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Abstract: Pasture-based milk presents several advantages over milk from intensive industrial farming
in terms of human health, the environment, animal welfare, and social aspects. This highlights the
need for reliable methods to differentiate milk according to its origin on the market. Here, we
explored whether miRNA profiles could serve as a marker of milk production systems. We compared
levels of previously described miRNAs in milk from four production systems (altogether 112 milk
samples): grazing, zero grazing, grass silage or corn silage. Total RNA was extracted from the fat
phase, and miRNAs levels were quantified by real-time quantitative PCR. The levels of the miRNAs
bta-miR-155 and bta-miR-103 were higher in the grazing system than in corn silage farms. The levels of
bta-miR-532, bta-miR-103 and bta-miR-7863 showed differences between different farm managements.
The miRNAs bta-miR-155 and bta-miR-103 were predicted to participate in common functions related
to fat metabolism and fatty acid elongation. All four differentially expressed miRNAs were predicted
to participate in transport, cell differentiation, and metabolism. These results suggest that the dairy
production system influences the levels of some miRNAs in milk fat, and that bta-miR-155 and
bta-miR-103 may be potential biomarkers to identify milk from pasture-managed systems.

Keywords: milk; microRNA; biomarker; dairy production systems

1. Introduction

Milk production systems vary in how extensive or intensive they are, ranging from
one extreme of extensive pastoral livestock farming to the other extreme of intensive
industrial farming [1]. In pasture-based production systems, animals with a genotype
appropriate to the area feed on pastures or rangelands, external feed inputs are minimized,
the use of pastoral resources is optimized, and the stocking rate is low [1–4]. At the other
extreme, intensive farms rely on a high stocking rate and other measures to maximize milk
production per cow. The animals are permanently housed and eat a diet based on silage
and large amounts of concentrates [5]. Many farms combine certain characteristics between
these two extremes, where animals may graze, receive supplements with conserved forages
and concentrates and, depending on the climatic conditions, be stabled or on pastures [4,6].

Pasture-based milk production has environmental benefits over intensive produc-
tion [2,7], as the milk contains higher levels of functional nutrients [8,9] and the marginal
milk cost may be lower [10–12]. Pasture-based milk production is also more animal
friendly [13] and it reduces workload, improving farmer lifestyle and creating a positive
image of livestock farming [4].

Except for some regional or sectoral initiatives, no national regulations clearly define
the differences among this continuum of milk production systems [1]. This makes it difficult
for more or less extensive farms to certify the advantages of their milk to consumers who
demand socially and environmentally responsible products [14,15]. A traceability system
to identify the milk production system based on markers in the milk itself could support
the certification and accurate marketing of milk from less intensive production systems.
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The present study explored whether levels of microRNAs (miRNAs) in milk might
serve as indicators of how extensively or intensively it was produced. As small, endogenous
non-coding RNAs of 21–25 nucleotides, miRNAs bind to specific targets in mRNA to
regulate their expression and thereby control various processes within cells [16]. Beyond
their functions in the cells that produce them, microRNAs can also be transferred to other
cells, or to other species, in protein complexes or through extracellular vesicles [17,18].
There is also compelling evidence that humans use microRNAs from cow’s milk in gene
regulation [19,20], highlighting the bioactive characteristic of milk.

Various body fluids contain miRNAs, including tears, colostrum, plasma, and seminal
fluids [21] as well as milk [22]. Milk miRNAs have already shown potential as biomarkers
of mammary gland diseases [23,24], the cow’s physiological state [25] and stress [26],
diet [27–29], and breed [30]. Such miRNAs can also serve as a quality assurance indicator
to verify labeling on milk powder [31].

Given that miRNAs expression varies according to cow genotype [30,32] and environ-
ment [26,33], we wondered whether miRNAs profiles might differ reliably among milk
samples from different production systems. In support of this idea, gene expression in
cow mammary glands has been shown to depend on diet [34], exercise [35], and stress [36].
If so, milk miRNAs could be an ideal biomarker of the production system, given that
miRNAs are stable to high temperature, freeze/thaw cycles, RNase digestion and low
pH [37]. In addition, they can be sampled in a non-invasive or minimally invasive man-
ner [38]. Hence, in the current study, the quantification of the abundance of 12 selected
miRNAs was performed in tank milk from four dairy farming systems: grazing, zero
grazing, grass silage or corn silage. The miRNAs were selected from a previous sequencing
work [39], and others were selected from the literature for being associated with feeding
and metabolism. By comparing the abundance levels of these miRNAs, we aim to highlight
potential non-invasive biomarkers of the milk production systems, which may contribute
to the authentication of socially and environmentally responsible dairy products.

