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Abstract: The bio-nanohybrid gelatin protein/cadmium sulfide (Gel/CdS) quantum dots (QDs) have
been designed via a facile one-pot strategy. The amino acids group of gelatin chelate Cd2+ and grow
CdS QDs without any agglomeration. The 1H NMR spectra indicate that during the above process
there are no alterations of the gelatin protein structure conformation and chemical functionalities. The
prepared Gel/CdS QDs were characterized and their potential as a system for cellular imaging and
the electrochemical sensor for hydrogen peroxide (H2O2) detection applications were investigated.
The obtained results demonstrate that the developed Gel/CdS QDs system could offer a simple and
convenient operating strategy both for the class of contrast agents for cell labeling and electrochemical
sensors purposes.

Keywords: gelatin; quantum dots; biocompatible; cellular imaging; biosensor

1. Introduction

Cellular imaging and biosensing technology have gained great interest in various
therapeutic applications including cell imaging, biosensor, diagnostic and drug delivery
systems [1–6]. In recent years, several inventive designs for various cellular imaging and
sensor biomaterials have been developed. Biocompatible Quantum Dots (QDs) are a new
class of fluorescently labeled biomaterials with considerable recent interest for various
diagnosis and therapeutic applications [7,8]. These materials have excellent optical and
electronic properties compared to organic dyes and fluorescent protein, with size-tunable
light emission, resistance to photobleaching and superior signal brightness, which make
them appealing for application in the field of sensor and cellular imaging applications [2].
Similarly, QDs-based electrochemical assay is an emerging scientific topic. Among various
types of QDs, Cadmium Sulfide (CdS) QDs have been extensively studied due to their
possible applications in several technological areas, such as chemical or biological sensors,
gene delivery and cellular imaging applications [9–12].

The drawback of the QDs arises from their loss in photoluminescence property due
to oxidation or environmental biomolecule interaction during transportation, long-term
storage and physiological environment use for bio-applications. The use of QDs for biologi-
cal applications in a physiological environment interacts with the present biomolecules,
salts and buffers, resulting in QDs cluster formation or precipitation. These phenomena
induce negative impacts on the photoluminescence properties of QDs, which is a major
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drawback for its utilization. Hence, to address the above-mentioned limitations and to
retain QDs photoluminescence stability, the present study has focused on developing a
bio-nanohybrid system based on gelatin and semiconductor QDs. Gelatin is a biopolymer
derived from collagen consisting of glycine, proline, 4-hydroxyproline and triple helix [13].
Gelatin solution acts as a good dispersion medium for nano-biomaterials, as metal and
chalcogen ions easily penetrate into the molecular chain of gelatin [14,15]. Furthermore,
gelatin-based nano-biomaterials have demonstrated excellent biocompatibility of the im-
mobilized enzyme and its activity for sensor applications [16]. The hydrophilic domains
of gelatin provide a biomimetic microenvironment for proteins, enzymes, cells and other
natural substances with maintaining their native configuration, which makes gelatin a
suitable matrix for small molecule entrapment. Several enzymes have been incorporated so
far into a gelatin matrix, in order to develop an electrochemical biosensor [17]. Embedding
more than one enzyme in gelatin has also been explored as a suitable strategy for biosensor
fabrication [18]. Nanotechnology amplification processes have enhanced the intensity
of the imaging signal and can lead to ultrasensitive assays [19,20]. The combination of
biopolymer and nanotechnology provides inherent miniaturization, high sensitivity and is
cost-effective for sensor and imaging technology [21,22]. The nanohybrid system devel-
oped in the present study was aimed to be used as an effective sensor for H2O2 detection.
H2O2 is a simple compound used as an effective oxidant. It is a necessary component
for the metabolism of carbohydrates, vitamins and proteins and plays a crucial role in
regulating molecular signaling in biological systems [23,24]. In living organisms, oxidative
damages in the human body are caused due to the cellular imbalance of H2O2, which is an
important component for cell signaling and communication. It acts as a mediator in biology
and medicine and is a byproduct generated during biochemical enzymatic oxidation of
several highly selective oxidases [25]. Hence, it is essential to have accurate and sensitive
detection of H2O2 [26]. There are several conventional analytical techniques employed for
the detection of H2O2 such as spectrophotometry, colorimetry and titrimetric, which are
complex, expensive and time-consuming. However, the electrochemical method offers an
easy, sensitive and cost-effective means to detect electroactive H2O2 [27].

