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Abstract: Ranolazine (Rn) is a drug used to treat persistent chronic coronary ischemia. It has also
been shown to have therapeutic benefits on the central nervous system and an anti-diabetic effect
by lowering blood glucose levels; however, no effects of Rn on cellular sensitivity to insulin (Ins)
have been demonstrated yet. The present study aimed to investigate the permissive effects of Rn on
the actions of Ins in astrocytes in primary culture. Ins (10−8 M), Rn (10−6 M), and Ins + Rn (10−8 M
and 10−6 M, respectively) were added to astrocytes for 24 h. In comparison to control cells, Rn
and/or Ins caused modifications in cell viability and proliferation. Rn increased protein expression
of Cu/Zn-SOD and the pro-inflammatory protein COX-2 was upregulated by Ins. On the contrary,
no significant changes were found in the protein expression of NF-κB and IκB. The presence of
Rn produced an increase in p-ERK protein and a significant decrease in COX-2 protein expression.
Furthermore, Rn significantly increased the effects of Ins on the expression of p-AKT, p-eNOS, p-ERK,
Mn-SOD, and PPAR-γ. In addition, Rn + Ins produced a significant decrease in COX-2 expression. In
conclusion, Rn facilitated the effects of insulin on the p-AKT, p-eNOS, p-ERK, Mn-SOD, and PPAR-γ
signaling pathways, as well as on the anti-inflammatory and antioxidant effects of the hormone.
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1. Introduction

Astrocytes are the most abundant cells in the central nervous system (CNS) and perform
a variety of functions, including structural support, blood–brain barrier integrity, and the
development of important protective roles [1]. They also take part in immunological responses
and in the reparative processes that occur at different stages of neuroinflammation [2].

Astrocytes secrete both neurotrophic and inflammatory cytokines, and express recep-
tors for mediators such as Interleukin-1β (IL-1β) and Tumor Necrosis Factor-α (TNF-α),
among others [3,4]. Glucose absorption and storage are two of insulin’s most essential
effects [5]. Insulin crosses the blood–brain barrier, acting on astrocytes and, indirectly, on
neurons [6]. The brain expresses insulin receptors (IRs) on neurons, microglia, and astro-
cytes. Its effects include metabolic functions and neuronal survival after trauma or during
neurodegeneration [7]. In fact, these effects are due to anti-inflammatory insulin action.
At 10−8 M, insulin inhibits inducible nitric oxide synthase (iNOS) expression and NF-κB
(Nuclear Factor-κB) level increase in astrocytes induced by Bacterial Lipopolysaccharide
(LPS) [8]. Furthermore, insulin increased the vitality of rat and human astrocytes [9,10].
Insulin is generally degraded in lysosomes within cells [6], although there is evidence of
the presence of the insulin-degrading enzyme (IDE) in different types of cells, including
astrocytes [11]. In addition, IDE degrades other peptides such as a beta-amyloid peptide,
which is involved in the pathogenesis of Alzheimer’s disease (AD) [12]. Astrocytes take
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up glutamate at the synapse, triggering aerobic glycolysis and a secretion of lactate, which
can be used by neurons as a source of energy after activity [13,14]. In astrocytes, insulin
increases glycogen storage, stimulates glucose uptake through GLUT4, and modulates the
inflammatory response [15,16]. Interestingly, activation of insulin-mediated pathways was
downregulated in astrocytes in response to chronically elevated insulin levels, but not in
neurons [17]. These cellular differences could have implications for the effects of T2D (type
2 diabetes) and insulin resistance on the function of different types of brain cells.

In clinical practice, ranolazine (Rn) is used to treat refractory chronic stable angina [18,19].
Data from patients indicate that ranolazine preserves myocardial blood flow during is-
chemic insults [20]. Human studies back up the idea that ranolazine can help improve
coronary blood flow by lowering the mechanical consequences of ischemia contracture,
enhancing endothelial function, or both [21,22]. At therapeutic concentrations, Rn inhibits
the late inward sodium current (I(NaL)) [23], reducing tissue damage caused by intracellu-
lar sodium and calcium overload, which is associated with myocardial ischemia [24–26].
I(NaL) amplitude is increased in many pathological situations, such as myocardial is-
chemia and oxidative stress [27–29]. In addition to its antianginal effects, Rn acts as an
anti-inflammatory agent, reducing asymmetric dimethylarginine and C-reactive protein
plasma levels and promoting the endothelial release of vasodilator mediators in patients
with ischemic coronary disease [30]. Furthermore, metabolic effects, such as the lowering
of hemoglobin A1c (HbA1c) in patients with ischemic heart disease and diabetes [31–33], or
the improvement of insulin secretion and β-cell survival in diabetic mice [34], have already
been described. Moreover, several studies evaluated the effects of Rn on the cardiovascu-
lar [35–37] and nervous systems [4,38,39]. They suggested that these effects would also be
mediated by late INa or inwardly rectifying K+ current [40].