2. Results
2.1. MiRNAs with Differential Levels in Cow Milk According to Production System

Total RNA concentrations in milk fat from the four types of milk production system
varied between 84 and 144 ng/µL, and the RNA was of good quality: the absorbance ratio
was 1.67–1.98 in all samples.

MiRNA levels in milk fat across the four dairy production systems for the 12 chosen
miRNAs were estimated. We found that levels of the following four miRNAs differed
significantly between at least two dairy production systems: bta-miR-155, bta-miR-103,
bta-miR-532, and bta-miR-7863 (Figure 1). Post hoc analysis showed that miRNAs bta-miR-
103 and bta-miR-155 showed significant differences between the grazing and corn silage
groups, being more abundant in the grazing farms. The bta-miR-532 was significantly
more abundant in grazing farms than in zero grazing, while on the contrary bta-miR-7863
was more abundant in zero-grazing farms than in grazing. Bta-miR-103, bta-miR-532 and
bta-miR-7863 showed significant differences between zero grazing and corn silage groups,
with bta-miR-103 and bta-miR-7863 being more abundant in the zero-grazing group, but
bta-miR-532 was more abundant in the corn silage group. The miRNA bta-miR-532 was
significantly more abundant in corn silage farms than in grass silage (Figure 1).
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Figure 1. Average relative levels of the miRNAs bta-miR-103, bta-miR-155, bta-miR-532, and bta-miR-
7863 in raw milk from grazing (n = 44), zero-grazing (n = 13), grass silage, (n = 10), or corn silage
(n = 45) milk production systems. The bar chart shows the average of miRNA levels in each farm
group, and the standard error bars. Different letters show significant difference between groups.

2.2. miRNA Functionality and Pathway Analyses

To determine the possible implications of the studied miRNAs in the biological re-
sponse to different production systems, we predicted the target genes of the four miRNAs
as well as the functional pathways in which those target genes may participate. The 707
targets of bta-miR-103 were associated with 71 KEGG pathways (The Kyoto Encyclopedia of
Genes and Genomes), 8 biological processes, and 15 molecular functions. The 460 targets of
bta-miR-155 were associated with 106 KEGG pathways, 5 biological processes, and 9 molec-
ular functions. The 2266 targets of bta-miR-7863 were associated with 76 KEGG pathways,
12 biological processes, and 7 molecular functions. The 208 targets of bta-miR-532 were
associated with 29 KEGG pathways, 3 biological processes, and 22 molecular functions.

Among these target processes, we identified 15 KEGG pathways (Table 1), 8 biological
processes (Table 2), and 12 molecular functions (Table 3) that were related to milk production
and metabolism. In particular, the four miRNAs were all predicted to be involved in the
MAPK signaling pathway (mitogen-activated protein kinases signaling pathway) and the
molecular functions of transferases and serine/threonine-protein kinases. Two metabolic
pathways stand out for their relationship with milk production and secretion, the oxytocin
and prolactin signaling pathways.



Int. J. Mol. Sci. 2022, 23, 11681 4 of 12

Table 1. KEGG pathways that are associated with milk production and metabolism and that are
predicted to be regulated by milk miRNAs with differential levels across production systems.

KEGG Signaling Pathway
Biomarker

No. of Target Genes p-Value
bta-miR-103 bta-miR-155 bta-miR-532 bta-miR-7863

AMPK 1 x x x 38 4.6 × 10−7

MAPK x x x x 67 3.2 × 10−6

PI3K-Akt 2 x x x 27 5.6 × 10−5

Oxytocin x x x 38 1.1 × 10−4

Prolactin x x 25 1.2 × 10−4

Insulin x x 35 1.4 × 10−4

Ras 3 x x x 53 1.6 × 10−4

Growth hormone synthesis,
secretion and action x x 31 1.8 × 10−4

TGF-beta 4 x x 25 6.2 × 10−4

Calcium x x 52 7.3 × 10−4

Glucagon x 24 6.0 × 10−3

Lipid and atherosclerosis x x 43 2.5 × 10−2

cGMP-PKG 5 x 32 3.3 × 10−2

Mineral absorption x 13 8.3 × 10−2

Lysine degradation x 14 9.7 × 10−2

1 Adenosine monophosphate-activated protein kinase (AMPK), 2 phosphoinositide 3-kinases- protein kinase
B (PI3Ks-Akt), 3 rat sarcoma virus (Ras), 4 transforming growth factor beta (TGF-beta), 5 cyclic guanosine
monophosphate- protein kinase G (cGMP-PKG). x implies pathway associated.