In the present study, a facile single-step synthesis strategy was demonstrated to
generate the hybrid nanostructures, Gel/CdS QDs. This system can act as an effective
carrier to provide sufficient fluorescent stability of CdS QDs over a longer period of time
and explore potential applications both in biosensing and cellular imaging. The stability of
this Gel/CdS QDs system is due to the chelation of gelatin’s amine group with cadmium
metal ion. The most attractive property of the developed system is its long storage potential
without losing its efficacy. We report on the electrochemical sensing behavior of Gel/CdS
QDs on a gold electrode surface for application in H2O2 detection and cellular imaging
potential of Human Umbilical Vein Endothelial Cells (HUVEC) (Figure 1).
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Figure 1. Biomimetic synthesis of cadmium sulfide (CdS) QDs in a biopolymer gelatin template as a
system for biosensor and cellular imaging applications.

2. Results and Discussion

The Gel/CdS hybrid nanostructure system presented in this work is constituted by
CdS QDs incorporated in a gelatin matrix. The synthesis procedure of CdS nanocrystals
involves one step, in which the aqueous gelatin solution, Cd(NO3)2 and Na2S, dissociates
into Cd2+ and S2− ions, respectively. The S2− has a molecular volume of about 25 A

◦
which

leads it to penetrate easily into the gelatin molecular chain, wherein Cd2+ are chelated by
amino and carboxyl groups of the amino acid residues, resulting in a consequent growth of
CdS QDs. Resistance to larger growth of CdS QDs and further agglomeration is provided
by the gelatin molecular chains. The major advantage of the above synthesis process is the
one-pot, one-step synthesis procedure that avoids coagulation of the CdS QDs and hinders
their further growth. This system can be stored for a long period of time and it can be then
resuspended for further experiments without losing its photoluminescence properties. This
specific property is important for cell labeling, which makes this Gel/CdS QDs system
unique and interesting.

To summarize, the Gel/CdS QDs were prepared through an exchange chemical reac-
tion occurring in the gelatin solution following the reaction,

Gelatin + Cd(NO3)2 + Na2S→ Gel/CdS + 2NaNO3 (1)

With the progress of the reaction, the growth of the CdS QDs leads to a color change
of the gelatin solution from blue to yellow under UV light (Figure 2a). This color change
can be attributed to the quantum confinement of the CdS QDs.

The presence of CdS nanocrystals in the gelatin matrix is evaluated using luminescence
spectroscopy and optical absorption. The UV-visible absorption and photoluminescence
spectra (excitation and emission) are reported in Figure 2b. From the representative ab-
sorption spectrum, a shoulder is visible at 390 nm in spite of the scattering of light by the
sample at shorter wavelengths. The position of this absorption peak is confirmed by the
photoluminescence spectra where we observe a maximum in the excitation spectrum at
the same wavelength. The broad emission centered at 600 nm is characteristic of trap-state
emission. This trap-state emission is related to surface defects of the nanocrystals due
to gelatin protein and has already been reported for CdS quantum dots prepared under
similar conditions using DNA as a template [10]. The transmission electron microscopy
(TEM) and scanning transmission electron microscopy (STEM) images of Gel/CdS QDs
reveal nanoparticles within the gelatin matrix (Figure 2c,d) [28]. Elemental analysis of
these particles with TEM-based energy-dispersive X-ray analysis (TEM-EDS) and Scan-
ning Electron Microscope-EDS confirmed the presence of Cd and S (Figures S1 and S2).
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These CdS QDs exhibit an oblate shape [10], with sizes of CdS QDs of average length at
4.4 ± 0.7 nm along the long dimension) and the average length along the short dimension
is 2.1 ± 0.5 nm (short dimension), i.e., an aspect ratio of 2.1. The gelatin molecular chains
effectively prevent the agglomeration of the CdS particles. As it is visible in the inset of
Figure 2d, CdS QDs exhibit lattice fringes highlighting their crystalline character.
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Figure 2. (a) Gelatin solution (left) and Gel/CdS QDs (right) under UV light (λex = 365 nm),
(b) optical analysis of CdS QDs growth on gelatin aqueous solution, absorption spectrum (green line,
left Y axis), excitation and emission spectra (solid lines red and blue, right Y axis), (c) STEM and
(d) TEM images, inset enlargement on one particle showing lattice fringes.

