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Abstract: The kingdom of Fungi is rich in species that live in various environments and exhibit
different lifestyles. Many are beneficial and indispensable for the environment and industries, but
some can threaten plants, animals, and humans as pathogens. Various strategies have been applied
to eliminate fungal pathogens by relying on chemical and nonchemical antifungal agents and tools.
Nonthermal plasma (NTP) is a potential tool to inactivate pathogenic and food-contaminating fungi
and genetically improve fungal strains used in industry as enzyme and metabolite producers. The
NTP mode of action is due to many highly reactive species and their interactions with biological
molecules. The interaction of the NTP with living cells is believed to be synergistic yet not well
understood. This review aims to summarize the current NTP designs, applications, and challenges
that involve fungi, as well as provide brief descriptions of underlying mechanisms employed by
fungi in interactions with the NTP components
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1. Introduction

The motivation for understanding the effect of nonthermal plasma (NTP) treatment on
fungi or other microorganisms stems from the unique and complex nature of plasma and
the complexity of processes triggered in the fungal cells upon interaction with the plasma
components. NTP in medicine, agriculture, and food processing is used to devitalize
and decontaminate various surfaces and liquids. The application of NTP could expand
to biotechnology for fungal breeding and antifungal resistance management. Recently,
several excellent reviews summarized achievements in the utilization of various types of
NTP devices in antifungal treatment [1,2], but very few elaborated in depth on molecular
mechanisms triggered by NTP [3]. At the moment, we face a lack of a better understanding
of molecular mechanisms and experience some difficulties regarding the methodology
influenced by many variables in the experimental setup of the plasma devices, as well as
biological differences in fungal species and cell types and biological sample handling. Since
plasma has gained significant attention in antifungal treatment in recent years, this review
aims to equip readers with the most recent information on NTP compositions and designs,
direct and indirect applications, and molecular mechanisms employed by fungi in response
to NTP.

The review is organized into several chapters. Section 2 introduces the NTP systems
used in the fungal treatments, plasma generation, composition, and biological mechanisms
that can be triggered by plasma in fungal cells. It also summarizes biologically active
reactive species present in plasma and their effects on fungi. Section 3 provides an overview
of plasma applications in medicine, agriculture, food preservation, biotechnology, and the
protection of cultural objects.
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2. NTP Devices, Plasma Composition, Biologically Active Agents, and Fungal Responses
2.1. Plasma Classification and Configurations of NTP Systems

Plasma, considered to be the fourth state of matter, is a fully or partially ionized gas
formed of charged particles (free electrons, positively and negatively charged ions), free
radicals, neutral gas particles (excited atoms and molecules), photons (in the visible and
UV regions of the spectrum), and the electromagnetic field [4–6].

Plasma is a quasi-neutral system of free electrons and ions that exhibit collective
behavior. This behavior is reflected in the plasma response to deviations from neutrality
and applied external electromagnetic fields and in its ability to sustain many different
waveforms and oscillations. Plasma is produced by an ionization process that generates a
certain number of free electrons and positive ions. If quasi-neutrality applies, the number
density of electrons ne is approximately equal to the ion density of ni, ne ≈ ni, and ne is
called the plasma density. Typical plasma density units are cm−3. The plasma density
at atmospheric pressure can vary from 109 to 1019 cm−3, corresponding to a degree of
ionization from 10−10 to 1 [7,8]. Depending on the method of formation, plasma can be
high-temperature (thermal) and low-temperature (nonthermal) plasma (NTP). Thermal
plasma is created by heating a gas to a temperature at which electrons are torn from atoms
and ions are formed. It can reach a temperature of up to 106 K. NTP is generated by an
electric discharge when the generated ions reach a temperature close to the environment
(maximum 340 K), which predestines NTP for use in many applications [9–12]. NTP is
often referred to as nonequilibrium plasma because it is not in thermodynamic equilibrium.
Nonequilibrium plasma is characterized by the temperature of electrons ranging from a
few eV to 10 eV, while the temperature of heavy particles varies from room temperature to
a level comparable to the electron temperature but usually lower [13]. NTP is easily formed
in the air at atmospheric pressure using various discharges. In addition to air, plasma can
also be created in other gases such as nitrogen, oxygen, argon, or carbon dioxide. The most
commonly used electric discharges are corona discharge, dielectric barrier discharge, and
plasma jet (Figure 1).
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2.1.1. Corona Discharge

A corona discharge (Figure 1A) can be observed as a luminous glow. Near to sharp
electrodes such as thin wires, spikes, or edges in a highly non-uniform electric field with
high intensities, the active region of corona and plasma generation occurs [15]. Point-to-
plate geometry, which is a sharply curved electrode arranged as a counterpart to a flat one,
is a typical electrode geometry. Corona discharges can be operated in direct current or
pulsed mode, where the pointed electrode has a negative or positive potential [9]. Corona
discharges are used in various industrial applications [16–21].