Table 2. Biological processes that are associated with milk production and metabolism and that are
predicted to be regulated by milk miRNAs with differential levels across production systems.

Biological Process Biomarker No. of Target Genes p-Value
bta-miR-103 bta-miR-155 bta-miR-532 bta-miR-7863

Growth regulation x 11 2.5 × 10−3

Transport x 249 1.4 × 10−2

Ion transport x 79 1.6 × 10−2

Calcium transport x 15 1.7 × 10−2

Amino- acid transport x 7 2.4 × 10−2

Protein transport x x 67 2.7 × 10−2

Differentiation x 45 6.0 × 10−2

Sodium transport x 13 9.5 × 10−2

x implies biological processes associated.

The miRNAs bta-miR-103, bta-miR-155 and bta-miR-532 showed high homology to
human miRNAs, so we used DIANA miRPath for a second functionality analysis. Using
Tarbase, we found that human target genes were experimentally validated for miR-103a-3p
(2156 genes), miR-155 (1117 genes), and miR-532 (306 genes). These targets (using the option
union for KEGG and intersection for GO (gene ontology) to merge results were associated
with 34 KEGG pathways (Figure 2) and 62 GO categories (Figure S1). These analyses
allowed us to predict pathways regulated by the three miRNAs (available in the Tarbase
database) (Figure 2 and Figure S1). These results predicted miR-103a-3p and miR-155 to be
involved in fatty acid elongation and metabolism.
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Table 3. Molecular functions that are associated with milk production and metabolism and that are
predicted to be regulated by milk miRNAs with differential levels across production systems.

Molecular Function
Biomarker No. of Target Genes p-Value

bta-miR-103 bta-miR-155 bta-miR-532 bta-miR-7863

Transferase x x x x 279 1.4 × 10−20

Activator x x x 64 1.3 × 10−8

Ion channel x x 65 3.0 × 10−8

Serine/threonine-protein kinase x x x x 55 7.1 × 10−8

Developmental protein x x x 64 3.0 × 10−6

Glycosyltransferase x 31 2.5 × 10−3

Hydrolase x x x 182 2.8 × 10−3

Growth factor x 17 9.0 × 10−3

Protein phosphatase x x 19 1.3 × 10−2

Guanine-nucleotide releasing factor x x 16 1.6 × 10−2

Calcium channel x 8 4.0 × 10−2

Potassium channel x 12 4.8 × 10−2

x implies molecular functions associated.

Int. J. Mol. Sci. 2022, 23, x FOR PEER REVIEW 5 of 12 
 

 

The miRNAs bta-miR-103, bta-miR-155 and bta-miR-532 showed high homology to hu-

man miRNAs, so we used DIANA miRPath for a second functionality analysis. Using Tar-

base, we found that human target genes were experimentally validated for miR-103a-3p 

(2156 genes), miR-155 (1117 genes), and miR-532 (306 genes). These targets (using the option 

union for KEGG and intersection for GO (gene ontology) to merge results were associated 

with 34 KEGG pathways (Figure 2) and 62 GO categories (Figure S1). These analyses al-

lowed us to predict pathways regulated by the three miRNAs (available in the Tarbase da-

tabase) (Figures 2 and S1). These results predicted miR-103a-3p and miR-155 to be involved 

in fatty acid elongation and metabolism. 

 

Figure 2. Heatmap of hierarchical clustering of miR-103, miR-155 and miR-532 based on mRNA tar-

get pathways, identified in DIANA using the Tarbase and KEGG pathway union representation. 

Darker colors represent lower p-values. 

GO analysis revealed nine categories common to miR-103a-3p, miR-155, and miR-532: 

protein binding transcription factor activity, cellular protein modification processes, catabolic 

Figure 2. Heatmap of hierarchical clustering of miR-103, miR-155 and miR-532 based on mRNA target
pathways, identified in DIANA using the Tarbase and KEGG pathway union representation. Darker
colors represent lower p-values.