Therefore, the objective of this study is to evaluate the effects of insulin on astrocytes
in primary culture and the facilitating actions of ranolazine on the sensitivity of astrocytes
to insulin (Ins). It is intended to evaluate the effects of insulin and ranolazine (Rn) on cell
viability, as well as on anti-inflammatory and antioxidant mechanisms and processes.

2. Results
2.1. Cell Viability

The roles of Rn, Ins, and Ins + Rn on astrocytes’ viability were studied using an
MTT conversion assay. Figure 1 shows the viability of astrocytes in primary culture. The
incubation with Rn, Ins, and Ins + Rn, produced significant increases compared with control
astrocytes (Figure 1) (Rn 28%, Ins 27%, and Ins + Rn 72%). Furthermore, Ins + Rn produced
an increase in viability compared to Ins of about 25%.
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Figure 1. Effect of Ins and Rn on astrocytes in primary culture. Cell viability was determined by MTT
assay in cells treated for 24 h. Astrocytes were incubated without Ins or Rn (control, C), with Rn (10−6 M),
with Ins (10−8 M), or with Ins + Rn (10−6 M + 10−8 M). Data are mean ± SD of four independent
experiments (four different rats). * p < 0.05 vs. control. + p < 0.05 vs. Rn. # p < 0.05 vs. Ins.

Figure 2 shows that Ins and Ins + Rn increased astrocytes numbers more compared
to control cells. Cells were isolated and seeded at 7 × 104 cells/35 mm dish for 5 days,
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and afterwards we added Ins or Ins + Rn for 24 h. Fluorescence with Mitotracker to stain
mitochondria, lysotracker to stain lysosomes, and Hoechst 33342 to stain nuclei were used
to show changes in the numbers of mitochondria, lysosomes, and nuclei.
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Figure 2. Effect of Ins and Ins + Rn on astrocytes in primary culture. Cells were isolated and seeded
at 7 × 104 cells/35 mm dish for 5 days. Cells were incubated without Ins or Rn (control, C), with Ins
(10−8 M), or with Ins + Rn (10−8 + 10−6 M) for 24 h. Fluorescence products used were: Mitotracker
(250 nM) (in green) to stain mitochondria, Lysotracker (250 nM) (in red) to stain lysosomes, and Hoechst
33342 (2 µg mL−1) (in blue) to stain nuclei. Contrast images are added. Bar represents 20 µm.

2.2. Cell Proliferation

A trypan blue exclusion assay was used to count the living cells and monitor cell
proliferation. Astrocytes were isolated and seeded at 7 × 104 cells/35 mm dish. After
5 days of culture, cells were incubated without Ins or Rn (control, C) or with Rn (10−6 M),
Ins (10−8 M), or Ins + Rn (10−8 and 10−6 M) for 24 h. In control conditions, proliferation
was 0.85%; with Rn, 30.31%; with Ins, 29.18% and with Ins + Rn, 33.91%, demonstrating
significant differences (Table 1).

2.3. Protein Expression of p-AKT

Protein kinase B (PKB) is a family of proteins encoded in humans by three genes:
AKT1, AKT2, and AKT3. AKT2 is an important signaling molecule in the insulin signaling
pathway (induces glucose transport). When the insulin receptor (IR) is activated, the PI3K
(phosphatidylinositol 3-kinase) is activated, which will phosphorylate PIP2 (phosphatidyli-
nositol 3,4-bisphophate) to form PIP3 (phosphatidylinositol 3,4,5-triphosphate) [41]. In
patients with type 2 diabetes, there is interference in the intracellular signaling pathway of
PI3K/PKB produced by increases in cAMP [42]. Thus, we will determine the changes in
protein expression after Ins addition to astrocytes in primary culture.
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Table 1. Effect of Ins and Rn on astrocytes’ proliferation. Cell proliferation and counting living cells.
Astrocytes were isolated and seeded at 7 × 104 cells/35 mm dish for 5 days. Cells were incubated
without Ins or Rn (control, C), with Rn (10−6 M), with Ins (10−8 M), or with Ins + Rn (10−8 + 10−6 M)
for 24 h. Trypan blue exclusion was used to count the living cells and monitor cell proliferation. Data
are mean ± SD of four independent experiments (four different rats). * p < 0.05 vs. control. # p < 0.05
vs. Ins.

