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Abstract: Neoantigens derived from somatic DNA alterations are ideal cancer-specific targets. In
recent years, the combination therapy of PD-1/PD-L1 blockers and neoantigen vaccines has shown
clinical efficacy in original PD-1/PD-L1 blocker non-responders. However, not all somatic DNA mu-
tations result in immunogenicity among cancer cells and efficient tools to predict the immunogenicity
of neoepitopes are still urgently needed. Here, we present the Seq2Neo pipeline, which provides a
one-stop solution for neoepitope feature prediction using raw sequencing data. Neoantigens derived
from different types of genome DNA alterations, including point mutations, insertion deletions and
gene fusions, are all supported. Importantly, a convolutional neural network (CNN)-based model
was trained to predict the immunogenicity of neoepitopes and this model showed an improved per-
formance compared to the currently available tools in immunogenicity prediction using independent
datasets. We anticipate that the Seq2Neo pipeline could become a useful tool in the prediction of
neoantigen immunogenicity and cancer immunotherapy. Seq2Neo is open-source software under an
academic free license (AFL) v3.0 and is freely available at Github.

Keywords: immunogenicity; immunotherapy; bioinformatics pipeline; deep learning

1. Introduction

In recent years, PD-1/PD-L1 blocker immunotherapy has transformed the treatment
of cancer. PD-1 is a protein found on T cells that helps to keep the immune systems in check.
The combination of PD-1 and PD-L1 helps to stop T cells killing other cells, including cancer
cells, which can result in immune evasion [1–4]. Previous studies have reported that only
a small proportion of patients present lasting clinical responses while most patients only
present transient responses or no response at all [5,6]. The combination of PD-1 blockers and
other forms of immunotherapy, such as neoantigen vaccines, has demonstrated favorable
development prospects [7,8].

Neoantigens derived from somatic DNA alterations are ideal cancer-specific targets.
Neoantigen vaccines have demonstrated therapeutic effects in terms of enhancing im-
munotherapy efficacy [9]. It has also been reported that the combination of PD-1 antibodies
and neoantigen vaccines is safe and effective in the treatment of cancer patients [8]. In
addition, TCR-T-targeting neoantigens have shown dramatic effects in clinical practice [10].
However, the success of these neoantigen-related therapies relies on efficient neoantigen
prediction tools.

A plethora of peptide–HLA binding prediction algorithms have been developed to
predict which peptides would bind to specific cognate HLA alleles [11–14]. However,
HLA–peptide binding affinity alone is not sufficient for predicting the immunogenicity
of peptides. In addition, the currently available neoantigen prediction tools only provide
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limited neoantigen features or focus on specific genome alterations, such as point muta-
tions. Methods for the accurate prediction of the immunogenicity of neoantigens based
on raw sequence data are still urgently needed. Here, we present an open-source pipeline
tool, Seq2Neo, which could provide a one-stop service for raw data preprocessing, HLA
typing, mutation labeling and neoantigen prediction as it can support neoantigens derived
from point mutations, insertion and deletions (INDELs) and gene fusions and predict
various neoantigen features for each candidate peptide, including HLA binding affinity,
the transport efficiency of transporters associated with antigen processing (TAP) and gene
expression. Importantly, a convolutional neural network (CNN)-based immunogenicity
prediction model was also constructed and this model showed an improved performance
compared to other known methods.

