fetal liver and
adult kidney and is then released to the circulation to regulate red blood cell production [1].
EPO binding to the EPO receptor (EPOR) expressed on erythroid progenitors stimulates
their survival, proliferation, and differentiation [2]. Deletion of EPO or EPOR in mice
results in lethal embryonic anemia [1,3].

Clinically, recombinant human EPO (rHuEPO) is widely used to treat anemia in pa-
tients with advanced chronic kidney disease or that induced by cancer and chemotherapy,
particularly in cases of multiple myeloma (MM) and myelodysplastic syndromes (MDS) [4–7].

EPOR has been detected on a wide variety of non-hematopoietic cells, such as neu-
rons [8–10]; endothelial cells [11,12]; skeletal muscle cells [13,14]; various immune cells,
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including macrophages and dendritic cells [15]; adipocytes [16]; stromal cells [17]; preosteo-
clasts [18]; and osteoblasts [18–23]. This suggests that EPO activates EPOR in a variety of
settings to elicit diverse biological responses that are unrelated to erythropoiesis.

The interaction between EPO and the skeletal system, and specifically with bone, has
attracted special attention, since we and others have shown that high EPO levels in mice
(either from endogenous overexpression or exogenous administration) lead to massive
bone loss [17,18,21,22,24–26]. Accordingly, there are recent reports that high EPO levels are
linked to reduced bone mass in humans [27–30]. Of note, the effects of EPO on bone are
context- and dose-dependent [26,31], and, under certain conditions, EPO can also increase
bone mass [32].

Bone remodeling is a consequence of the coordinated activities of monocyte-derived
multinucleated osteoclasts, which mediate bone resorption, and mesenchymal stem cell
(MSC)-derived osteoblasts, which mediate bone formation [33–35]. Whereas the osteoclast
lineage directs inflammatory processes and bone resorption, the mesenchymal lineage is
responsible for bone regeneration and immune modulation. Coupling factors are involved
in this process, and some are osteoclast derived factors, including bone morphogenetic
proteins (BMPs), Wnt10b, ephrinB2, and semaphorin-4D (sema4D), and some are osteoblast-
derived, such as the receptor activator of nuclear factor kappa-B ligand (RANKL), osteopro-
tegerin (OPG), and macrophage colony stimulating factor (M-CSF) [36]. The role of MSCs
within the bone marrow is not limited to their function as the progenitors of osteoblasts, as
they also secrete biologically active molecules that stimulate tissue repair and modulate
local immune response in a paracrine manner [37]. Among these factors, extracellular
vesicles, and particularly the exosomes, have been reported to be therapeutically efficacious
in bone regeneration [38,39].

We and others have previously demonstrated that EPO-induced bone loss in mice
is mediated via action on osteoblasts [19,21,22] and B cells [40] in the bone marrow (BM)
niche. However, the ablation of EPOR in these cell lineages did not completely abrogate the
skeletal effect of EPO administration, suggesting the involvement of EPOR on additional
cells. Recent results from our lab indicate that both high and physiologically relevant
doses of EPO induce osteoclast differentiation in vitro by direct signaling through EPOR on
osteoclast precursors [18,41,42]. This effect can be blocked by a specific non-erythropoietic
EPO analog [42]. However, the question of whether EPOR on preosteoclasts directly
contributes to EPO-driven bone loss in vivo has not yet been resolved.

This study was designed to assess the physiological and therapeutical roles of pre-
osteoclast EPOR in the EPO-mediated bone resorption. For this purpose, we utilized the
Cre/LoxP system to generate two separate mouse lines with non-overlapping off-target
sites of conditional EPOR knockout in the monocyte/macrophage lineage. One model is
based on the LysMCre construct, which targets the myeloid lineage, including macrophages
and preosteoclasts, and is a well-established model for specific recombination starting in
early osteoclast progenitors [43–45]. The second model uses the Cx3cr1Cre construct, which is
more specific to macrophages but is less commonly used to study osteoclast biology [46–49].

Herein, we present data suggesting that EPOR signaling in preosteoclasts contributes
at least in part, to the observed EPO-mediated bone loss.