The 1H NMR spectroscopy technique was used to investigate the interaction and
mobility of the molecular chain of gelatin. The 1H-NMR spectrum of gelatin and Gel/CdS
QDs at 40 ◦C is shown in Figure 3. Most of the proton signals of the gelatin are well
resolved and assigned to specific amino acids [29–33]. The result showed that there were
no different peaks in Gel/CdS spectra, which indicate there were no chemical modification
in this system. An important observation that was made from this analysis is that gelatin
as an organic matrix is not affected by the synthesis procedure of CdS QDs and its benefits
can still be retained.

The ATR-IR spectrum (Figure 4) of the gelatin membrane (GelM) shows characteristic
regions namely, amide A, amide I, amide II and amide III bands. The amide A mode
consists of bands at 3324, 2935 and 2837 cm−1 that correspond to NH stretch, hydrogen
bonding, and CH2 symmetrical and asymmetrical stretch, respectively. Furthermore, the
amide I characteristic band observed at 1653 cm−1 is due to the triple helices and a band at
1638 cm−1 which is for random coils. The amide II region bands at 1550 cm−1 due to NH
bend coupled with CN stretch, 1450 cm−1 because of CH2 bending and 1338 cm−1 for CH2
of proline. The characteristic region of amide III is composed of three characteristic bands.
The band at 1168 cm−1 corresponds to an NH bending, the C–O stretch is responsible
for the band at 1083 cm−1 and the band at 1034 cm−1 is related to skeletal stretches. The
Gel/CdS QDs also showed a similar pattern as that of the pure gelatin with some changes
in the region 1200–1500 cm−1. The changes might be due to inorganic CdS.
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Figure 4. ATR-FTIR spectra of gelatin and Gel/CdS QDs.

The DSC thermogram indicated the difference between the two investigated samples.
The 1st heating scan (Figure 5a) shows gelatin as more hydrophilic compared to Gel/CdS
QDs, in other words, the CdS QDs decreases the hydrophilicity of gelatin. The presence of
the nanostructured CdS QDs helps faster evaporation of water which is evident from the
shift of the relevant endothermic peak in the thermogram. The 2nd heating scan (Figure 5b)
reveals a clear change in the degradation temperature of Gel/CdS QDs in comparison to
GelM. This could be due to the presence of CdS which increases the thermal conductivity
of the gelatin matrix, thereby degrading faster than pure gelatin.
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The cellular imaging potential of the Gel/CdS QDs was investigated using HUVEC
and their effects on toxicity and cellular uptake were assessed. Initially, HUVEC cells
were exposed to a concentration series of Gel/CdS ranging from 0–5 µg/mL. Under these
conditions, no acute cytotoxic effects were observed using either a lactate dehydrogenase
or an Alamar blue assay. The data from the Alamar blue assay further showed no effect of
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the particles on the proliferative capacity of the cells which was confirmed by manual cell
counting studies at later time points (Figure 6).
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Figure 6. Relative cell viability of HUVEC cells exposed to Gel/CdS QDs at 5 µg/mL for 4, 8, 24 or
48 h as assessed through an Alamar blue assay.

The obtained results confirmed that up to a concentration of 5 µg/mL Gel/CdS do not
appear to have any immediate cytotoxic effects on the HUVEC cells. The lack of toxicity
seen here due to the presence of the gelatin matrix can possibly hint at a biocompatible
coating of the particles [34–37]. This result is in line with a previous report by Byrne and
colleagues, where the toxicity of small ligand-coated QDs could be reduced by adding
a second gelatin-based coating on top of the primary one [38]. Alternatively, the gelatin
coating may result in a large reduction in cellular uptake as most toxic effects are linked
with the intracellular presence of the QDs (e.g., induction of reactive oxygen species or
leaching of toxic Cd2+ ions upon intraendosomal degradation) [39,40]. As the QDs are to
be used for cell labeling purposes, it is pertinent that they are efficiently taken up by the
cells and enable clear fluorescent cell visualization. The uptake of the Gel/CdS QDs by
HUVEC was evaluated by confocal laser microscopy after exposing the cells to the particles
for 24 h at 5 µg/mL.