2.1.2. Dielectric Barrier Discharge

Due to its configuration and flexibility of electrode shapes, dielectric barrier discharge
(DBD) (Figure 1b) is one of the most commonly used plasma systems. DBD plasma is
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generated by a high voltage applied between two metal electrodes, which are covered with a
dielectric material (glass, ceramic, or polymer), and micro-discharges do not occur [15,22,23].
These sources operate at frequencies of 50 Hz to 500 kHz, while the voltage amplitude
can be up to tens of kV. The gap between the electrodes can be several µm to several cm.
Volume and surface DBDs are the most well-known configurations of this arrangement
used to treat biological objects. Volumetric DBD is also known as industrial corona [24]. It
consists of two parallel plates in a plane, or the electrodes can be curved in the shape of
a cylinder. The surface DBD is composed of parallel electrodes separated by a dielectric
barrier layer, while the plasma is formed in an uneven electric field. In the surface DBD
configuration, the gap between the discharges is flexible, allowing the treatment of objects
of different sizes. The disadvantage of this arrangement is the device’s lifetime, which
is limited by contact of plasma with the electrodes [25]. The advantages of volume and
surface DBD are combined in a coplanar configuration where a dielectric barrier layer
covers pairs of linear parallel electrodes with opposite polarity. Electrodes can have an area
of up to a few cm2, which makes this type of plasma particularly suitable for processing
large surfaces.

2.1.3. Plasma Jet

A plasma jet is not considered a plasma discharge. It is a specific configuration of
other discharges, e.g., corona discharge, DBD, and microwave discharge [15]. An auxiliary
gas (usually noble gases) flows through the two electrodes generating the plasma, which
pushes the plasma out of the electrodes. A stream of active particles burning as a small jet is
created. A plasma jet makes a stable, homogeneous, and uniform discharge at atmospheric
pressure. It is used in plasma sources called jets, torches, or pens [15]. The disadvantage is
that the plasma jet is only suitable for treating small surfaces. When treating large areas, it
is necessary to use several jets in a row [26].

2.2. Biologically Active Agents Generated by Plasma

In NTP, depending on the parameters (gas composition, humidity, and temperature),
biologically active agents (BAAs) are formed as a result of many physical and chemical
processes. Among BAAs generated by plasma, we include, for example, ROS (reactive
oxygen species), RNS (reactive nitrogen species), UV radiation, radiation in the visible and
infrared spectrum, charged particles, alternating electric field, and heat [4,9,27]. In recent
years, many experiments have been conducted dealing with the importance of individual
BAAs generated by plasma in the inactivation process of microorganisms [27–30]. It is
difficult to objectively evaluate which plasma component is the most effective because
different types of plasma sources do not have to generate BAA in the same amount, and
it is always necessary to identify them. Each of these factors inactivates microorganisms
independently, but they are much more effective if their synergistic effect is used [31–33],
making NTP unique. Of all BAAs generated by NTP, ROS and RNS (RONS) are the most
critical inactivating agents of plasma, and NTP has been shown to induce oxidative stress,
which can result in cell damage or death [27,29,31,32,34–36]. RONS are responsible for
several biological reactions, from intracellular DNA breaks to protein damage to outer
membrane oxidation [28].

Depending on the type of plasma source used and the conditions of plasma generation,
the electric field can contribute to the inactivation of microorganisms. Processes similar
to electroporation and disruption of cell morphology may occur during NTP biomass
treatment. Plasma treatment can break the cell membrane, which then loses integrity,
resulting in the leakage of cytoplasmic components out of the cell [27,37,38].

UV radiation has mutagenic to lethal effects and is widely used in sterilizing rooms
and spaces. Nevertheless, UV photons originating from the plasma play only a minor role
in the inactivation process [27,29,30]. Plasma-generated UV radiation does not have such a
striking impact on cells as the use of UV lamps. In addition, many microorganisms contain
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protective pigments, such as melanin, in the cell wall of fungi, which to some extent, can
protect against UV damage [36].

The effect of NTPs and, thus, BAAs originating from plasma on biological material
is dose-dependent, although “dose” is still not a precisely defined term [32]. So far, it has
been found that the plasma effect on the treated biological material is more substantial
with higher plasma power, more prolonged exposure of the biological material, and closer
placement of the material to the plasma or the electrode surface. For example, low doses of
NTP cause mammalian cells to proliferate, higher doses cause apoptosis, and even higher
doses may cause necrosis [32].

2.3. Fungal Molecular Mechanisms in Response to NTP

NTP generated in ambient air can produce reactive species (RONS), such as free
electrons, atomic oxygen, singlet oxygen (1O2), .O2

−, .H, .OH, .NO, .NO2, O3, and atomic
oxygen. In aqueous liquids, primary RONS react with each other, and compounds such as
H2O2, NO2, and NO3 are formed. Their formation leads to extracellular and intracellular
liquid acidification [39–42]. Most fungal pathogens grow well in an acidic environment but
struggle in alkaline conditions [43,44]. It is well known that fungi generally have a wide
pH optimum (4–9 pH units). Nevertheless, the drop in intracellular pH could contribute to
maintaining membrane potential in the plasma oxidized fungal cell membrane [42].