2. Results

2.1. The Skeletal Effect of EPOR Deletion in the Monocytic Lineage Using Cx3cr1Cre

We have generated a murine model of conditional EPOR knockout in the monocytic
lineage, wherein the Cre-recombinase is driven by the Cx3cr1 promoter (Cx3cr1Cre EPORf/f).
In a previous study, Cx3cr1-deficient mice displayed slight but significant increases in
trabecular and cortical thickness and reduced numbers of osteoclasts compared to wild-
type mice [50]. In line with this report, herein, we also detected a slight increase in
trabecular bone parameters in Cx3cr1Cre females (Figure 1a); although, possibly due to
the small sample size, the difference did not reach statistical significance. Consistent with
this bone phenotype, ex vivo osteoclastogenesis was also significantly reduced (~2.9 fold)
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in the Cx3cr1Cre compared to the EPORf/f mice (Figure 1b). Importantly, to exclude the
possibility that any of the skeletal phenotypes observed are due to the expression of the
Cx3cr1Cre transgene rather than DNA recombination in the flox EPOR, we used Cx3cr1Cre

animals as the control group for the Cx3cr1Cre EPORf/f mice, as previously reported for
other Cre transgenic mice [51,52].
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ysis of the distal femoral metaphysis of 11-week old female transgenic mice carrying a conditional 

Figure 1. Monocyte-specific EPOR knockout has no effect on trabecular bone mass. (a) µCT
analysis of the distal femoral metaphysis of 11-week old female transgenic mice carrying a con-
ditional knockout of EPOR in the monocytic lineage (Cx3cr1CreEPORf/f) as compared to EPORf/f

and Cx3cr1Cre controls. n = 3 in each group. Trabecular bone volume/total volume (BV/TV, %);
trabecular number (Tb.N, mm−1); trabecular thickness (Tb.Th, mm); trabecular separation (Tb.Sp,
mm). (b) Total area of the multinucleated TRAP+ osteoclasts grown with M-CSF and RANKL in vitro
from bone-marrow-derived macrophages isolated from female Cx3cr1CreEPORf/f and their controls.
Representative images acquired at ×2 magnification presented in the right panel. Cells were pooled
from two mice per group, and eight replicates were prepared from each group. ****, p < 0.0001 versus
EPORf/f. All data are mean ± SEM. Data were analyzed by 1-way ANOVA.

The results revealed that EPOR deletion in the monocytic lineage is unlikely to affect
the trabecular bone parameters or osteoclastogenesis in female mice (Figure 1a,b).

2.2. Confirmation of Conditional EPOR Deletion in the Monocytic Lineage

To validate the Cx3cr1Cre EPORf/f model, bone marrow (BM)-derived CD115+ cells
were isolated from 12-week-old male and female Cx3cr1Cre EPORf/f mice and the appropri-
ate controls, using a CD115 microbead kit, and the cells were then probed for the expression
of EPOR (Figure 2a). In addition, isolated BM monocytes were differentiated into bone-
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marrow-derived macrophages (BMDM), which were then probed for the expression of
EPOR (Figure 2b,c). The results presented in Figure 2a,c confirm a significant knockout of
EPOR in the Cx3cr1Cre EPORf/f mice versus controls, with a 5- and 3.5-fold reduction in
EPOR mRNA levels in CD115+ cells and BMDM, respectively.
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Figure 2. Confirmation of the conditional knockout of EPOR expression in the monocytic lineage
in the Cx3cr1CreEPORf/f mice. (a) EPOR expression as measured by RT-qPCR in freshly isolated bone-
marrow-derived CD115+ cells from Cx3cr1CreEPORf/f mice and their controls. Expression of EPOR
was normalized to HPRT. n = 5–6 mice in each group. ** p < 0.01 vs. Cx3cr1Cre. (b) Flow cytometry
analysis of freshly isolated BM monocytes after 4 days culture with M-CSF to generate BMDM in vitro.
(c) EPOR expression as measured by RT-qPCR in BMDM as in (b) from Cx3cr1CreEPORf/f mice and
their controls. Expression of EPOR was normalized to HPRT. n = 4–6 mice in each group. * p < 0.05
vs. Cx3cr1Cre. All data are mean ± SEM. p values calculated by a Student’s t-test.

2.3. EPO Erythropoietic Activity Is Preserved in the Cx3cr1Cre EPORf/f Mice

To test the effect of monocytic EPOR deletion on the erythropoietic capacity of EPO,
we measured the levels of hemoglobin and evaluated the numbers of TER119+ erythroid
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progenitor cells in the bone marrow by flow cytometry. As expected, EPO treatment
resulted in a significant increase in these parameters, none of which were affected by EPOR
knockout in the Cx3cr1 expressing cells (Figure 3).
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Figure 3. EPOR knockout in the monocytic lineage does not interfere with the erythropoietic
response to EPO. Left panels, hemoglobin levels in Cx3cr1CreEPORf/f as compared to their Cx3cr1Cre

controls after treatment with EPO (60 IUx3 per week for 2 weeks). Right panels, flow cytometry
analysis of TER119+ erythroid progenitors in the bone marrow. (a) Females, (b) males. n = 6–12 mice
in each group. * p < 0.05, ** p < 0.01, *** p < 0.001, and **** p < 0.0001. All data are mean ± SEM.
p values were calculated by 2-way ANOVA.