2. Results and Discussion
2.1. Neoantigen Feature Prediction

In our study, Seq2Neo used a command line-based interface, which allowed users
to perform workflows automatically. Seq2Neo used publicly available tools for mutation
labeling, HLA typing and HLA affinity binding prediction. Then, a CNN-based model was
constructed with features that were generated using Seq2Neo to predict the immunogenicity
of peptides and directly stimulate CD8+ T cell response. Finally, Seq2Neo outputted various
peptide features, including immunogenicity score, peptide–HLA binding affinity, TAP
transport efficiency and gene expression (Figures 1 and S1). The Seq2Neo model (Figure 1)
began by importing raw sequencing data in FASTQ, SAM or BAM format and then utilized
the user input to select the corresponding workflow to run. Point mutation and INDEL
detection was performed using Mutect2 [15] and gene fusion detection was performed
using STAR-Fusion [16]. Subsequently, somatic variant data were generated in VCF format.
MHC genotyping was performed using HLA-HD [17]. Before the neoantigen prediction,
sample somatic variants were annotated using ANNOVAR [18] or Agfusion [19] to obtain
potential mutant peptides.
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Figure 1. An overview of Seq2Neo. The input of Seq2Neo includes raw WGS, WES, RNA-seq or pep-
tide information. Seq2Neo predicts various peptide features, including CNN-based immunogenicity
score, peptide–HLA binding affinity, TAP transport efficiency and gene expression. Then, Seq2Neo
uses those features to rank candidate neoantigens.
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2.2. Selection of the Best HLA-I Binding Affinity Prediction Algorithms

We used 23319 peptides (14677 positives, with IC50 = 500 nm as the threshold) from
the Immune Epitope Database (IEDB) to evaluate the performance of selected peptide–
HLA I binding affinity prediction algorithms, including NetMHCpan [20], MHCflurry [21],
PickPocket [22] and NetMHCcon [23]. The NetMHCpan BA model obtained the highest
accuracy score (0.75) and the highest precision score (0.96) (Figure 2A,B), so this algorithm
was selected for peptide–HLA binding prediction in Seq2Neo. In addition to peptide–
HLA binding affinity, Seq2Neo used TPMCalculator [24] to detect gene expression and
NetCTLpan [25] to obtain TAP transport efficiency.
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Figure 2. A benchmark analysis of different HLA-I binding affinity prediction algorithms: (A) a
comparison of the performance of different algorithms in terms of prediction accuracy, precision and
recall (the dataset was downloaded from IEDB and the thresholds of an IC50 value less than 500 nM
and a rank percentile less than 1% were used to determine positive peptides); (B) a comparison of the
different algorithms on different lengths of peptides.

2.3. Data Used for Seq2Neo-CNN Model Training

The fundamental feature of neoepitopes is their ability to stimulate cytolytic T cell
responses, but this immunogenicity information cannot be predicted using most of the
current neoantigen prediction tools. For immunogenicity prediction, we searched the IEDB
database for experimental evidence that supported the immunogenicity of peptides and
acquired 75496 experimentally evaluated immunogenicity assays (Figure 3). After applying
our filter criteria (Section 3), 8975 data points (5342 negative peptides) were retained in
the final dataset. We chose an independent dataset for model validation, which included
599 experimentally tested tumor-specific neoantigens from the Tumor Neoantigen Selection
Alliance (TESLA) after deduplication and length restriction to 8–11 [26].

2.4. Features Associated with Peptide Immunogenicity

In order to find beneficial features for immunogenicity prediction, we compared the
features of immunogenic and non-immunogenic peptides. The features of HLA-binding
affinity, TAP transport efficiency and proteasomal C terminal cleavage were considered. The
differences in HLA-binding affinity and TAP transport efficiency between the immunogenic
and non-immunogenic peptides were significant but those in proteasomal C terminal
cleavage were not (Figure 4A–C). HLA-binding affinity and TAP transport efficiency were
not correlated (R = 0.02 and P = 0.055; Figure 4D); therefore, we incorporated these two
features into our Seq2Neo-CNN model.
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information about the IEDB dataset. We restricted the dataset to peptides with metadata that
matched the following keywords: (1) linear epitopes, (2) specific T cell assays, (3) intact MHC I class,
(4) originated from humans, (5) any diseases and (6) intact test information for negative peptides.
CFSE, carboxyfluorescein succinimidyl amino ester; ELISA, enzyme-linked immunosorbent assay;
ELISPOT, enzyme-linked immunosorbent spot; ICS, intracellular cytokine staining.