Seeding Cells
(×104/35 mm Dish)

5 Days of
Culture 24 h Treatment % Proliferation

Control 7 12.86 ± 0.32 12.97 ± 0.24 0.85

Rn 7 12.87 ± 0.25 16.77 ± 0.35 30.31 *

Ins 7 12.85 ± 0.23 16.60 ± 0.37 29.18 *

Ins+Rn 7 12.88 ± 0.26 17.25 ± 0.35 33.91 *,#

Figure 3 shows that Rn (10−6 M), Ins (10−8 M), and Ins + Rn (10−8 M and 10−6 M)
produced significant differences in p-AKT compared to control cells. In fact, Ins increased
the expression of p-AKT by 43.3% compared to the control and Ins + Rn increased by 87.2%
compared to the control. Furthermore, Rn did not produce significant changes compared
to control cells. In addition, the joint effect of Ins + Rn increased the expression of p-AKT
with respect to Ins by 31.6% (Figure 3).
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Figure 3. Effect of Ins and Rn on p-AKT and AKT protein expression. Astrocytes were incubated
without Ins or Rn (control, C), with Rn (10−6 M), with Ins (10−8 M), or with Ins + Rn (10−8 M + 10−6 M)
for 24 h and collected to determine p-AKT (1:500), AKT (1:500), and Tubulin (1:3000) protein expressions
by Western blot. A representative immunoblot is shown in the panel. Data are mean ± SD of four
independent experiments (four different rats). * p < 0.05 vs. control. + p < 0.05 vs. Rn. # p < 0.05 vs. Ins.

2.4. Expression of p-eNOS Protein

Endothelial NOS (eNOS) synthesize nitric oxide (NO). Impaired NO production
is involved in the pathogenesis of several diseases such as hypertension [43], diabetes
mellitus [44], and migraine [45].
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Here, we determined the expression of p-eNOS in astrocytes in primary culture.
The presence of Rn did not produce any significant differences in respect to control
cells. Ins increased the expression of p-eNOS protein compared to control cells (32.25%).
Ins + Rn significantly increased the expression of p-eNOS compared to the control (74.1%).
Furthermore, the joint effect of Ins + Rn significantly increased (30.6%) the expression of
p-eNOS with respect to the Ins group (Figure 4).
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blot. A representative immunoblot is shown in the panel. Data are mean ± SD of four independent
experiments (four different rats). * p < 0.05 vs. control. + p < 0.05 vs. Rn. # p < 0.05 vs. Ins.

2.5. p-ERK Protein Expression

Extracellular signal-regulated kinase 1/2 (ERK) belongs to the mitogen-activated
protein kinase (MAPK) family, which plays a role in signaling cascades and transmits
extracellular signals to intracellular targets. Moreover, ERK exists as isozymes including
ERK I (44 kDa) and ERK II (42 kDa). Insulin induces a rapid translocation of the MEK from
the cytoplasm to the nucleus and activates resident nuclear ERK I/II in cells [46].

We determined p-ERK protein expression in astrocytes in primary culture. After
addition of Rn or Ins, a significant increase in p-ERK protein expression was detected com-
pared to control astrocytes (22.8% and 33.2%). The incubation with Ins + Rn significantly
increased p-ERK expression compared to control cells (60.1%) and in respect to Rn- or
Ins-treated cells (29.7 and 21.4%, respectively) (Figure 5).

2.6. COX-2 Protein Expression

Inducible cyclooxygenase (COX-2) is expressed under inflammatory conditions and COX-
2 inhibition can potentially develop into a preventive therapy against diabetes mellitus [47].