2.4. Cx3cr1Cre EPORf/f Mice Are Partially Protected against EPO-Induced Bone Loss

To investigate the effect of EPOR signaling in preosteoclasts on bone mass following
exogenous EPO administration, we treated both control and Cx3cr1Cre EPORf/f 12-week-
old male and female mice with either EPO or saline for 2 weeks (60 IU injected 3 times per
week). This dose was found to have a mild but significant skeletal effect in WT mice [26].
Micro-CT analyses revealed that EPO treatment induced significant bone loss (reduced
BV/TV) in both control and Cx3cr1Cre EPORf/f female mice (Figure 4a). In contrast, EPO
treatment caused a less pronounced and not significant reduction in BV/TV in male mice
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of either genotype, with no significant difference in the effect of EPO between the knockout
mice and their controls (16.46% and 19.54% reduction, respectively, Figure 4b).
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Figure 4. EPOR deletion in the Cx3cr1-expressing monocytic lineage somewhat mitigates EPO-
induced bone loss. µCT analysis of the distal femoral metaphysis of saline- and EPO-injected
12-week-old (a) female (n = 5–12 in each group) and (b) male (n = 9–12 in each group) transgenic mice
carrying a conditional knockout of EPOR in the monocytic lineage Cx3cr1CreEPORf/f as compared
to their Cx3cr1Cre controls. Data are represented as the extent of the reduction in trabecular bone
parameters in EPO- versus saline-injected mice in each group. All data are mean ± SEM. Data were
analyzed by Student’s t-test.

The extent of the BV/TV reduction induced by EPO in females tended to be lower in
the Cx3cr1Cre EPORf/f mice than in the controls (27.05% vs. 39.26% reduction, respectively,
Figure 4a). Although this difference in the response to EPO did not reach statistical
significance, it may imply an involvement of EPOR in preosteoclasts in mediating the bone
loss induced by EPO.

2.5. Low-Dose EPO Does Not Affect Osteoclast Progenitors

We have previously reported that high doses of EPO (180 IU × 3 per week for 2 weeks)
result in severe bone loss and an increase in the number of osteoclast progenitors in the
BM [18,26]. Herein, we used a much lower dose of EPO (60 IU × 3 per week for 2 weeks) in
both Cx3cr1Cre EPORf/f mice and their controls. This regimen still resulted in a significant
level of EPO-induced bone loss in female mice (Figure 4a). An ex vivo osteoclastogenesis
assay in which a fixed number of BM cells collected from mice in each group were cultured
ex vivo in the presence of M-CSF+RANKL was used to assess the number of osteoclasts
and thereby, the proportion of osteoclast progenitors in the mice after treatment. The results
indicate that low-dose EPO treatment did not affect the number of osteoclast progenitors in
the experimental animals or the controls (Figure 5). This suggests that unlike the high-dose
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treatment, low doses of EPO may stimulate bone resorption via specific effects on osteoclast
differentiation [41] but not by increasing the number of preosteoclasts [18,26].
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Figure 5. Low-dose EPO does not increase the number of osteoclast progenitors in vivo. (a) Fe-
male Cx3cr1CreEPORf/f mice and their controls were treated with either saline or EPO (60 IU × 3 per
week for 2 weeks). Non-adherent bone marrow cells were grown ex vivo with M-CSF and RANKL,
and the total area of multinucleated TRAP+ osteoclasts was measured after 6 days as a surrogate for
the number of osteoclast precursors in vivo. (b) Representative images acquired at ×2 magnification.
n = 4–6 in each group. All data are mean ± SEM. p values were calculated by 2-way ANOVA.