Reactive species are believed to be a major factor responsible for the effects of plasma
on living cells. Although more studies regarding the molecular action of the NTP have been
published on bacteria, mammalian, and plant cells than on fungi, many of the mechanisms
may be shared by different species [45]. The function of ROS has been well studied in
fungal cell signaling. ROS are intracellularly produced as metabolic byproducts under
normal physiological conditions during development or stress responses [46]. ROS can
react in excess with biomolecules, such as proteins, lipids, and DNA, which can harm cells.
Therefore, cells possess several ROS-scavenging systems. The antioxidant systems are
composed of nonenzymatic and enzymatic types [47]. The major nonenzymatic antioxidant
is tripeptide glutathione, which forms a disulfide bond between cysteines of two glutathione
molecules, resulting in the generation of an oxidized form of glutathione. In A. flavus,
plasma treatment led to a significant decrease in the reduced form of glutathione, indicating
a potent oxidative attack during plasma treatment which likely caused depletion of the
reduced glutathione [48]. In addition to glutathione, some other organic compounds in
fungi exhibit scavenging properties, such as ascorbic acid, carotenoids, flavonoids, alkaloids,
mannitol, and trehalose [49,50]. In addition to non-protein ROS scavengers, thioredoxin
proteins, their respective reductases, and antioxidant enzymes such as catalases, superoxide
dismutases, and peroxidases are involved in cellular protection against ROS. The role of
the antioxidant enzymes in fungal defense in response to plasma treatment was confirmed
in A. flavus and S. cerevisiae [48,51].

ROS generated by plasma sources are characterized by a short lifetime and their
ability to interact with reduced functional groups of organic compounds in cells [52]. ROS
oxidation of cysteine residues in proteins leads to the generation of cysteine sulfenic acid
(–SOH) and disulfide bonds between two cysteines. The formation of disulfide bonds
is a reversible modification. In yeast S. cerevisiae, transcription factor Yap1 responds to
plasma treatment by rapid translocation from the cytoplasm to nucleus. The translocation
is initiated by forming disulfide bonds in the protein region governing the transport into
the nucleus [53]. Yap1 activates the expression of antioxidant stress response genes.

Sulfenic acid can be oxidized to sulfinic (–SO2H) or sulfonic (–SO3H) acid. This
cysteine modification is, however, irreversible [54] and damaging to cells. In addition
to cysteine, methionine possesses a sulfur-containing side chain susceptible to oxidation.
The oxidized methionine, methionine sulfoxide, is one of the important post-translational
modifications [55] that ROS can affect. At the moment, there is very little information on
cysteine and methionine oxidations in fungi following plasma treatment.
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The major targets of ROS from plasma are fungal cell walls and cytoplasmic mem-
branes. FTIR analysis and electron microscopy in Aspergillus sp. indicated chemical
(polysaccharide oxidation) and physical changes (dehydration, ruptures) in cell surface
structures [42,48,56–58]. Currently, we do not have many studies regarding the nature of
ROS interaction with cell surfaces of fungal cells and the depth they can penetrate. ROS
are divided into long- and short-lived species. It was reported that the interplay of those
species and their concentration gradients and penetrability with the cell surface might
initiate a sequence of cell responses [42,59]. Although fungi do not synthesize polyun-
saturated fatty acids, malondialdehyde (MDA) formation was determined in fungi after
plasma treatment [42,48], indicating lipid peroxidation. Protein and potassium leakage and
membrane potential reduction suggested the loss of membrane integrity. Damage to cell
membranes inflicted by reactive species also led to mitochondrial malfunction, endoplasmic
reticulum stress, defects in protein folding, and intracellular calcium increase [42,53,60–62].

In addition to proteins, lipids, and polysaccharides, ROS target nucleic acids. In eukaryotic
cells, single-strand and double-strand break formations were reported, along with forming
oxidized bases such as 8-oxodeoxyguanosine [63,64]. These breaks are subjected to DNA repair
mechanisms which could result in mutations or cell death if the damage overwhelms the DNA
repair machinery. Apoptosis-like markers such as chromatin condensation, phosphatidylserine
presence on the outer plasma membrane, decrease in mitochondrial transmembrane potential,
and cell-cycle arrest [61,65] were determined in yeasts. However, yeast mutants lacking genes
for the proapoptotic proteins Yca1p, Aif1p, and Nuc1p (metacaspase, apoptosis-inducing factor,
endonuclease G) did not differ significantly in sensitivity from the wildtype when treated with
NTP [51]. These results indicate that fungi might have a plasma-specific type of death that does
not require the activation of the fungal programmed cell death pathway.

3. NTP Technology in the Management of Fungal Contamination, Disease Control,
Protection of Heritage Objects, and Strain Improvement

Microbial inactivation using NTP is especially suitable when traditional decontamina-
tion methods are ineffective. Since the differences in the structure and size of cells, their
metabolic activity, and the ability to cope with reactive molecules in different microorgan-
isms are not sufficiently studied, a complete generalization of the effects of plasma is not
possible. Many studies confirmed the applicability of NTP for the inactivation of fungal
cells (Table 1), which show lower sensitivity to NTP than bacteria [66–68].

Table 1. Studies about fungal inactivation, growth inhibition, and biofilm formation.

NTP Type Process Gas Time of
Treatment Fungus/Yeast Effect Ref.

RF plasma jet
A mixture
of argon

and oxygen
1–10 min Aspergillus flavus 100% inhibition of growth after

10 min treatment [69]

Plasma jet Argon 0–10 min

Candida parapsilosis
Magnusiomyces

magnusii
Saccharomyces cerevisiae

Schizosaccharomyces
pombe

More than 90% inactivation of
yeast cells after 10 min [70]

Plasma microjet
A mixture
of helium

and oxygen
0–5 min Saccharomyces cerevisiae

The survival ratio of cells in water
was significantly decreased from

40.2% to 1.5% after 5 min
[71]

PAW with the plasma jet Air
1–6 min water

activation
by plasma

Aspergillus brasiliensis
The spore viability dropped to

15% after 30 min in the PAW with
a plasma activation time of 3 min

[72]

Linear micro discharge
plasma jet Helium 1 min Candida albicans Changes in both the genotype

and phenotype [73]
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Table 1. Cont.