We detected a significant decrease after addition of Rn (10−6 M) and an increase in
COX-2 protein expression after addition of Ins (10−8 M) compared with control values
(15.2% and 20.1%, respectively). Furthermore, the presence of Ins + Rn decreased COX-2
expression (18.1%) in respect to control astrocytes and 48.8% in respect to astrocytes treated
with Ins, showing no differences in respect to Rn addition (Figure 6).
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Figure 6. Effect of Ins and Rn on COX-2 protein expression. Astrocytes were incubated without Ins
or Rn (control, C), with Rn (10−6 M), with Ins (10−8 M), or with Ins + Rn (10−8 M + 10−6 M) for
24 h and collected to determine COX-2 (1:500) and Tubulin (1:3000) protein expression by Western
blot. A representative immunoblot is shown in the panel. Data are mean ± SD of four independent
experiments (four different rats). * p < 0.05 vs. control. + p < 0.05 vs. Rn. # p < 0.05 vs. Ins.
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2.7. Expression of Cu/Zn-SOD and Mn-SOD Proteins

The enzyme superoxide dismutase (SOD) catalyzes the dismutation of superoxide
into oxygen and hydrogen peroxide and is an important antioxidant defense in most cells
exposed to oxygen [48]. Genetic disruption of the SOD1 gene causes glucose intolerance
and impairs β-cell function [49].

In astrocytes, Rn produced changes in Cu/Zn-SOD, but Ins and Ins + Rn did not
produce changes in comparison to control cells (Figure 7A). Expression of Mn-SOD was
determined and is shown in Figure 7B. The addition of Rn and Ins significantly increased
protein expression compared to control astrocytes (30.1% and 51.2%, respectively). Incuba-
tion with Ins + Rn also significantly increased Mn-SOD protein expression compared to the
control (59.1%), Rn (58.9%), and Ins (16.4%) (Figure 7B).

2.8. NF-κB and IκB Expression

NF-κB is a transcription factor that regulates the positive gene expression of pro-
inflammatory proteins. Figure 8A shows that Rn (10−6 M), Ins (10−8 M), and Ins + Rn
(10−8 M and 10−6 M) did not produce significant differences compared to control cells.
Moreover, IκB is one member of a family of cellular proteins that inhibit the NF-κB tran-
scription factor. When the separation of IκB and NF-κB occurs, IκB is destroyed and NF-κB
enters the nucleus and binds to DNA.

Figure 8B shows that Rn, Ins, and Ins + Rn did not induce significant differences in
IκB protein expression compared to control cells. No change in expression of either protein
was detected indicating that NF-κB activation did not occur.

2.9. PPAR-γ Expression

PPARs is a protein family that negatively regulates the gene expression of pro-
inflammatory proteins. Figure 9 shows PPAR-γ expression in astrocytes in primary culture.
Ins increased PPAR-γ expression compared to control astrocytes (46.8%). Furthermore, in-
cubation with Ins + Rn increased PPAR-γ protein expression compared to control astrocytes
(74.6%) and Ins-treated cells (18.4%) (Figure 9).
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Figure 7. Effect of Ins and Rn on Cu/Zn-SOD (A) and Mn-SOD (B) protein expression. Astrocytes
were incubated without Ins or Rn (control, C), with Rn (10−6 M), with Ins (10−8 M), or with Ins + Rn
(10−8 M + 10−6 M) for 24 h and collected to determine Cu/Zn-SOD (1:500) (A) and Mn-SOD (1:250)
(B), protein expression by Western blot. Tubulin (1:3000) was added in both figures as loading control.
Representative immunoblots are shown in the panels. Data are mean ± SD of six independent
experiments (six different rats). * p < 0.05 vs. control. + p < 0.05 vs. Rn. # p < 0.05 vs. Ins.
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and collected to determine PPAR-γ (1:300) and Tubulin (1:3000) protein expression by Western blot.
A representative immunoblot is shown in the top panel. Data are mean ± SD of four independent
experiments (four different rats). * p < 0.05 vs. control. + p < 0.05 vs. Rn. # p < 0.05 vs. Ins.
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3. Discussion

The main findings of this research are that Ins enhanced both cell viability and prolif-
eration. Moreover, Ins increased p-AKT, p-eNOS, p-ERK, Mn-SOD, COX-2, and PPAR-γ
protein expression in astrocytes in primary culture. Furthermore, Rn potentiated insulin-
induced effects at doses like those seen in individuals treated with this medication. On
the contrary, the expression of NF-κB and IκB after Rn, Ins, or Ins + Rn addition did not
produce any alterations in astrocytes in the primary culture. The inclusion of Rn in the
culture also resulted in a decrease in COX-2 protein expression.