Figure 7 clearly shows high levels of cell-associated Gel/QDs, which result in a
punctuate staining pattern throughout the entire cytoplasm but is the most pronounced
in the perinuclear region. This type of staining is indicative of endosomal localization of
the Gel/CdS QDs, which is in line with previous reports on nanoparticles [40,41]. As the
image selected is a confocal slice from a HUVEC cell taken at medium height, the high
presence of particles between the actin fibers indicates high levels of internalized particles.
A 3D reconstruction of the cell with the cell nuclei and actin filaments stained (Figure 7b,c)
confirms this data, showing the clear intracellular presence of high levels of the Gel/CdS
QDs. Previous studies on CdS QDs of similar size but without a cellular coating found
much higher levels of toxicity, where the IC50 value was 4 µg/Ml [42]. The data obtained
here suggest that the gelatin coating significantly impairs CdS toxicity, while the high level
of uptake and efficient fluorescent properties suggest that these particles are well-suited as
tools for fluorescence microscopy and as contrast agents for cell labelling purposes.

The electrochemical behavior of Gel/CdS QDs immobilized at a gold electrode was
observed by the cyclic voltammetric analysis of Au|Gel/CdS electrode in the HEPES buffer
solution represented in Figure 8. The first and fifth scans are presented. Compared to the
dotted curve obtained at a bare Au/Gel electrode, not containing CdS QDs, a well-defined
oxidation and reduction peak at, respectively, 0.02 V and −0.34 V (fifth scan) was observed
and explained by the following reaction

Gel|Cd2+ + 2e−→ Gel|Cd (2)
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Figure 7. Uptake of Gel/CdS QDs (green) by HUVEC exposed for 24 h at 5 µg/mL, after which the
cells were stained for actin (red) and subjected to nuclear counterstaining (blue), (a) shows a confocal
slice in the middle of the cell (slice 7) revealing high levels of QDs within the cellular environment,
between the actin fibers, (b) shows a 3D view of a labelled cell, consisting of a composition of 15 slices
with 0.24 µm interslice distance, (c) shows a projection along the Z-axis of the 3D figure, taken along
the line drawn in (a). These data reveal high levels of Gel/CdS QDs internalized by the cells.
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Figure 8. Current-potential behavior of (a) Au|Gel (dotted) and Au|Gel/CdS electrode (solid) in
HEPES buffer solution: first (1) and fifth (2) scan, and (b) Au|Gel/CdS (1) and a Au|MOH|Gel/CdS
(2) electrode in a HEPES buffer solution. Scan 5 of each experiment is shown, (c) current-potential
behavior of Au|Gel/CdS electrode in the absence (1) and presence (2) of mM H2O2. Curve 3 is the
current-potential behavior of Au|Gel electrode in presence of mM H2O2.

At the beginning of the first scan, the oxidation peak is absent, which can be explained
by the fact that no Cd is present when the cyclic voltammogram is initiated at 0 V. As
soon as the potential is directed towards more negative potentials (ca −0.34 V) and Cd
is formed, the re-oxidation process appears in the next sweep of the scan. As previously
reported, when CdS QDs were formed in situ in gelatin, CdS QDs as well as Cd2+ ions,
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are both present in the hydrated gelatin matrix. Only the Cd2+ ions give rise to the typical
electrochemical behavior as shown in Figure 8a,b.

The prominent set of peaks was observed at more positive values for the potential than
the reversible Nernst potential for bulk deposition, i.e., −0.65 V vs SCE [43–49]. This direct
detection of Cd2+ via the UPD approach has also been demonstrated previously using
peptides as the matrix material [50,51]. Figure 8 clearly shows that when a mercaptohexanol
(MOH) linker was used as a self-assembled monolayer, the UPD is prevented by the
presence of the monolayer. Only a small fraction of the Cd2+ ions present in the gelatin
matrix will be oxidized when a Au/MOH/Gel/CdS electrode is cycled in a HEPES buffer
solution. This oxidation process starts at a more positive potential compared to the cyclic
voltammetric behavior obtained at a Au|Gel/CdS electrode. The effect of MOH in H2O2
detection was investigated by using Au|MOH|Gel/CdS electrode. The cyclic voltammetric
behavior of a Au|Gel/CdS electrode in the presence and absence of mM H2O2 are shown
in Figure 8a,b. An increase in the reduction current was observed when H2O2 was added
to the buffer solution. The onset of this catalytic process was observed at the UPD potential.
To make a comparison with the electrochemical behavior of H2O2 at the Au|Gel electrode,
curve 3 was added to Figure 8c. The bare electrode (not containing CdS QDs) curve shows
no increased reduction current when H2O2 is added to the cell solution. These results show
that the CdS QDs in the gelatin matrix catalyze redox reactions.