Int. J. Mol. Sci. 2022, 23, 11681 6 of 12

GO analysis revealed nine categories common to miR-103a-3p, miR-155, and miR-
532: protein binding transcription factor activity, cellular protein modification processes,
catabolic processes, biosynthetic processes, cellular nitrogen compound metabolic pro-
cesses, cellular protein metabolic processes, small-molecule metabolic processes, mRNA
metabolic processes, generation of precursor metabolites and energy, and regulation of
glucose transport.

3. Discussion

This work aimed to identify miRNAs that vary according to milk production system
in order to differentiate milk from farms managed extensively. In the present study, among
the 12 miRNAs analyzed, the levels of 4 miRNAs differed significantly among the types of
dairy production system. These findings suggest the potential of profiling miRNAs in milk
in order to certify whether it came from an extensive grazing production system.

Previous work from our group showed that the levels of the miRNA bta-miR-215
in milk fat differed between the two extremes of extensiveness/intensiveness [40]. The
present work is not limited to extreme production systems but compares grazing livestock
farms with intensive and mixed managements.

The levels of bta-miR-103 were highest in farms including fresh grass in the diet, either
grazed or harvested. Previous work showed that the expression of bta-miR-103 in blood [41]
and subcutaneous fat [42] was similar between cows fed on pasture and those fed in a
free-stall barn with fresh grass harvested every morning. The fresh grass delivery mode
does not affect the expression of bta-miR-103.

In a study aiming to evaluate the effect of pasture during 3 months on stearoyl-CoA
desaturase (SCD) and miR-103 expression in milk dairy goats, the SCD was significantly higher
in grazing animals compared to housed animals consuming conserved forages, whereas miR-
103 tended to be higher but not significantly [43]. Additionally, Lin et al., (2013) [44] showed
that miR-103 and SCD gene expression had similar trends, and that the overexpression of
miR-103 in mammary gland has been linked to the increased synthesis of milk fat, which is in
line with the results obtained in our study linking grazing with higher milk fat content [45],
and conversely, relating higher proportion of concentrate in ration with lower milk fat content
(intensive farms) [46].

However, another study showed that when the grain-fed cattle were compared to the
grazing cattle, the bta-miR-103 content in plasma tended to be higher in the first group
(p = 0.057), although the difference was not significant [27]. Differences between the
previous studies and the present work may reflect differences in the type of tissues and
to the fact of studying the cows individually, which may introduce individual variability,
such as lactation stage and number of lactations [43]. These and other factors can even
mask differences in the expression of miRNAs according to production system [47].

Bta-miR-155 was abundant in milk from grazing farms compared with corn silage
farms. This miRNA was implicated in aspects of energy balance regulation: feed restriction
upregulates it in the mammary gland tissue of dairy cows [30], while oxidative stress
upregulates it in a mouse model [48]. Negative energy balance in dairy cows activates the
production of reactive oxygen metabolites, which in large quantities can create oxidative
stress [49]. Grazing may improve immune function and oxidative status [50] due to the
high amounts of antioxidants in fresh grass and the exercise involved [51]. On the contrary,
other studies have reported the opposite results, with grazing favoring an increase in free
radicals without a concomitant increase in the amounts of antioxidants [52]. In grazing
cows, the energy input may be lower than in intensive farming [53], which is probably at
the origin of the underlying bta-miR-155 levels in our study.

Studies linked miR-155 levels to a proinflammatory response in humans [54] and dairy
cattle [24]. In dairy cattle, the upregulation of bta-miR-155 was related to significantly higher
risk of mastitis [24]. On grazing farms, it is more likely to have higher levels of somatic
cells in milk compared to housed animals [55]; an SSC level above a certain level indicates
inflammatory risks, such as mastitis [56], but below these levels may indicate resilience
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capacity [57]. Therefore, SSC levels may be linked to the differences in bta-miR-155 levels
between grazing or housed cattle.

Furthermore, bta-miR-7863 is more abundant in zero-grazing farms compared to
grazing and corn silage animals. Bta-miR-7863 has been studied as a mammary biomarker
of mastitis caused by Staphylococcus aureus and Escherichia coli [58].