Astrocytes are glial cells that perform a variety of functions in the brain, including
structural and metabolic support for the cell brain, maintenance of the blood–brain bar-
rier [50], glutathione synthesis, and neuroprotective actions against oxidative stress and
inflammation [2,51]. Astrocytes play a fundamental role in neuronal protection through
a variety of mechanisms, the most notable of which is mitochondrial biogenesis, which
allows them to shield neurons against inflammatory and oxidative processes [52].

Furthermore, astrocytes play roles in neuroendocrine, regulation of energy balance,
and metabolism control by responding to the different hormonal stimuli [53,54]. Glucose
uptake by astrocytes is an insulin-dependent process [55]. Astrocytes and microglia express
insulin receptor isoforms as well as insulin receptor substrate (IRS)-1 and IRS-2 [56].

In our experiments, we found that Ins boosted the expression of p-AKT and p-eNOS.
Functional studies with glial cells demonstrated that Ins activates PI3K and AKT [57].
Furthermore, AKT promotes NO production by mediating eNOS activation [58]. Insulin
treatment of hippocampal CA1 cells improves memory and spatial learning. The synthesis
of endogenous NO seems to be involved in these effects, since they are inhibited by L-
NAME, a blocker of NO synthesis [59,60]. Insulin resistance appears to be implicated
in cognitive decline in patients with type 2 diabetes (T2D) and Alzheimer’s disease. In
addition, there is evidence that T2D and D1D (type 1 diabetes) patients show a higher
frequency of depression, anxiety, cognitive impairment, and dementia [61,62].

A decrease in insulin release and/or a reduction in its sensitivity, are risk factors in
both Alzheimer’s disease (AD) [63,64] and Parkinson’s disease (PD) [65]. Downregulation
in the PI3K/AKT pathway is characteristic of insulin resistance [66]. Cognitive decline
is associated with serine phosphorylation of IRS1 and co-localized with neurofibrillary
tangles [67], decreasing insulin actions [68] by changes in the PI3K signaling pathway [69].
Furthermore, Rn causes a protective effect against cognitive decline in T2DM patients [70].

Insulin binding to its receptor activates the MAPK and ERK signaling pathways in
addition to the AKT/eNOS pathway. ERK controls cell proliferation, mitogenesis, and
differentiation, and the production of endothelin 1 [70]. Moreover, in the brain, insulin
plays a key role in the direct regulation of ERK, which is involved in maintaining the type
of memory involved in Alzheimer’s disease [71]. Our results show that insulin increases
the expression of p-ERK, coinciding with the data presented by these authors.

Insulin inhibits the production of reactive oxygen species and iNOS expression when
the cells are exposed to pro-inflammatory agents [72,73]. Furthermore, at low concentra-
tions, insulin shows pro-inflammatory actions [56]. However, in our experiments, insulin
did not show pro-inflammatory effects since there was no variation in the expression of
NFκB and IκB and, on the contrary, it produced an overexpression of PPAR-γ. In diabetic
patients and in animals with insulin resistance, PPARγ improves both glucose tolerance
and cellular insulin sensitivity [74–76]. Moreover, insulin induces anti-inflammatory effects
mediated by PPARγ and PI3K/Akt/Rac-1 signaling pathways [77]. In cardiovascular
cells, activation of PPARγ inhibits the effects of angiotensin II and acts as an antioxidant
and anti-inflammatory [78]. The use of PPARγ antagonists in neurodegenerative diseases
associated with inflammatory processes has recently been proposed [79].

In our study, we observed that insulin caused an increase in the expression of COX-2.
Insulin reduced amyloidogenesis and COX-2-mediated neuroinflammation in astrocytes
treated with streptozotocin, which are hallmarks of Alzheimer’s disease [1]. On the contrary,
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intracerebral insulin administration decreased the expression of the inflammatory factor
COX-2 in rats treated with streptozotocin [80].