2.6. LysMCre Mediates the Conditional Deletion of EPOR in Preosteoclasts

Because of the non-significant differences in the response to EPO between control and
Cx3cr1Cre EPORf/f mice and the mild skeletal response to low-dose EPO, we employed the
well-established LysMCre-induced conditional knockout in the osteoclastic lineage [43–45]
and increased the administered dose of EPO 3-fold [18,26]. In this model, the levels of
EPOR mRNA in preosteoclast (CD115+) cells were ~1.9-fold greater in the control LysMCre

mice than in the CD115− cells. Our results also confirm a significant knockout (~12.5-fold)
in EPOR mRNA levels in the CD115+ cells from the LysMCreEPORf/f mice compared to
their controls, with no change in EPOR expression in the CD115− cells (Figure 6).
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Figure 6. Confirmation of the conditional deletion of EPOR expression in the monocytic lineage
of LysMCreEPORf/f mice. EPOR expression, as measured by RT-qPCR in bone-marrow-derived
CD115+ and CD115− cells from female LysMCreEPORf/f mice and their controls. Expression of EPOR
was normalized to GAPDH. n = 2–3 mice in each group. * p < 0.05 versus LysMCre. All data are
mean ± SD. p values were calculated by 2-way ANOVA.
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2.7. The Skeletal Effect of EPO on Both Osteoclast and Osteoblast Precursors Is Partially Mediated
by Monocyte EPOR

As the next step, we assessed the effect of EPOR knockout on the percentage of
preosteoclasts (CD115+) and preosteoblasts (CD11b−Alp+) in the bone marrow of 12-week-
old female C57BL/6J mice after EPO treatment (180 IU × 3/week for 2 weeks). Flow
cytometry analysis revealed a 65.06% increase in the number of osteoclast precursors
(CD115+) and a 37.30% decrease in the number of preosteoblasts (CD11b−Alp+) in the EPO-
treated control mice (Figure 7), which agrees with previous reports [18,26]. Importantly,
these effects were abrogated in cells obtained from LysMCreEPORf/f mice, wherein EPO
treatment did not result in any significant changes in preosteoblasts or preosteoclasts.
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Figure 7. In vivo effects of monocytic EPOR knockout on bone cell precursors. Flow cytometry
analysis of (a) preosteoclasts (CD115+) and (b) preosteoblasts (CD11b−Alp+) from the bone marrow
of female LysMCreEPORf/f mice and their controls after treatment with either diluent or EPO. n = 8–12
in each group. * p < 0.05 versus diluent. All data are mean ± SEM. p values were calculated by
2-way ANOVA.

2.8. Conditional Deletion of EPOR in Preosteoclasts Mitigates EPO-Induced Bone Loss in
LysMCreEPORf/f Mice

To investigate the bone density effects of EPOR knockout in preosteoclasts, we injected
12-week-old male and female C57BL/6J mice with EPO (180 IU × 3/week for 2 weeks).
At the end of the second week, hemoglobin levels were measured, and the femurs were
analyzed by µCT.

Our results reveal that the conditional deletion of EPOR did not affect the trabecular
bone parameters in both males and females (diluent-treated LysMCre and LysMCre EPORf/f,
Figure 8a,b), suggesting that EPOR signaling in preosteoclasts does not play significant
roles under steady-state conditions. EPO treatment significantly lowered the bone density
in the trabeculae of both LysMCre (control) and LysMCreEPORf/f male and female mice,
and in males, the skeletal response to EPO was similar in the control and knockout mice
(51.81% and 48.15% reduction, respectively, Figure 8b). However, the extent of bone loss
induced by a high EPO dose in female mice with an EPOR deletion in the monocytic lineage
(LysMCreEPORf/f) was significantly lower than that in the controls (44.46% versus 77.28%
reduction, respectively, p = 0.002, Figure 8a). Importantly, despite the dramatic skeletal
effects, erythropoiesis was unaffected by the conditional deletion of EPOR, as demonstrated
by the EPO-induced increase in hemoglobin (Figure 8d).
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Figure 8. Monocyte-specific EPOR knockout attenuates EPO induced bone loss. µCT analysis in
the distal femoral metaphysis of diluent- and EPO-injected (180U/inj, 3 times/week for 2 weeks)
12-week-old (a) female (n = 6–9 in each group) and (b) male (n = 6–7 in each group) transgenic mice
carrying a conditional knockout of EPOR in the monocytic lineage LysMCreEPORf/f mice compared to
their LysMCre controls. p values were calculated by 2–way ANOVA in the left panels. Data in the right
panels are represented as the extent of reduction in trabecular bone volume/total volume (BV/TV) in
EPO- vs. diluent-injected mice in each group and calculated by a Student’s t-test. (c) Representative
3D µCT images of the distal femur of female mice described in (a). (d) Hemoglobin levels of EPO-
versus diluent-treated LysMCre or LysMCreEPORf/f female mice (n = 7–9 in each group). p values
were calculated by 2-way ANOVA. * p < 0.05, ** p < 0.01, and **** p < 0.0001.