2.5. Seq2Neo-CNN Model for Immunogenicity Prediction

We built a CNN-based model, named Seq2Neo-CNN, to predict peptide immuno-
genicity (Figure 5A). The performance of the trained CNN model was compared to that
of other machine learning models (ExtraTree, random forest, logistic regression, SVM and
XGBoost), which were trained with the prediction accuracy, recall and precision data that
were collected in this study (Figure 5B) and also data from the independent TESLA dataset
(Figure S2). The Seq2Neo-CNN model showed the highest performance compared to the
other machine learning models. The performance of Seq2Neo-CNN was also compared to
other available neoepitope immunogenicity prediction tools using the independent TESLA
dataset, including the DeepHLApan [27], IEDB [28] and DeepImmuno-CNN [29] models.
Seq2Neo-CNN also showed the highest performance compared to these selected known
methods (Figure 5C). The details of the Seq2Neo-CNN model construction and training are
described in Section 3.

2.6. Seq2Neo Validation

In recent years, several tools for predicting neoantigens have been reported. Some
representative tools are shown in Table 1 [12,14,30–33]. Two of the pipelines (TSNAD2 and
Neopepsee) contain immunogenicity prediction functions. However, the other tools call
their immunogenicity prediction modules DeepHLApan and IEDB, which proved to be
less accurate than Seq2Neo-CNN (Figure 5C). Compared to the other pipelines, ease of use
was also an advantage of Seq2Neo, since the Seq2Neo model provides a one-stop solution
for neoantigen prediction using raw sequencing data. To demonstrate the performance of
Seq2Neo, we applied Seq2Neo to samples from five cancer patients with experimentally
validated neoantigenic mutations [34–37]. Those cancer samples contained WES, RNA-
seq data and 16 experimentally validated neoantigenic DNA sites (Figure S3A,B). After
applying the selection criteria (TAP > 0, IC50 ≤ 500, TPM > 0 and immunogenicity > 0.5),
Seq2Neo identified 10 out of the 16 validated neoantigenic sites. The ranking of the
candidate neoantigens is shown in Figure S3C. We selected three pipelines with detailed
documentation, namely pVACseq, TSNAD 2.0 and NeoPredPipe to compare to Seq2Neo.
Then, we compared the prediction results of Seq2Neo to those of the other three pipelines.
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The ranking of the most validated neoantigenic sites in Seq2Neo was lower than that in the
other three pipelines, which meant that Seq2Neo demonstrated an improved performance
in terms of identifying the real immunogenic neoantigens (Figure S3C).
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Figure 4. An exploration of the feature differences between immunogenic and non-immunogenic
peptides: (A) a distribution comparison of HLA I binding affinity, TAP transport efficiency and
proteasomal C terminal cleavage between immunogenic and non-immunogenic peptides; (B) a distri-
bution comparison of the binding of the 20 most frequent HLA-I alleles to the immunogenic (left)
and non-immunogenic mutated peptides (right); (C) a comparison of binding affinity, TAP trans-
port efficiency and proteasomal C terminal cleavage between immunogenic and non-immunogenic
mutated peptides (****, p < 10−4; ns, not significant); (D) pairwise correlations between the three
neoepitope features (peptide–HLA binding affinity, TAP transport efficiency and proteasomal C
terminal cleavage), showing the Pearson correlation coefficients R and p values.
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Figure 5. Our convolutional neural network-based model (Seq2Neo-CNN) for peptide immuno-
genicity prediction: (A) a schematic diagram of the Seq2Neo-CNN architecture (in this model, each
peptide–MHC pair is subjected to two consecutive convolutional layers, followed by three fully
connected dense layers and is then input into two fully connected dense layers, together with TAP
transport efficiency and binding affinity information, to output a predicted immunogenicity value);
(B) a comparison between the Seq2Neo-CNN model and other machine learning algorithms (to select
the best predictive model, we constructed five traditional machine learning classifiers (ExtraTree,
random forest, logistic regression, SVM and XGBoost) and the accuracy, recall and precision of each
method are shown); (C) a comparison of the performance of the different models when predicting
immunogenic peptides, based on the number of true positive peptides that overlapped with the
top 20 or 50 predictions of each algorithm (the Seq2Neo-CNN model outperformed the existing
immunogenicity prediction methods using the independent TESLA dataset).