In our experiments, insulin increased the expression of Mn-SOD and did not produce
changes in Cu/Zn-SOD protein expression. In cardiomyocytes, the absence of insulin
has been related to an increase in free radicals due to a decrease in SOD activity [81].
Insulin improves cognitive impairment in Wistar rats by reducing brain oxidative stress
and increasing antioxidant systems such as SOD, catalase, and GSH [82]. Insulin resistance
can be reversed with Mn-SOD mimetics or Mn-SOD overexpression [83]. In diabetic rats,
insulin has been shown to protect against oxidative stress and inhibit apoptosis induced by
H2O2 and intracellular ROS, and increase superoxide dismutase, catalase, and glutathione
peroxidase activity [84].

Ranolazine improves ATP production and O2 consumption by stimulating glucose
oxidation and decreasing fatty acid oxidation [85]. In type 2 diabetic patients, RN has
been shown to offer a variety of effects, including lowering blood glucose and glycosy-
lated haemoglobin levels, promoting insulin release, and decreasing glucagon synthesis,
therefore improving pre- and postprandial blood glucose [86–89]. Rn reduced the pro-
inflammatory profile and improved learning and long-term memory in a Wistar rat model
of type 2 diabetes. Rn may be useful in addressing cognitive deterioration in type 2 diabetes
in this way [69]. Its clinical use is especially interesting in patients with type 2 diabetes and
coronary ischemia [32,90] and, in fact, Rn has been proposed as the first treatment for type
2 diabetes [88]. Rn does not modify the AKT pathway, or the kinases involved in glucose
uptake [91]. In our experiments, Rn enhanced the effects of insulin on AKT and eNOS,
increasing the expression of p-AKT and p-eNOS, indicating that this effect is probably due
to a facilitation of insulin action.

The Rn improved insulin resistance in non-diabetic patients with coronary heart
disease, reducing the homeostasis model assessment of insulin resistance (HOMA-IR)
index with better results than that obtained with treatment with beta-blockers or calcium-
channel blockers [92]. However, there is no direct evidence of the effects of Rn that increase
cellular sensitivity to insulin. The data from our study seem to indicate a facilitating effect
of Rn on the sensitivity of astrocytes to insulin.

Ranolazine interacts with different isoforms of the neuronal Nav channel [93], such as those
involved in altered neuronal excitability in different forms of epilepsy, migraine, or neuropathic
pain [94,95], which would allow its clinical use [35,94]. Moreover, Rn has recently been shown
to improve diabetic neuropathy in rats [96]. Together, the cardioprotective and neuroprotective
effects of Rn are related to its anti-inflammatory and antioxidant actions [4,97,98].

In conclusion, ranolazine enhances the effects of insulin in primary culture astrocytes
by boosting the expression of anti-inflammatory mediators such as PPAR-γ and reducing
the production of pro-inflammatory mediators such as COX-2. Furthermore, ranolazine
increased the action of insulin on the Mn-SOD antioxidant enzyme, as well as components
of the AKT-eNOS and ERK signaling pathways (Figure 10).

Insulin resistance is the fundamental point in the pathophysiology of type 2 diabetes.
Most of the treatments for this type of diabetes manage to increase insulin secretion by
pancreatic β-cells, reducing blood glucose and glycosylated hemoglobin levels. However,
these treatments have not shown efficacy in reducing insulin resistance or by increasing
cellular sensitivity to the hormone. In our results, Rn produced a facilitation of the effects
of insulin on nerve cells by increasing the sensitivity of astrocytes to the insulin. Therefore,
ranolazine could be a useful drug to reverse peripheral insulin resistance. Moreover, type
3 diabetes has recently been described, in which it is proposed that neural resistance to
insulin would be at the origin of Alzheimer’s disease, so ranolazine could also be a drug to
be considered in the preventive treatment of Alzheimer’s disease.
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Figure 10. Changes after Ins and Rn addition to astrocytes in primary culture. Rn facilitates the effects
of insulin, increasing cell viability and proliferation, along with the expression of anti-inflammatory
mediators, such as PPAR-γ, and inhibiting that of pro-inflammatory mediators, such as COX-2.
Furthermore, Rn potentiated the effect of insulin on the expression of an antioxidant enzyme (Mn-
SOD), the components of the AKT-eNOS pathway, and the ERK signaling pathway.