3. Discussion

We and others have demonstrated consistently that low and high doses of exogenous
EPO or transgenic overexpression of EPO lead to severe bone loss accompanied by osteo-
clast activation and the suppression of bone formation in mouse models [17–19,21,22,26].
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Interestingly, recent studies demonstrated that this bone loss is independent of the erythro-
poiesis activities of EPO [17] and is mediated by a non-erythroid cell response. Moreover,
the deletion of EPOR in either osteoprogenitors/mature osteoblasts [21,22] or in B cells [40]
attenuated EPO-driven bone loss but did not completely block the effect, suggesting that
EPOR on other cell lineages also contributes to EPO-mediated bone loss. We previously
demonstrated that high doses of EPO target the monocytic lineage by increasing the num-
ber of bone marrow preosteoclasts and bone resorption in vivo [18,26,42]. We also showed
the direct stimulation of osteoclastogenesis by EPO in vitro [18,26,31], but the question of
whether EPO-driven bone loss is mediated by EPOR activation on preosteoclasts in vivo
remained elusive. The current study addressed this gap and demonstrated (i) the role
of monocytic EPOR in bone metabolism in vivo, in both steady-state conditions and in
EPO-treated mice; (ii) while both low and high doses of EPO stimulated osteoclastogenesis
in vitro [18,31], only the higher doses led to a dose-dependent increase in osteoclast pre-
cursors in vivo (Figures 5 and 7). Our results also showed that the (iii) deletion of EPOR
in the monocyte/macrophage lineage does not affect erythropoiesis at steady state and in
response to EPO administration (Figures 3 and 8).

We used two mouse lines with a conditional deletion of EPOR in the monocyte/macrop
hage lineage.

Our results revealed that a low dose of EPO reduced the BV/TV in all animals. There
was a tendency towards a more moderate loss in the Cx3cr1Cre EPORf/f female mice
compared to their controls, but this difference was not statistically significant (Figure 4). In
addition, there was no difference in the levels of BM osteoclast progenitors in the Cx3cr1Cre

EPORf/f and the controls under EPO treatment and at steady state (Figure 5). It should be
noted that a previous study demonstrated that Cx3cr1-deficient mice displayed slight but
significant increases in trabecular and cortical thickness and reduced numbers of osteoclasts
compared to wild-type mice [50]. These observations motivated us to utilize the better-
established LysMCre-line to conditionally knockout EPOR in the osteoclastic lineage [43–45]
and to increase the dose of EPO [18,26]. Our data revealed that the significant increase
in the percentage of BM preosteoclasts (CD115+) usually seen after EPO treatment is
abrogated in these mice (Figure 7a). Importantly, the bone loss induced by the high EPO
dose was significantly attenuated in the LysMCre EPORf/f female mice compared to their
controls, without interference with the erythropoietic activity of EPO (Figure 8), which
calls for further studies on the role of macrophages’ EPOR in context of the erythroblast
island niche [53].

Our findings imply that EPOR in the monocytic lineage is responsible, at least in part,
for driving the bone mass reduction caused by exogenously administered EPO. While these
Cre lines do not discriminate between early precursors and late mature osteoclasts, we
previously reported that while EPOR is highly expressed in osteoclast precursors, there
is no expression or response to EPO and its analogs by mature osteoclasts [18,42]. It is
therefore reasonable to assume that the skeletal response to EPO is partly driven by EPOR
in osteoclast precursors.

The discrepancy in the results obtained in the two mice models may be attributed to
several factors. One option relates to the limitations arising from the currently available
Cre lines that target osteoclast progenitors and may be due to (i) the heterogeneity and
plasticity of osteoclast precursors, both under steady state and pathological conditions [54],
i.e., not all osteoclast precursors express LysM or Cx3cr1, and (ii) the limited depletion
efficiency and targeting specificity in myeloid specific Cre transgenes [55]. These limitations
led us to utilize two separate Cre lines, LysMCre and Cx3cr1Cre, with different off-target
sites, in order to delete EPOR in the early osteoclast lineage [56]. Cx3cr1Cre is relatively
more specific to the monocyte/macrophage lineage than LysMCre, although there are also
effects on neutrophils, mast cells, and classical dendritic cells [57]. These Cx3cr1Cre mice
have been the focus of much recent skeletal research [48,49,58], since there is evidence that
Cx3cr1 is expressed by osteoclast precursors, which facilitates their recruitment to the BM
and is downregulated when they differentiate into mature osteoclasts [50,59].
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Of note, a recent study reported that, under inflammatory conditions, the expression
of Cx3cr1 is maintained in a subpopulation of osteoclasts shown to arise from both Cx3cr1+