To our knowledge, no studies have investigated bta-miR-532 expression in milk so far.
The four miRNAs identified in this study are related to the MAPK pathway, which

regulates cell cycle entry and proliferation [59] and the molecular function of serine/threonine-
protein kinases, which regulate cell proliferation, programmed cell death (apoptosis), cell
differentiation, and embryonic development [60]. Thus, miRNAs bta-miR-155, bta-miR-103,
bta-miR-532 and bta-miR-7863 may participate in cell differentiation in the mammary gland
and thereby regulate milk production. Our GO-enrichment analysis identified 249 target
genes of the 4 studied miRNAs that are related to transport activity, which may indicate the
great involvement of the 4 studied miRNAs in the milk synthesis precursor transport process.

Using DIANA miRPath, experimentally validated human targets were identified, such
as metabolic pathways related to fatty acid elongation and metabolism for miR-103 and
miR-155. This suggests that the high levels of these two miRNAs in cow’s milk are related
to the increased fat synthesis due to the consumption of fresh grass, especially during
grazing [45]. In parallel this leads us to think about the importance of confirming these
results and to study the expression of these miRNA according to the fatty acid profile
of milk.

We observed variations in four miRNAs among the four types of farms grouped
according to the presence or absence of grazing and different ration ingredients. We did not
consider quantitative factors, such as daily grazing hours, pasture management, vegetation,
animal density, and amounts of ration ingredients. This could the reason for the large
variations in miRNA levels in the groups observed in this study. It would be interesting to
investigate, in further studies, the variation of miRNA levels in milk by including these
quantitative factors. Within the groups, the farms are not perfect replicates, as the samples
belong to commercial farms, which increases the variability. In some groups, we were
unable to obtain a large number of samples, as in the case of zero grazing and grass silage.
This is due to the fact that few farms adopt this management system. In fact, this is the first
investigation of miRNA variation in cow’s milk on commercial dairy farms representing a
wide range of production systems.

4. Materials and Methods
4.1. Study Farms

The sampled farms are located in different parts of Asturias (Spain) and are represen-
tative of the characteristic production systems in the north of Spain. For each farm, the
following data about feed for lactating cows were requested at three days before site visits:
diet composition, whether fresh grass was consumed, and whether grass was consumed
as grazed or cut. Data were also collected about the number of lactating cows, breed, and
average milk production during the three days prior to the site visit.

4.2. Farm Classification

Given the continuum of farm extensiveness and lack of clear regulatory definitions [1],
we defined four milk production systems for the present study based on what we considered
the most relevant factors and based on the approach of Abou el qassim (2017) [39]. We
considered only the management system and the presence or absence of certain ingredients
in feed ration. We did not take into account quantitative variables, such as hours spent
grazing, or the levels or proportions of certain ingredients in the food ration. In this way,
we divided farms into the following four groups (Table 4): grazing (n = 44 farms), where
animals had access to grazing and ate fresh grass and concentrated feed (grazing represents
the extensive system); zero grazing (n = 13), where animals received a ration of fresh grass
and concentrated feed in the stable, without grazing; grass silage (n = 10), where animals
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received ration based on grass silage and concentrated feed, without grazing or corn silage
(zero grazing and grass silage represent intermediate systems); and corn silage (n = 45),
where animals received ration of corn silage and concentrated feed, without grazing (corn
silage represents intensive system).

Table 4. Classification of the farms in the study based on milk production system.

Ration Composition

Production System Grazing Fresh Grass in the Stable Grass Silage Corn Silage Concentrated Feed

Grazing (n = 44)

+ - - - +

+ + - - +

+ - + - +

+ - + - +

+ - - - +

+ + + - +

+ - + + +

+ - + + +

Zero grazing (n = 13)

- + + - +

- + - - +

- + + - +

- + - - +

Grass silage (n = 10) - - + - +

Corn silage (n = 45) - - + + +

+ implies presence in the diet, - implies no presence in the diet.

4.3. Sample Collection and Processing

A total of 112 raw tank milk samples were collected, representing 112 farms, with 10
Holstein cows in the smaller farms and 250 Holstein cows in the bigger one, during fall
2016, spring 2017, and both fall and spring, 2019 and 2021. Samples included two milking
sessions: afternoon and morning.

Tubes containing 50 mL of each milk sample were centrifuged at 1900× g for 20 min.
The fat layer was transferred to fresh 50 mL RNase-free tubes, then Qiazol lysis reagent
(Qiagen, Barcelona, Spain) was added (1 mL per milk fat gram). Tubes were vortexed until
the fat was thoroughly dispersed, and samples were stored at −80 ◦C until RNA extraction.