NTP Type Process Gas Time of
Treatment Fungus/Yeast Effect Ref.

DBSD plasma Air 0–480 s Aspergillus flavus
A 5 log reduction of spore

viability after 480 s under both the
low and high power

[56]

Surface micro-discharge
plasma Helium 0–10 min Saccharomyces cerevisiae

The reduction in CFU was about
3.4 log after plasma treatment for

10 min
[74]

DBD plasma Argon 0–60 min Aureobasidium pullulans

The non-melanized cells were
efficiently inactivated, and more
than 60% of melanized cells were

still alive after the 60 min exposure

[75]

PAW with the CD plasma jet Air or
99,99% oxygen 0–30 min Colletotrichum

gloeosporioides

96% inactivation after 30 min
incubation in air-PAW; 55%

inactivation after 30 min
incubation in oxygen-PAW

[76]

Electric shock-free plasma jet Air 0–6 min Cordyceps pruinosa ~100% inactivation of spore
viability after 6 min [77]

CD plasma, DBD plasma Air 0–30 min

Alternaria sp.
Aspergillus oryzae

Byssochlamys nivea
Cladosporium

sphaerospermum

Spore inhibition after 10–40 min [78]

Plasma jet Helium 0–180 s Candida albicans 20–30 mm2 inhibition zone area
after 180 s

[79]

Plasma jet Argon 0–180 s Neurospora crassa Only ~5% spore viability after
3 min in water [80]

CD, corona discharge; DBD, dielectric barrier discharge; DBSD, dielectric barrier surface discharge; PAW, plasma-
activated water; RF, radiofrequency.

Fungal cells were effectively inactivated by plasma after only a few minutes of exposure
to NTP. The action mechanism is based on damage to the structure of cell envelopes and
oxidation of macromolecules, similar to bacteria [81]. The level of oxidative stress induced
by NTP is a critical factor for cell fate determination. Plasma-generated ROS contribute most
to fungal inactivation. The NTP can induce two modes of cell death (apoptosis or necrosis)
in fungal cells dependent on treatment time [71]. The most studied fungal genera include
Aspergillus sp., Penicillium sp., Fusarium sp., and others. Šimončicová et al. [48] investigated
the effect of plasma on A. flavus hyphae, reporting massive structural changes, increased
membrane permeability, and DNA degradation. The DNA damage by plasma-induced
intracellular RONS was also confirmed in Cordyceps pruinosa spores [77]. Julák et al. [78]
observed a delay in the growth of Aspergillus oryzae and Alternaria sp. after exposure of conidia
to plasma. This phenomenon is probably related to the mechanism of plasma effects on fungal
cells. After nonlethal damage, revitalization processes begin restoring damaged components
and functions. Yeasts, especially Candida sp. and Saccharomyces sp., are frequently used as
model organisms. Tyczkowska-Sieroń et al. [73] studied changes in the genome of Candida
albicans after exposure to a sublethal dose of plasma. They identified six single-nucleotide
variants, six insertions, and five deletions and also demonstrated that, of the 19 hydrolytic
enzymes, nine were inactive, nine temporarily decreased the activity, and one constitutively
increased the activity after plasma exposure. Carbon assimilation and drug sensitivity were
not affected by plasma. Hence, they concluded that the changes in surviving C. albicans cells
did not impose significant danger to the environment, especially regarding drug resistance and
pathogenicity. Some microorganisms can form mono- or polymicrobial aggregates referred
to as biofilms. This structure protects pathogenic microorganisms from antimicrobial agents
and the immune system. According to some estimates, a pathogen biofilm is present in the
body in up to 80% of diseases. C. albicans is one of the most common human opportunistic
yeasts. Infections caused by C. albicans are associated with their ability to form a biofilm.
Several studies proved the positive effect of plasma on biofilm inactivation [82–84]. The
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complete killing of C. albicans cells in the biofilm was observed after 8 min of plasma
treatment [84]. A study of A. flavus biofilm showed that plasma treatment has detrimental
effects on the biofilm structure. At the same time, it pointed out that the fungicidal effect of
plasma may depend on the initial concentration of the inoculum [82].

3.1. Plasma Medicine

NTP generated at atmospheric pressure shows promising biomedical applications
leading to the emergence of plasma medicine that includes the inactivation of bacteria, fungi,
viruses, and endospores, blood clotting, wound healing, and tooth whitening. Applications
in antitumor therapy are also being studied, where plasma exhibits an antitumor effect on
a wide range of cancer cell lines [33,85–88].

Fungal infections cause a complex set of disease states that cause tissue destruction
or may result from inflammation caused by the presence of the fungus [89]. Among the
relatively common fungal diseases are candidiasis, onychomycosis, and dermatophytosis.
Older people, people with organ transplants, HIV-positive people, and diabetics are es-
pecially prone to developing candidal infections [90,91]. Borges et al. [92] tested plasma
jet as a possible effective tool for preventing oral candidiasis in vivo. After only 5 min,
they observed a significant decrease in the viability of the C. albicans biofilm. Histological
analyses revealed a significantly lower incidence of inflammatory changes and a substantial
reduction in candidal tissue invasion in the plasma-treated group. Park et al. [93] found
that 1–5 min application of no-ozone cold plasma inhibited the growth of C. albicans by
approximately 2 log.