Table 1. Representative tools for predicting neoantigens that have been published in recent years.
The neoantigen type, input data, neoantigen class, HLA typing, immunogenicity score, TAP score
and programming language that were used are presented.

Method Neoantigen
Types Input Data Neoantigen

Class HLA Typing Immunogenicity
Score

TAP
Score Language Publish

Year

Seq2Neo SNVs, indels,
gene fusions

WES/WGS,
RNA-seq Class I Yes Yes Yes Python This

study
pVACseq SNVs, indels,

gene fusions VCF Class I and II No No No Python 2019

TSNAD 2 SNVs, indels,
gene fusions

WES/WGS,
RNA-seq Class I Yes Yes No Python 2021

NeoPredPipe SNVs, indels VCF, HLA types Class I and II No No No Python 2019
Neopepsee SNVs VCF, RNA-seq,

HLA types Class I Yes Yes No Java 2018

nextNEOpi SNVs, indels,
gene fusions

WES/WGS,
RNA-seq Class I and II Yes No No Nextflow 2021

ProTECT SNVs WES/WGS,
RNA-seq Class I and II Yes No No Python 2020
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2.7. Seq2Neo Implementation

The Seq2Neo pipeline was developed in Python 3.7.12 following a clean, modular
and robust design, in accordance with best practice coding standards. The instructions
for installing and running Seq2Neo are presented in a public GitHub repository (https:
//github.com/XSLiuLab/Seq2Neo accessed on 28 June 2022). This model was designed to
run as a command line-based program with a user-friendly interface, thereby allowing non-
expert users to become familiarized with its functions quickly. To facilitate the installation
of Seq2Neo, Docker containers and Conda packages are provided (Docker: https://hub.
docker.com/r/liuxslab/seq2neo accessed on 28 June 2022; Conda: https://anaconda.org/
liuxslab/seq2neo accessed on 28 June 2022).

3. Materials and Methods
3.1. Data Preprocessing

The Seq2Neo model began by importing data in FASTQ, SAM and BAM format and
then utilized the user input to select the corresponding workflow to run. The FASTQ files
were processed for quality control and any adapter sequences at the end of the reads were
removed using Fastp [38]. The raw sequence data were aligned to the reference genome
(hg38) using the Burrows–Wheeler alignment tool [39]. When the input format was SAM
or BAM, GATK best practice was performed first during the data preprocessing [40]. The
SAM files were sorted and read group tags were added using Samtools [40]. After being
sorting into coordinate order, the BAM files were processed using PICARD MarkDuplicates
and the local realignment and quality score recalibration were conducted using the Genome
Analysis Toolkit [41].

3.2. Somatic Mutation Detection

Generated or user-inputted co-cleaned BAM files were used for point mutation and
insertion and deletion (INDEL) detection using Mutect2 [15] and gene fusions were de-
tected using STAR-Fusion [16]. Then, somatic variant data were generated in VCF format.
Additionally, parallel computation was enabled, which significantly reduced the computa-
tion time.

3.3. HLA Genotyping

Human leukocyte antigen (HLA) genes play a critical role in antigen presentation and
immune signaling. Here, HLA-HD [17] was adapted for HLA genotyping using DNA-seq
data and outputted personal HLA types for each patient, including class I and II HLAs.

3.4. Gene Expression Detection

The expression and presentation of tumor antigen-presenting cells on the surface
are the prerequisites for neoantigens to be recognized by T cells. Seq2Neo supported the
annotation of the expression of neoantigen candidates using TPMCalculator [24].