and Cx3cr1− progenitors [60], suggesting that osteoclast progenitors may have multiple ori-
gins depending on their environment. We found that both CD11b−CD115+Ly6Chi CX3CR1+

and CD11b−CD115+Ly6Chi CX3CR1− populations were elevated (data not shown) in a
short-term experiment in which 13-week-old female mice were injected with high doses
of EPO. This raises the possibility that CX3CR1− precursors might act in a compensatory
manner despite EPOR deletion in the CX3CR1+ progenitors, which in turn may mask any
differences in the EPO response of Cx3cr1Cre EPORf/f mice compared to their controls.
The apparent heterogeneity in osteoclast progenitors and the limitations of the available
models specifically targeting osteoclasts’ precursors present a challenge in defining the
role of the osteoclastic EPOR in EPO-induced bone loss. An added complexity is that
EPOR expression is detectable only in preosteoclasts and not in the differentiated mature
osteoclasts [18,61], so we were unable to use mature osteoclast-specific Cre models, such
as Ctskcre and Trapcre. For these reasons, we selected the LysMCre model to support our
conclusions, since, although it lacks specificity for preosteoclasts, LysM is highly expressed
in myeloid lineage cells, including monocytes, macrophages, and granulocytes [43].

Of note, while our findings confirm the effective deletion of EPOR in the monocytic
lineage of LysMCre EPORf/f, there is still a possibility of low levels of the non-specific
targeting of other immune cells, such as neutrophils. However, the observations that high
and low doses of EPO (data not shown), as well as transgenic EPO overexpression [62]
had no effect on the percentage of neutrophils in the BM (defined as CD11b+Ly6G+) and
that neutrophils from WT mice barely express EPOR [63] make it more likely that the
attenuated EPO-induced bone loss in LysMCre EPORf/f mice is due to EPOR deletion in the
monocytic lineage.

Interestingly, neither LysMCre EPORf/f (Figure 8) nor Cx3cr1Cre EPORf/f (Figure 1)
mice displayed changes in their trabecular bone parameters in steady state compared to
their controls, implying that EPOR signaling in the monocytic lineage does not play a
significant role under steady state conditions.

EPO-induced bone loss in mice is known to be dose-dependent, wherein low doses
of EPO inhibit osteoblast differentiation and mineralization in vitro [17,19], together with
a decrease in the percentage of osteoblast precursors in the bone marrow in vivo [26]. In
the osteoclast lineage however, while both low and high doses stimulated osteoclastoge-
nesis in vitro (10 mIU/mL and 10 IU/mL, respectively) and in vivo (from 70 IU/week
to 540 IU/week), only the higher doses lead to a dose-dependent increase in osteoclast
precursors in vivo (Figure 5 vs. [18,26]).

The differential sensitivity of the erythroid cells (Figure 3), compared to osteoclast
precursors (Figure 5) in the responses to low-dose EPO, could be explained by the higher
EPOR expression in the TER119+ erythroid lineage cells compared to CD115+ osteoclast
lineage cells (Figure S1).

Herein, as reported by two recent studies [21,22], female animals exhibited better
protection from EPO-induced bone loss than males. In addition, the sex-differential EPO
phenotypes seen in other tissues [64–67] suggest the involvement of sex hormones. Al-
though no sex-specific differences in the plasma concentration of EPO were detected [68],
estrogen has been shown to affect EPO response and mediate gender-specific EPO ac-
tions [69]. Future studies on the interaction between estrogen and EPO signaling could
elucidate the contribution of sex hormones to the sexually dimorphic features of EPO
treatment, particularly in the skeletal system.

The results of this study provide further information about the complex role of EPO
in skeletal biology. EPOR in B cells promotes bone loss via the upregulation of osteoclas-
togenic signals and by inducing their transdifferentiation into osteoclasts in the presence
of therapeutic doses of EPO [40]. EPOR on the osteoblast lineage mainly mediates the
physiological skeletal effects of EPO, with a less noticeable contribution in response to EPO
treatment [21]. We can now conclude that, while EPOR in the osteoclast lineage does not
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have a significant role during steady-state bone homeostasis, it drives at least part of the
bone loss induced by high-dose EPO treatment.