Dermatophytosis is a term used to describe fungal infections caused by fungi that
colonize the surface of the skin, hair, or nails. The most common are representatives of
the genera Epidermophyton, Microsporum, and Trichophyton [94]. The effect of plasma in
preventing dermatophytosis was monitored with silver nanoparticles. Such treatment
decreased the minimum inhibitory concentration of nanoparticles, increased mycelial
permeability to nanoparticles, and increased the effectiveness of healing and suppression of
disease symptoms on the skin [95]. In guinea pigs infected with Trichophyton mentagrophytes,
plasma treatment shortened and attenuated the infection and significantly reduced the
viability of the pathogen without adverse effects on the animal model [96].

Onychomycosis is a nail fungal infection that afflicts almost 6% of the population
worldwide [97,98]. About 70% of these infections are caused by dermatophytes (Trichophyton
rubrum (more than 50%), Trichophyton mentagrophytes, Epidermophytonon floccosum, Microsporum
spp., Trichophyton violaceum, Trichophyton verrucosum, Trichophyton krajdenii, and Arthroderma
spp.), about 20% are caused by non-dermatophyte molds (Scopulariopsis brevicaulis, Aspergillus
spp., Acremonium, Fusarium spp., Alternaria alternata, and Neoscytalidium), and 10–20% are
caused by yeasts (Candida spp.) [99]. Bulson et al. [100] observed the complete killing of
C. albicans and T. mentagrophytes by plasma in suspension and on nails. A similar plasma
effect was also observed in the inactivation of T. rubrum, Trichophyton interdigital, and
Trichophyton benhamiae [101].

3.2. Plasma Food Technology and Agriculture

To fulfill the needs of an ever-growing population, it is necessary to ensure a sufficient
amount of high-quality raw materials. In this case, NTP is a suitable alternative to the
already used technologies [102–104]. Plasma has been effectively used to decontaminate
various food surfaces such as fruit, vegetables, and meat (Table 2). Park et al. [105] investi-
gated the effect of plasma on the reduction of Cladosporium cladosporioides and Penicillium
citrinum on the surface of dried filefish fillets. After 20 min of treatment, they determined a
0.9–1 log reduction of CFU/g, but at the same time observed a decrease in overall sensory
acceptance. Plasma treatment caused a reduction of viable fungal spores on beef jerky
but harmed off-color, flavor, and overall acceptability [106]. Royintarat et al. [107] used
the synergistic effect of ultrasound and plasma-activated water (indirect plasma action) to
reduce microbial contamination of chicken meat. Sudheesh and Sunooj [108] used plasma
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to treat fresh-cut fruits and vegetables. In addition to the inactivation of the microbial
cell, they observed a decrease in enzymatic activity (pectin methylesterase and polyphenol
oxidase), which is also related to the browning speed. There was also a decrease in antiox-
idant content and antioxidant activity. Thanks to the possibility of plasma generation in
liquids [109], this method is also appropriate for decontaminating water, milk, and fruit
juices [110,111]. Xiang et al. [112] used plasma to inactivate the yeast Zygosaccharomyces
rouxii in apple juice. Treatment of juice with plasma for 140 s reduced Z. rouxii by ap-
proximately 5 log. At the same time, plasma caused significant changes in apple juice’s
pH, acidity, and color parameters, but had no effect on the content of total soluble solids,
reducing sugars, and total phenols. The changes in apple juice acidity may be related to
the production of acidogenic molecules such as NOx or H+ dissociated from H2O and
other components in apple juice during DBD plasma treatment. No significant changes in
physicochemical properties were observed in tomato juice [113]. However, several studies
have demonstrated the effects of plasma on components determining food quality, such as
pH, proteins and enzymes, sugars, lipids, vitamins, and others [110,114].

The safety of crops and food is critical because of the health risk and the enormous
economic losses. NTP can also be used for disinfection post-harvest fruits and vegetables.
DSBD plasma was effectively used to inhibit the growth of natural microbiota and the
natural decay of blueberries. After less than 15 min, only modest effects of plasma on
blueberry quality were observed. However, 20 min treatment resulted in severe oxidative
damage to the peels [115]. Plasma treatment did not significantly change the taste, aroma,
color, and texture of kumquat [116] or the color and hardness of paprika during stor-
age [117]. The treatment of mung bean sprouts with PAW did not cause significant changes
in mung bean’s total phenolic and flavonoid content and sensory properties [118]. Using
a microwave plasma jet significantly increased mandarin peel’s entire phenolic content
and antioxidant activity [119]. Liu et al. [120] developed a high-field plasma system at
atmospheric pressure to control and keep the storage area clean and to keep plants such as
vegetables, fruits, and flowers fresh for longer. The study showed that, with the help of the
plasma system, fresh fruits (bananas, grapefruits) are preserved much longer compared to
the conventional methods. The amount of ethane emitted during storage was also reduced.
Ambrico et al. [121] found that pretreatment of cherries with plasma leads to increased
resistance to subsequent fungal infection. It is also worth mentioning a study showing that
NTP can degrade pesticide residues in fruits and vegetables [122].

Table 2. The application of plasma in food and agriculture.

NTP Type Process Gas Time of Treatment Treated
Sample Fungus/Yeast Effect Ref.