3. Conclusions

In summary, the present research describes a low-cost and easy one-step synthesis
strategy for fabricating the Gel/CdS QDs membrane. The Gel/CdS does not alter the
protein conformation and chemical functionality. This intercalation of CdS QDs into
the protein makes them stable and robust to use. The cellular imaging result indicates
a high level of uptake and efficient imaging potential without having any toxic effects.
These Gel/CdS QDs are biocompatible and possess long storage life when processed as
films/membranes. These films can be resuspended later for further use without losing
their photoluminescence properties. The presence of CdS QDs within the gelatin matrix
may be responsible for catalyzing redox reactions. These complementary characteristics
make Gel/CdS QDs a unique and exciting system with a longer storage potential, a simple
and convenient operating strategy to develop a new class of contrast agents for cellular
imaging and electrochemical sensor applications.

4. Experimental Section
4.1. Materials

Cadmium nitrate (CdNO3. 4 H2O, 98%), sodium sulfide (Na2S), 2-[4-(2-hydroxyethyl)-
piperazinyl] Ethane Sulfonic acid (HEPES), Sodium hydroxide and Mercapto Hexanol
(MH) were purchased from Aldrich. Gelatin (type B) is isolated from bovine skin by an
alkaline process. Gelatin possessing an Isoelectric point of around 5 and a Bloom strength
of 257 was used. Milli-Q water was used for all experimental processes.

4.2. Preparation of Gelatin/Quantum Dots

In this study, a 3 mg/mL gelatin solution was prepared at 40 ◦C and Cd (NO3)2 was
added. Other gelatin concentrations were also tried and 3 mg/mL was found to be the
best formulation for luminescence property. Equimolar ratios of the cadmium and sulfur
salts were used. After 15 min of mixing at 40 ◦C, 10 mL of Na2S solution was added
dropwise with continuous stirring at 500 rpm. As the reaction began, the gelatin solution
gradually changed from transparent to pale yellow and after the completion of the reaction,
the gelatin solution turned to dark yellow. The Gel/CdS nanocrystals were purified by
centrifugation and used for further analysis.
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4.3. Photoluminescence Property of Gelatin/Quantum Dots

The optical properties of the Gel/CdS nanocrystals were analyzed using UV and
photoluminescence spectroscopy. The UV absorption spectrum was recorded on a Perkin
Elmer Lambda 950 spectrophotometer. The excitation and emission spectra were recorded
using a quartz cuvette on Varian Cary Eclipse Fluorescence Spectrophotometer. The
intensities of the excitation and emission spectra were normalized and corrected according
to the sensitivity of the detector.

4.4. Gel/CdS Particle Morphology and Elemental Analysis

STEM, TEM and TEM-EDS analyses were performed by the JEM-2200FS FEG (JEOL)
microscope instrument operated at 200 kV and equipped with a spherical aberration
corrector. For morphology and EDS observations, a small piece of the film was placed
between two copper grids and mounted on the sample holder. The 1H-NMR spectra
of GelM and Gel/CdS were recorded at 40 ◦C in D2O by using a Bruker WH 500 MHz
instrument and Topspin software. The chemical shift was expressed in ppm as a function
of tetramethylsilane as the internal standard. This spectrum shows the different protons
from amino acids of gelatin.

4.5. H NMR

Gelatin and Gel/CdS were dissolved in milli-Q water at a concentration of 10 mg/mL.
1H-NMR spectra of Gel and Gel/CdS were recorded at a temperature of 40 ◦C using a
Bruker WH 500 MHz instrument and Topspin software. The chemical shift of 1H-NMR
was expressed in ppm with the function of tetramethylsilane as an internal standard. This
spectrum shows the different protons from amino acids of gelatin.

4.6. ATR-FTIR Measurement

ATR-FTIR measurements were performed by using a Biorad FT-IR spectrometer
FTS575C (Bio-Rad, Nazareth, Belgium), which is equipped with a “Golden Gate” ATR
accessory (Specac, Kent, UK) and fitted with a diamond crystal. The ATR-FTIR spectra
were taken as an average of 32 scans with 4 cm−1 of resolution in the region of 4000 to
500 cm−1 using WIN-IR software.

4.7. Differential Scanning Calorimeter (DSC)

Thermal properties of the gelatin/CdS QDs were characterized by differential scanning
calorimeter (DSC) from TA, model DSC822 with TA software. The sample size was 3–5 mg
weighed in a standard 40 µL aluminum pan and an empty pan was used as reference. The
temperature of the DSC instrument was calibrated using indium, lead and zinc standards
and energy calibration using indium standards.