3.5. Neoepitope Features

In addition to peptide–HLA binding affinity, other features, including TAP trans-
port efficiency, gene expression and immunogenicity score, could also be predicted using
Seq2Neo. These neoepitope features could facilitate the filtering of candidate peptides for
vaccine or immunotherapy target selection.

3.6. Immunogenicity Prediction (Seq2Neo-CNN Model)

As the core of the Seq2Neo pipeline, Seq2Neo-CNN could predict the immunogenicity
of selected peptides. Below, we provide a detailed description of the generation of the
Seq2Neo-CNN model.

https://github.com/XSLiuLab/Seq2Neo
https://github.com/XSLiuLab/Seq2Neo
https://hub.docker.com/r/liuxslab/seq2neo
https://hub.docker.com/r/liuxslab/seq2neo
https://anaconda.org/liuxslab/seq2neo
https://anaconda.org/liuxslab/seq2neo


Int. J. Mol. Sci. 2022, 23, 11624 8 of 12

3.6.1. Dataset Selection

We collected data from the IEDB database for the initial model training and validation
(3 August 2021 version) using the following IEDB searching conditions: epitope (linear
sequence), assay (positive/negative), T cell assay, MHC restriction (MHC class I), host
(Human) and disease (any). In all, we found 75,496 relevant experiments. Although there
are different ways to detect the immunogenicity of peptides, some experiments did not
detect direct contact with T cells that induced immune responses, so we only selected
data that were validated by ELISPOT, 51 Chromium, ICS, Multimer/Tetramer and ELISA.
Then, we deleted any instances that did not have four-digit MHC alleles or were repeated.
We also limited the length of peptides to 8–11 mer and removed negative peptides that
had missing experimental information or less than four test subjects. Finally, we obtained
8975 peptides that met the requirements for the final dataset, among which 3633 were posi-
tive reactive instances and the remaining 5342 were negative. We selected an independent
dataset for further evaluation, which included 599 experimentally tested tumor-specific
neoantigens from the Tumor Neoantigen Selection Alliance (TESLA) after selecting only
8–11 mer peptides and removing duplicates [26].

3.6.2. Allele Representation

In order to input the MHC class I alleles into the neural network in numerical matrix
form, we used pseudo-sequences to represent them. The pseudo-sequences were con-
structed by Nielsen et al. [42] and consisted of amino acid residues that were in contact
with the peptides. The selected positions were 79, 24, 45, 59, 62, 63, 66, 67, 69, 70, 73, 74, 76,
77, 80, 81, 84, 95, 97, 99, 114, 116, 118, 143, 147, 150, 152, 156, 158, 159, 163, 167 and 171. We
used the following strategy to encode the MHC pseudo-sequences.

3.6.3. Encoding Strategy

We used a one-hot encoding scheme to represent each HLA allele and peptide sequence
in numerical matrix form, which were used as the inputs for the following algorithms.
The one-hot encoding scheme was realized by assigning a unique integer to each letter in
the 21-digit amino acid alphabet that contained padding characters as the index of that
letter in the amino acid alphabet. Taking the letter “A” as an example, we obtained the
alphabet “ACDEFGHIKLMNPQRSTVWYX” (the unknown amino acid was set to “X”) and
the corresponding index of alanine “A” was 0. Then, the values of the other amino acids
were set to 0, but the value of “A” was set to 1. Finally, we obtained the one-hot vector of
[1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]. For each peptide, the unique one-hot
vectors of each amino acid in the amino acid sequence were vertically combined to form a
numerical matrix to complete vectorization.