DBD plasma Air 0–9 min Mango Colletotrichum
asianum

The disease incidence and lesion
diameter of mango treated for 9 min

were decreased by 48.00% and
62.95%, respectively

[123]

Plasma jet Argon, oxygen,
nitrogen 0–6 min Mung bean Natural fungal

contamination

Reduction in natural fungal
contamination ranging from 0.54 to

7.09 log at 96 h incubation
[124]

Gliding
arc plasma Nitrogen 300–600 s Tomato juice

Candida albicans
Saccharomyces

cerevisiae

600 s treatment—reduction in fungal
viability below the limit of

quantification; extension of shelf life
to 10 days

[113]

PAW Air 30–120 s Kimchi cabbage Natural fungal
contamination

PAW treated with plasma for 120s
caused a 1.8 log CFU/g reduction in

fungal contamination
[125]

RF cold
plasma Oxygen 0–15 min Saffron

Aspergillus sp.
Penicillium sp.
Rhizopus sp.

Complete reduction in
contamination after 15 min

of treatment
[126]

Microwave
plasma Helium 40 min Onion powder Aspergillus

brasiliensis 1.6 log spores/cm2 reduction [127]
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Table 2. Cont.

NTP Type Process Gas Time of Treatment Treated
Sample Fungus/Yeast Effect Ref.

Flexible
thin-layer

plasma
Air 10 min Beef jerky

packaged
Aspergillus

flavus
2–3 log CFU/g reduction in

spore viability [106]

DBD plasma Air 0–5 min Citrus

Penicillium
venetum

Aspergillus
brasiliensis

Significantly decreased to ~1.50 log
CFU/mL at 2 min; significantly

decreased viable count to ~1.62 log
CFU/mL at 5 min

[128]

DBSD plasma Air 0–20 min Blueberry Botrytis cinerea
15 and 20 min plasma treatment

completely inhibited the
mycelial growth

[115]

Microwave
plasma Air 15–60 s

Allspice berry
Black pepper
Juniper berry

Aspergillus niger Partial inactivation
after 15 s treatment [129]

Gliding arc
plasma Humid argon 0–7 min Mango Colletotrichum

gloeosporioides

Significantly lower mycelium
growth rate constant, the maximum

reduction in spores was 1 log
spore/mL after 7 min of NTP

treatment with 5 L/min gas flux

[130]

PAW with the
plasma jet Air 0–30 min Mung

bean sprout
Natural yeast
contamination

~2.8 log CFU/g yeasts reduction
after 30 min [118]

Plasma jet Air 0–90 s Paprika Fusarium
oxysporum

Complete inhibition of mycelial
growth and spore germination after

90 s of treatment but only 50%
inhibition of fungal growth on the

paprika surface

[117]

AP plasma jet;
LP RF plasma

Air, nitrogen,
Oxygen 0–30 min Hazelnut

Aspergillus
flavus

Aspergillus
parasiticus

Spore reductions of 4.7 and 5.6 log
CFU/g after 30 min of LP air plasma

treatment; spore reductions of 5.4
and 5.5 log CFU/g after 1.7 min of

AP air plasma treatment;
deformation of spores and loss of

spore integrity after
plasma treatments

[131]

DBD plasma Air 0–10 min Blueberry natural fungal
contamination

The number of fungi decreased by
25.8%; the blueberry decay rates

were reduced by 5.2% in the plasma
treatment of 10 min after 20 days

of storage

[132]

CD plasma jet Air 0–120 s Kumquat natural yeasts
contamination

0.77–1.57 log CFU/g reduction after
120 s treatment [116]

Fluidized bed
plasma Air, nitrogen 0–5 min Hazelnuts

Aspergillus
flavus

Aspergillus
parasiticus

~4 log fungicidal effects after 5 min;
the air plasma was more effective

than nitrogen plasma
[133]

Surface
barrier

discharge
Air 0–8 min Corn kernels - Complete degradation of aflatoxin

B1 after 6 min of treatment [134]

DBD plasma Air 0–180 s Pistachio nuts,
glass slides

Aspergillus
flavus

Decrease in spore population by
4 log after 180 s of the treatment;

maximum reduction in AFB1 was
observed after 180 s of the treatment,

which was 64.63% for glass slides
and 52.42% for pistachio nuts

[135]

CD plasma jet Air 0–30 min Rice, Wheat -

Initial AFB1 concentration on slides
was decreased maximally by 95% in

30 min; in rice and wheat, the
average levels of AFB1 degradation

ranged between 45 and 56%
following 30 min treatment

[136]
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Table 2. Cont.

NTP Type Process Gas Time of Treatment Treated
Sample Fungus/Yeast Effect Ref.

AP plasma
jet; LP RF
plasma

Air 0–30 min Hazelnuts -
Both plasmas reduced 72–73% of
AFB1 spiked on hazelnuts after

plasma treatment
[137]

RF plasma air with
H2O2 (35%) 0–10 min Cannabis

inflorescences Botrytis cinerea 5 log reduction in viable fungal
spores after 10 min [138]

DBD plasma

Argon or a
mixture of
80% argon

and
20% oxygen

10 min Ginseng seeds

natural fungal
contamination

from the
surface of seeds

~73% (Ar) and 60% (Ar/O2)
inactivation of fungal spores [139]

DBSD plasma Air 0–60 s Scot pine seeds Fusarium
oxysporum

100% disinfection efficiency of seeds
after 30 s treatment [140]