The DSC measurements were performed in accordance with the ASTM D 3418 stan-
dard method under a helium gas flow rate of 80 mL·min−1. The detailed methods for the
DSC characterization according to the following protocol:

1. First heating scan range from 30 ◦C to 150 ◦C at 10 ◦C·min−1 and 2 min of isotherm at
the end;

2. First cooling scan from 150 ◦C to−25 ◦C at 10 ◦C·min−1 and 2 min of isotherm at the end;
3. Second heating scan from −25 ◦C to 250 ◦C at 10 ◦C·min−1.

4.8. Cellular Exposure

The cellular imaging potential of the Gel/CdS QDs was investigated using HUVEC.
The HUVEC cells were obtained from Lonza (Belgium) and kept in a basal endothelial
medium with a supplement (Gibco, Belgium). For uptake studies, HUVECs were seeded
at 2 × 104 cells/dish in collagen-coated glass-bottom confocal dishes (MatTek, USA) and
allowed to settle overnight. Then, cells were exposed to the Gel/CdS QDs for 24 h at
5 µg/mL. Following incubation, the medium was aspirated, cells were washed twice
with PBS and fixated in 4% paraformaldehyde for 10 min at ambient temperature. Next,
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cells were permeabilized for 10 min by 0.1% Triton X-100 in PBS followed by incubation
with 10% serum-containing PBS for 30 min. Then, cells were incubated with Alexa Fluor
555-conjugated Phalloidin (Molecular Probes, Invitrogen, Belgium) at 1/300 dilution in 10%
serum-containing PBS for 1 h at ambient temperature. This medium was then aspirated,
cells were washed twice with PBS after which they were counterstained with DAPI for
10 min prior to visualization by a Nikon C1 confocal microscope. The toxicity of the
Gel/CdS QDs was evaluated by a standard Alamar Blue assay (Molecular Probes, Belgium).
In brief, HUVEC cells were seeded at 2 × 104 cells/well in 96 well plates after which
the cells were allowed to settle overnight. Then, cells were incubated with the Gel/CdS
QDs at 0, 1, 2, 3, 4, 5 µg/mL and the Alamar Blue assay was performed according to the
manufacturer’s instructions after 4, 8, 24 and 48 h, and the kinetic readouts were performed
on the same plate using a FluoStar Optima plate reader (BMG LabTech, UK). These assays
were performed in triplicate.

4.9. Electrode Preparation

Electrochemical experiments were performed with reference to the previously pub-
lished protocol. Briefly, in the current experimental set-up, a three-electrode cell using
a saturated calomel reference electrode (SCE) containing two compartments (Radiome-
ter Analytical, Lyon, France) and a platinum counter electrode were used. The working
electrodes were gold electrodes with a diameter of 1.6 mm (BAS, Cambridge, UK) which
were pretreated by mechanical and electrochemical polishing according to the following
procedure. Before its first use, the electrode surface was briefly scoured with a silicon
carbide emery paper of 1200 grit to obtain a fresh surface. To smoothen the resulting
relatively rough surface, it was further subjected to sequential polishing by polishing cloth
covered with alumina powder of 1, 0.3 and 0.05 mm particle size (Buehler, Lake Bluff,
IL, USA) for, respectively, 5, 10 and 20 min. To remove any adherent Al2O3 particles, the
electrode surface was rinsed thoroughly with doubly deionized water and cleaned in an
ultrasonic bath containing deionized water (Branson 3210, FL, USA) for 2 min.

Before immobilizing the gelatin and Gel/CdS onto the electrode, the gold surface
was modified with a self-assembled monolayer [42] of 6-mercaptohexanol (MH) (unless
otherwise indicated). The latter was done by immersing the electrode in a water solution
containing 1 mmolL−1 MH for 18 h at room temperature. The modified gold electrodes
were consequently rinsed with water to remove any physically adsorbed MH. These
modified electrodes were denoted as MH|Au. To immobilize gelatin and gelatin/CdS onto
a MH|Au electrode or bare Au, 7 µL of corresponding solution (5, w/v%) was brought onto
the surface by using a syringe and was exposed to air for 2 h at 4 ◦C (drop drying). The
gelatin and Gel/CdS solution was prepared by mixing the corresponding film with HEPES
buffer solution at 40 ◦C. These electrodes were referred to in the text as Au|Gel/CdS and
Au|MOH|Gel/CdS. Finally, all electrodes were washed with the HEPES buffer solution
and stored at 4 ◦C for further characterization.
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