4.4. Total RNA Extraction

Total RNA was extracted from 2 mL of milk fat with Qiazol using the mirVana
isolation Kit (Ambion) following the manufacturer’s instructions. RNA was eluted in
100 µL of nuclease-free deionized water. The Nano-Drop spectrophotometer (ND-1000,
Thermo Fisher Scientific, Madrid, Spain) was used to assess RNA concentration and purity
(A260/280 ratio).

4.5. Quantitative Real-Time PCR

The isolated total RNA was reverse transcribed using the TaqMan Advanced miRNA
cDNA Synthesis Kit (Thermo Fisher Scientific, Madrid, Spain). Levels of miRNAs were
determined by quantitative real-time PCR (qRT-PCR) using the TaqMan Advanced miRNA
Assay (ThermoFisher Scientific, Madrid, Spain) and a StepOne thermocycler (Applied
Biosystems, Foster City, CA, USA) under the following conditions: 95 ◦C for 20 s, followed
by 40 cycles of 95 ◦C for 1 s and 60 ◦C for 20 s. Template cDNA (5 µL of a 1:10 dilution)
were added to 15 µL of a mix comprising 10 µL of 2× TaqMan Fast Advanced Master mix,
1 µL of 20× TaqMan Advanced miRNA Assay, and 4 µL of RNase-free water.

Specific miRNAs were quantified after selection based on previous sequencing stud-
ies [39]. Quantified miRNAs included bta-miR-215, bta-miR-369-5p, bta-miR-6520, bta-miR-
7863, and bta-miR-532, all of which have been identified as the most highly expressed in
milk [40]. We also quantified several miRNAs that have been associated with feeding and
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metabolism: bta-miR-148, bta-miR-155, bta-miR-451-5p, bta-miR-103, bta-miR-181, bta-miR-21-
5p, and bta-miR-29 [27,28,41,61]. The relative abundance of miRNAs was quantified using
the 44Ct method after normalization with bta-miR-30 and bta-miR-151 as described by
Abou el qassim et al., (2022) [40]. All reactions were performed in duplicate. Negative
controls lacking cDNA were included in all experiments.

4.6. Prediction of Potential Functions and Pathways of Genes Targeted by Milk miRNAs

Targets of miRNAs with different levels across farms were identified using TargetScan
7.2 [62] in the cow database. Target genes were selected based on cumulative weighted
context++ score > 0. Functional enrichment analysis of signaling pathways involving the
miRNAs target genes was performed using DAVID Bioinformatics tools (v.6.8). The Kyoto
Encyclopedia of Genes and Genomes (KEGG) pathways, biological process, and molecular
function were analyzed [63].

The targets of the studied milk miRNAs and their associated pathways were also
analyzed using DIANA miRPath 3.0 [64]. The validated miRNA targets were identified
using DIANA TarBase 7.0 (http://diana.imis.athena-innovation.gr/DianaTools/ accessed
on 1 May 2022). Gene Ontology (GO) categories and KEGG were assessed. As bovine
genes are not included in DIANA miRPath, target prediction and pathways analysis were
performed based on human miRNA annotations.

Statistical analyses were carried out using the integrated Fischer’s exact test followed
by FDR (false discovery rate) adjustment.

4.7. Statistical Analysis

Data were analyzed using SPSS 22 software. One-way ANOVA was used to compare
miRNA levels among the four study groups as independent biological types. When the
analysis of variance gave a significant difference for the main effect, the Bonferroni post hoc
test was applied (multiple comparison of means). When the assumption of equal variances
was not met, Welch’s ANOVA was used as an alternative to one-way ANOVA. When
the normality of the residues and homogeneity of variance was not verified, means were
compared using the Kruskal–Wallis non-parametric test; when significant differences were
attained, the Games–Howell post hoc test (multiple comparison of means) was performed.
Significance was defined as p ≤ 0.05.

5. Conclusions

This study confirms that the dairy production system could influence miRNA levels in
milk fat. In particular, the miRNAs bta-miR-103 and bta-miR-155 are significantly abundant
in grazing farms and may be related to different factors intrinsic to grazing, such as diet and
fresh grass consumption, as well as exercise and other aspects, such as immune response
and oxidative status. These miRNAs emerge as potential biomarkers for the tracing of
pasture-based milk.
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