DCSBD
plasma Air 0–10 min Lentil seeds

Aspergillus niger
Penicillium
decumbens

Maximum logarithmic reduction of
1.6 log CFU/g for A. niger and 3.1 log
CFU/g for P. decumbens after 10 min

[141]

DBD plasma Nitrogen,
Oxygen 1–3 min Soybean seeds

Diaporthe/
Phomopsis

complex

Reduction in infection by
about 49–81% [142]

DBD plasma Air 5, 20 min Barley and
wheat seeds

Penicillium
verrucosum

Maximal reduction of 2.1 log CFU/g
for barley and 2.5 log CFU/g

for wheat
[67]

DCSBD
plasma Air 0–50 s Cucumber and

pepper seeds

Cladosporium
cucumerinum

Didymella
bryoniae

Didymella
licopersici

Total reduction in C. cucumerinum
and 60–80% reduction in D. bryoniae

on cucumber seeds after 20 s;
50–80% reduction in D. licopersici on

pepper seeds

[143]

DCSBD
plasma Air 0–300 s Maize

Alternaria
alternata

Aspergillus
flavus

Fusarium
culmorum

Reduction of 3.79 log CFU/g in
F. culmorum after 60 s plasma
treatment, 4.21 log CFU/g in

A. flavus, and 3.22 log CFU/g in
A. alternata after a 300 s

plasma treatment

[66]

DBSD plasma Air 0–300 s Sweet basil
seeds

natural fungal
contamination

~30% reduction of natural fungal
contamination after 300 s [144]

Plasma jet Humid air 10 min Rice seeds Fusarium
fujikuroi

Bakanae disease severity index and
the percentage of plants with

symptoms were reduced to 18.1%
and 7.8% of nonirradiated control,

respectively, after 10 min treatment
of seeds in water

[145]

RF
plane-type

plasma
Air 0–30 min Groundnuts

Aspergillus
flavus

Aspergillus
parasiticus

High percentage of inactivation,
99.9% and 99.5% of A. parasiticus and

A. flavus, respectively
[146]

CD plasma jet Air 0–3 min Broccoli seeds natural fungal
contamination

1.5 log CFU/g reduction in natural
fungal contamination after 3 min [147]

AP, atmospheric pressure; CD, corona discharge; DBD, dielectric barrier discharge; DBSD, dielectric barrier surface
discharge; DCSBD, diffuse coplanar surface barrier discharge; LP, low pressure; PAW, plasma-activated water;
RF, radiofrequency.

Contamination of food with mycotoxins is a global problem. Despite implementing
various measures in agriculture, the contamination of raw materials during storage and
processing cannot be completely prevented. Another problem is that, due to the high
stability of mycotoxins against thermal, physical, and chemical influences, it is impossi-
ble to remove them altogether during food processing [148]. Mycotoxins spoil food and
feed, threaten human and animal health, and hinder international trade [149]. Approxi-
mately 25% of the world’s crops are contaminated with mycotoxins each year, resulting



Int. J. Mol. Sci. 2022, 23, 11592 11 of 21

in enormous agricultural and industrial losses estimated in the billions of dollars. The
main mycotoxin-producing fungal genera include Aspergillus, Fusarium, and Penicillium.
While species of the genera Aspergillus and Penicillium contaminate food and feed during
storage, species of the genus Fusarium colonize crops directly in fields and plantations [148].
NTP was effectively applied for inactivating mycotoxin producers. Therefore, questions
arose about whether plasma could be used for mycotoxin degradation. Aflatoxin B1 was
completely degraded after plasma treatment of corn kernels [134], approximately 73%
degradation was observed on hazelnuts [137], and a 45–56% reduction was achieved on
rice and wheat [136]. Hojnik et al. [150] investigated the possible cytotoxic and genotoxic
potential of aflatoxin B1 (AFB1) plasma degradation products on human hepatocellular
carcinoma cells. Cytotoxic and genotoxic effects of NTP-treated AFB1 compared to NTP-
untreated AFB1 were not confirmed. Hoppanová et al. [57,58] investigated changes in
aflatoxin and ochratoxin production in response to plasma-induced oxidative stress. Their
results clearly showed that NTP can significantly reduce viable cells. However, the cells
that survived the plasma treatment were able to produce mycotoxins at an increased rate in
the early stages of growth and their production slowed down in the later stages of growth.
From a practical point of view, this means that, even after decontamination of food with
plasma, it is still necessary to follow the principles of proper and safe food storage.

Many studies point to the positive results of using plasma in agriculture (Table 2). In
addition to seed disinfection, plasma can improve the germination rate of many seeds,
which can lead to enhanced production [67,142,147,151–154]. It has been shown that
irrigation using plasma-activated water leads to better growth of radishes, tomatoes, and
peppers [155]. Changes in the seed’s surface properties were also observed, thanks to
which their wettability and water absorption increased [66,67,156,157]. It was observed
that just 10 s of plasma treatment changes the surface of cereal seeds from hydrophobic
to hydrophilic. Due to the better wettability of the seeds, it is necessary to apply a lower
volume of chemical fungicides. By combining physical (NTP) and chemical (fungicide)
treatment of cereal seeds, it is possible to effectively reduce the required amount of chemical
fungicide and stimulate the germination and early growth parameters of the seed [158].
NTP could be an alternative for reducing the amount of chemical fungicides used in
agriculture and for the degradation of toxic chemical compounds such as phenols and
azo-dyes [159].