Overall, our study provides evidence that the EPO/EPOR axis in the monocytic
lineage has a direct role in EPO-induced bone loss. Further in-depth characterization of
the identity of the osteoclast precursor subsets and their osteoclastogenic capacity will
shed more light on the cells directly targeted by EPO and their relative contribution to
EPO-driven skeletal effects, and taking into consideration the dose-dependent nature of
the EPO-induced bone loss. Since recombinant erythropoietin is widely used in clinical
practice to treat anemia associated with chronic kidney disease in patients who already
suffer from compromised bone health, it is advisable to monitor these patients closely, and
to minimize the potential adverse skeletal outcomes by administering the lowest effective
dose of EPO for the shortest possible time [26]. Combining EPO with other anti-resorptive
agents might also prove advantageous [42]. In addition, these findings should motivate
the search for new alternatives to erythropoietin therapy, such as hypoxia-inducible factor-
prolyl hydroxylase inhibitors. The ideal agent would stimulate erythropoiesis without the
EPO-associated bone loss [70].

4. Materials and Methods
4.1. Materials

Alpha-MEM and fetal bovine serum (FBS) were purchased from Rhenium (Modiin,
Israel), culture plates were from Corning (New York, NY, USA). As a source of M-CSF, we
used supernatant from CMG 14-12 cells, containing 1.3 µg/mL M-CSF [18,71]. RANKL
was purchased from R&D Systems, Minneapolis, MN, USA. Erythropoietin (EPO) used
in the study was obtained from GMP-manufactured sterile syringes containing rHuEPO
(Epoetin alfa, Eprex®, Janssen) as used for patient care. These were kindly provided by
Janssen Cilag, Israel.

4.2. Animals

Mouse handling and all experimental procedures were approved by the Institutional
Animal Care and Use Committee of the Tel-Aviv University (permit numbers: 01-19-
032, M-14-093) and were performed in accordance with the approved guidelines. All
transgenic mice were kept in a specific pathogen free (SPF) facility and were of the C57BL/6J
genetic background. Experiments were performed with male and female mice between
the ages of 11 and 12 weeks; Cx3cr1CreEPORf/f mice and LysMCreEPORf/f mice and their
corresponding controls. Cx3cr1Cre mice were kindly provided by Prof. Steffen Jung, the
Weizmann Institute of Science, Rehovot, Israel and maintained in the animal facility of the
Tel-Aviv university. Both mouse lines were crossed with EPORf/f mice in our facility. Both
Cre lines are homozygous.

4.3. Cell Culture
4.3.1. Isolation and Culture of Bone Marrow-Derived Monocytes

Murine monocytes were harvested from femurs and tibias of 12-week-old male and
female transgenic mice (Cx3cr1CreEPORf/f mice and their corresponding controls Cx3cr1Cre

) by negative selection using a monocyte isolation kit from Miltenyi Biotec (#130-100-629;
Auburn, CA, USA). Isolated monocytes were seeded on non–tissue culture-treated plates
in α-MEM containing 10% FBS, supplemented with 100 ng/mL M-CSF (in the form of
10% v/v culture supernatant from CMG 14–12 cells) and cultured for 4 days to induce
differentiation into bone marrow derived macrophages (BMDM) [72]. BMDM were used to
extract RNA for real-time PCR or for in vitro osteoclastogenesis

4.3.2. Isolation of CD115+ Monocytes

Bone marrow CD115+ monocytes were sorted by a CD115 microbead kit from Mil-
tenyi Biotec (#130-096-354, Bergisch Gladbach, Germany) according to the manufacturer’s
instructions. CD115+ cells were used to extract RNA for real-time PCR.
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In vitro osteoclastogenesis: BMDM obtained as described above were plated in 96-well
plates (8000 cells per well) with standard medium supplemented with 20 ng/mL M-CSF
(in the form of 2% v/v culture supernatant from CMG 14–12 cells) and 50 ng/mL RANKL
(R&D Systems, Minneapolis, MN, USA), which was replaced every 2 days. On the 4–5th
day, multinucleated osteoclasts were stained using a tartrate-resistant acid phosphatase
(TRAP) kit (Sigma-Aldrich, St. Louis, MO, United States), and the relative TRAP-positive
surface was measured using ImageJ software.