4. Materials and Methods
4.1. Materials

3-(4,5-dimethyl-2-thiazolyl)-2,5-dipheniyl-2H tetrazolium bromide (MTT), ranolazine
(Rn) (10−6 M), and insulin (Ins) (10−8 M) were obtained from Sigma-Aldrich biotechnology.
anti-MnSOD (SAB2702309) (1:250), anti-NF-κB (MAB3026) (1:250), anti-IκB (ZRB1144)
(1:250), anti-PPAR-γ (SAB4502262) (1:300), anti-COX-2 (SAB4503384) (1:500), anti-Cu/Zn-
SOD (MABC684) (1:500), anti-AKT (SAB3701427) (1:500), anti-p-AKT (Ser473) (05-1003)
(1:500), anti-eNOS (SAB5700744) (1:250), anti-phospho-eNOS (Ser1177) (07-428-I), anti-
ERK1/2 (M5670) (1:500), anti-p-ERK1/2 (pThr202/Tyr204) (SAB4301578) (1:500), and anti-
β-tubulin (T8328) (1:3000) antibodies (Sigma Aldrich, Madrid, Spain) were used. All other
reagents were of analytical- or culture-grade purity.

4.2. Primary Culture of Cortical Astrocytes

All animals were handled according to the rules established by the bioethics committee
of the School of Medicine, University of Valencia, Spain. Cerebral cortical astrocytes (from
21 days gestation) were obtained and plated on a T75 culture flask [4]. The medium was
DMEM pH7.4, supplemented with 20% fetal bovine serum (FBS), 10 mM HEPES, 40 mM
NaHCO3, 100 units/mL penicillin, and 100 mg/mL streptomycin.

The purity of astrocytes was assessed using anti-glial fibrillary acidic protein (anti-
GFAP, astrocyte marker: Sigma-Aldrich, Madrid, Spain), anti-CD-68 (microglial marker:
Serotec, Kidlington, UK), anti-myelin basic protein (oligodendroglial marker; Sigma-
Aldrich, Madrid, Spain), and anti-microtubule-associated protein 2 (anti-MAP2, neuronal
marker; Sigma-Aldrich, Madrid, Spain). The astrocytes were found to be at least 99%
glial fibrillary acidic protein positive. No cells were found to express CD-68, myelin basic
protein, or microtubule-associated protein-2. We used mitotracker to stain mitochondria,
lysotracker to stain lysosomes, and Hoechst 33342 to stain nuclei.

For all the experiments, we used toxin-free sterile culture materials.

4.3. MTT Assay

The cell viability of the cultures was determined by the MTT assay [99]. Astrocytes
were plated in 96-well cultures. Rn, Ins, or Ins + Rn were added to wells for 24 h. After
cell treatments, the medium was removed and the cortical cells were incubated with red
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free medium and MTT solution (0.5 mg/mL, prepared in a phosphate buffer saline (PBS)
solution) for 4 h at 37 ◦C. Cell viability, defined as the relative amount of MTT reduction,
was determined by spectrophotometry at 570 nm.

4.4. Trypan Blue Assay

A trypan blue exclusion assay was used to count the living cells and monitor cell pro-
liferation. We applied 1.5% trypan blue solution to astrocyte cultures at room temperature
for 3 min.

4.5. Western Blot Analysis

Protein concentration was determined using modified Lowry method [100]. After lysis,
proteins were separated on SDS-PAGE gels and transferred to nitrocellulose membranes and
incubated with primary antibodies overnight at 4 ◦C. Secondary anti-rabbit IgG or anti-mouse
IgG (Cell Signaling Technologies Danvers, MA) antibody conjugated to the enzyme horseradish
peroxidase (HRP) was used. Arbitrary units mean Relative Densitometric Units [4].

4.6. Statistical Methods

Values are expressed as mean ± S.D. Differences between groups were assessed using
t-test (Student’s test) and by one-way analysis of variance (ANOVA) with the program
GraphPad Prism. Statistical significance was accepted at p ≤ 0.05. Data sets in which F was
significant were examined by a modified t-test.

5. Conclusions

Ranolazine enhances the effects of insulin in primary culture astrocytes by boosting the
expression of anti-inflammatory mediators such as PPAR-γ and reducing the production of
pro-inflammatory mediators such as COX-2. Furthermore, ranolazine increased the action
of insulin on the Mn-SOD antioxidant enzyme, as well as components of the AKT-eNOS
and ERK signaling pathways (Figure 10).
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receptor γ.
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