3.6.4. Feature Normalization

Binding affinity and TAP transport efficiency were predicted for all peptide–HLAs
using the method that was described previously and then normalized using the maximum
and minimum values simultaneously. The basic mathematical form was represented as:

y =
(x − xmin)

(xmax − xmin)

3.6.5. Prediction Model

We used a CNN (convolutional neural network) to predict the immunogenicity of
mutant peptides. The proportions of the training set, testing set and validation set were 70%,
20% and 10%, respectively. The peptides and MHCs were processed by two consecutive
convolutional layers, followed by three dense layers to execute the affine transformation
and then flattened vectors with dimensions of 256 were obtained. NetMHCpan and
NetCTLpan were used to calculate the binding affinity (IC50) and TAP transport efficiency
of the peptides and those features were used to train the natural network. To incorporate
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the IC50 and TAP transport efficiency features into our CNN, two dense layers were
included. Finally, Seq2Neo outputted the immunogenicity prediction. We used the ReLu
function as the activation function. Some hyperparameters were set during the optimization
process before the training started: batch size was set to 64, training loss with patience
was set to 15, validation loss with patience was set to 20, epochs were set to 200 and
the Adam learning rate was set to 0.001. Two early stopping strategies were adopted to
ensure that the acquired model was the best possible version. In addition, we adopted
batch normalization and dropout strategies to accelerate the model convergence speed
and enhance its generalization ability. Since the number of negative reactive instances was
significantly higher than that of positive reactive instances, the weight was set according to
the proportions of negative and positive instances to eliminate this imbalance. The weight
operation was mathematically represented as:

w =
1
S
× T

2

where w is the negative or positive class weight, S is the number of corresponding reactive
instances and T is the total number of training instances.

3.7. Other Machine Learning-Based Immunogenicity Prediction Models

In order to select the best model to predict immunogenicity, we compared the Seq2Neo-
CNN model to five other machine learning algorithms (logistic regression, SVM, XGBoost,
random forest and ExtraTree) after optimizing the parameters for each method. We used
accuracy as the evaluation criterion to tune the best parameters for each model. The
best parameters for logistic regression were acquired through 10-fold cross-validation
(penalty = l2 and C = 2.21). Similar to logistic regression, kernel = rbf, gamma = 0.1 and
C = 10 were the best parameters for SVM., whereas max_depth = 10, min_child_weight = 1.0,
gamma = 1.625, subsample = 1.0 and colsample_bytree = 1.0 were the best parameters
for XGBoost, n_estimators = 200 and min_samples_leaf = 2 were the best parameters for
random forest and n_estimators = 1000 and min_samples_leaf = 2 were the best parameters
for ExtraTree. Then, the optimized models were compared to the Seq2Neo-CNN model
using the testing set and the TESLA dataset.

3.8. Seq2Neo Implementation in Cancer Patient Samples

To test the performance of the Seq2Neo pipeline, WES (normal/tumor exome) and
RNA-seq (tumor transcriptome) data from five patients with different solid tumors were
downloaded from the NCBI SRA database (bioproject IDs: PRJNA298310, PRJNA298330
and PRJNA298376) [34–36]. Each sample had 2–4 experimentally verified neoantigens
derived from point mutations that could induce T cell responses. Here, we used Seq2Neo
to predict these neoantigens to verify the performance of Seq2Neo. Then, we compared the
rank percentage of Seq2Neo to that of pVACseq using default parameters.

4. Conclusions

As a supplement to PD-1 immunotherapy, neoantigens are ideal cancer-specific targets
for precision vaccine design or TCR-T therapy and act as key factors in cancer immunoedit-
ing [43]. However, current neoantigen prediction is cumbersome and lacks a comprehensive
one-step tool. Furthermore, most neoantigen prediction tools only focus on the binding
between peptides and HLA I and accurate tools for directly predicting the immunogenicity
of neoepitopes are still lacking. Seq2Neo is a user-friendly and robust tool that could
provide a one-stop solution for neoantigen prediction using raw sequencing data. Im-
portantly, various features of neoantigens can be predicted using Seq2Neo, including the
immunogenicity capability of neoepitopes.
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