Ex vivo osteoclastogenesis: Bone marrow cells were harvested from femurs and tibias
of 12-week-old female mice injected with either EPO or saline for 2 weeks (60 IUx 3 times
per week) and were then seeded into tissue-culture-treated plates in standard medium
and allowed to attach overnight. Non-adherent cells were plated into 96-well plates in
standard medium supplemented with M-CSF (in the form of 2% v/v culture supernatant
from CMG 14–12 cells) and 50 ng/mL recombinant murine RANKL. The medium was
replaced every other day. After 6 days, the cells were stained for tartrate-resistant acid
phosphatase (TRAP), and the relative TRAP-positive surface was measured using ImageJ
software(1.53 s, NIH, Bethesda, Maryland, USA).

4.4. Microcomputed Tomography (µCT)

Femurs (one per mouse) were examined using the µCT50 system (Scanco Medical AG,
Bruttisellen, Switzerland) [73,74]. Briefly, scans were performed with a 10 µm resolution,
90 kV energy, 114 mA intensity, and 1100 ms integration time. The mineralized tissues
were segmented by a global thresholding procedure following the Gaussian filtration of
the stacked tomographic images [75]. Trabecular bone parameters were measured in the
secondary spongiosa of the distal femoral metaphysis.

4.5. Hemoglobin Levels

Hemoglobin (Hgb) levels were measured in venous blood (drawn from the facial vein)
by means of a “Mission Plus” hemoglobin/hematocrit meter (Acon, San Diego, CA, USA).

4.6. Flow Cytometry

Bone marrow (BM) cells were flushed from femurs or tibias, and red blood cells were
lysed using ACK lysis buffer (Quality Biological, Gaithersburg, MD, USA), except for
experiments with Anti-Ter119+ staining. The cells were then stained for 20 min at 4 ◦C with
conjugated anti-mouse antibodies (see Table 1 for a list of the antibodies used). After this
time, the cells were washed with PBS containing 1% FBS and analyzed by either Gallios or
Cytoflex flow cytometers and Kaluza or CytExpert software (all from Beckman Coulter,
Indianapolis, IN, USA).

Table 1. Antibodies used for flow cytometry analysis.

Antibody Source Identifier

TER-119-APC BioLegend Cat#: 116211
CD115-APC eBioscience Cat#: 14115282
F4/80-APC BioLegend Cat#: 123115
CD11b-APC BioLegend Cat#: 101211
CD115-PE Miltenyi Biotec Cat#: 130112828

LY6C-PerCP/Cy5.5 BioLegend Cat#: 128011
Alkaline Phosphatase (ALPL) R&D systems Cat#: AF2910

Goat IgG (H+L)-PE R&D systems Cat#: F0107
Anti N-terminus

mEPOR [76,77]

Donkey anti-rabbit IgG
H&L-Alexa Fluor® 488 abcam Cat#: ab150073
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4.7. Real-Time RT PCR

Total RNA was extracted using the TriRNA Pure kit (Cat.# TRPD200, Geneaid, New
Taipei City, Taiwan), and cDNA was synthesized using the qScript cDNA synthesis kit
(Quantabio, MA, USA). “Real-time” quantitative PCR (RT-qPCR) was performed on a
StepOnePlus instrument using the SYBR Green reagent (both from Applied Biosystems,
CA, USA). Relative gene expression was calculated using the ∆∆CT method following
normalization to the expression of HPRT or GAPDH as housekeeping genes. Primers used
for PCR were as follows: (F, forward; R, reverse): EPOR,F;GTCCTCATCTCGCTGTTGCT
EPOR,R; ATGCCAGGCCAGATCTTCT; HPRT,F TCCTCCTCAGACCGCTTTT; HPRT,R
CCTGGTTCATCATCGCTAATC; GAPDH,F ACCCAGAAGACTGTGGATGG; GAPDH,R
CACATTGGGGGTAGGAACAC.

4.8. Statistical Analysis

Values are expressed as mean ± SEM (standard error of the mean) unless otherwise in-
dicated. A Student’s t-test was used for calculating statistical significance when comparing
two groups of variables. In experiments with >2 groups of variables, either 1-way or 2-way
ANOVA was applied. The level of statistical significance was set at p < 0.05. Asterisks
between bars indicate significant differences between two groups (* p < 0.05, ** p < 0.01,
*** p < 0.001, and **** p < 0.0001). All statistical analyses were performed using Prism 9
(GraphPad).

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/ijms231912051/s1.
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