3.3. Plasma and Cultural Heritage Objects

Due to their high enzymatic activity and ability to grow even at low aw values, fungi
can grow on paper, parchment, paintings, textiles, and other materials. Thus, they play
a crucial role in damaging cultural heritage. Among the most widespread fungal genera
damaging historical objects are Alternaria sp., Aspergillus sp., Aureobasidium pullulans, Fusar-
ium sp., Mucor sp., Penicillium sp., Botrytis cinerea, Trichoderma harzianum a Trichoderma viride,
Cladosporium cladosporioides, and Epicoccum nigrum [160]. NTP is a possible and effective
method of inactivating fungal contamination to effectively save historical artifacts. DBD
plasma is used to stabilize documents containing iron gall inks [161]. Low-temperature
ADRE (atmospheric discharge with runaway electron) plasma can decontaminate the sur-
faces of various lignocellulosic materials from five types of filamentous fungi (A. alternata,
Cladosporium herbarum, Penicillium chrysogenum, A. niger, and Trichoderma atroviride). The
least sensitive to ADRE plasma treatment were the filamentous fungi P. chrysogenum and
A. niger, which were most represented in archives and libraries [162]. These studies indicate
that NTP is a promising alternative to other convective methods of inactivating fungal
contamination of historical objects.

3.4. Plasma in Biotechnology

In the previous sections, we presented many studies focused mainly on the inhibition
and inactivation of fungi in various industries such as medicine, agriculture, and food
control. However, not all fungal genera are undesirable for humans. Many fungal species
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produce interesting substances (antibiotics, pigments, and enzymes). In recent years,
studies have been emerging investigating the positive effect of NTP on beneficial fungi.
Improving the beneficial aspects of fungi using plasma occurs in two ways, through
mutagenic or non-mutagenic changes. Studies using plasma for mutagenesis of fungal cells
are summarized in Table 3.

Table 3. Studies using NTPs for mutagenesis of fungi.

NTP Type Process Gas Time of Treatment Fungus/Yeast Mutant Ref.

ARTP Helium 0–180 s Fusidium coccineum ~60%increase in fusidic acid
production [163]

ARTP Helium 0–350 s Aspergillus nidulans 1.3× higher production of
echinocandin B [164]

ARTP Helium - Sanghuangporous
sanghuang

1.2–1.5 fold increase in polysaccharides
production [165]

ARTP +
etylmethanesul-

fonate
Helium 0–550 s Penicillium

oxalicum
Enhanced raw starch-degrading

enzyme production [166]

ARTP Helium 30–240 s Aspergillus oryzae

54.7% increase in acid protease activity,
17.3% increase in neutral protease

activity, 8.5% increase in total protease
activity, 8.1% decrease in alkaline

protease activity

[167]

ARTP Helium 0–360 s Starmerella
bombicola

30% increase in lactonic, acidic, or total
sophorolipid production [168]

ARTP Helium 0–200 s Candida parapsilosis ~60% increase in D-arabitol production [169]

ARTP Helium 0–150 s Candida tropicalis 22% increase in xylitol production [170]

ARTP Helium 100–200 s Aspergillus oryzae ~292% increase in kojic acid production [171]

ARTP Helium 30 s Hericium erinaceum
22% increase in yield of fruiting body,

16% increase in
polysaccharide production

[172]

DBD plasma Argon
helium 3–5 min Ganoderma lingzhi 25.6% increase in

polysaccharides production [173]

ARTP Helium Trichoderma reesei Increase in cellulase production [174]

ARTP, atmospheric and room temperature plasma; DBD, dielectric barrier discharge.

Most studies [175–179] used the ARTP plasma mutation system, formed by a radiofre-
quency atmospheric-pressure glow discharge plasma jet, to mutagenize fungal cells [180].
The Saccharomyces cerevisiae mutant prepared by the ARTP mutation system produced ap-
proximately 57% more glutathione, and an improvement in glutathione synthetase activity
was also observed [181]. After chemical–physical mutagenesis, Rhodotorula mucilaginosa K4,
with a 67% greater concentration of carotenoids than Rhodotorula mucilaginosa KC8, was
obtained [178]. The mutated strain JNDY-13, which was obtained with T. reesei RUT-C30
as the parental strain, had an increased production of cellulases, which may be related to
a mutation in the galactokinase gene. Upregulation of cellulase and hemicellulase genes
was also noted in this mutant [174]. In the C. tropicalis mutant, in addition to an increase
in xylitol production, an increase in xylose reductase gene expression and activity was ob-
served [170]. Feng et al. [171] applied to A. oryzae KA-11 a combined mutagenesis program
that included microwave mutagenesis, UV irradiation, heat-LiCl, and ARTP. Kojic acid
production was increased by 47.0%, 87.1%, 126.2%, and 292.3% compared to the starting
strain KA-11 after each stage of mutagenesis. From the obtained results, it is clear that the
best results were obtained with ARTP mutagenesis.

Several studies focused on improving spore germination and protein secretion in a
non-mutagenic way. A study by Farasat et al. [182] evaluated the effect of NTP on the
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production of recombinant phytase in the yeast Pichia pastoris, as well as the structure
and function of the phytase enzyme. The yeast produced higher amounts of recombinant
phytase after direct or indirect exposure to plasma. Plasma treatment of a commercial
phytase solution with NTP caused up to a 125% increase in enzyme activity. It was also
shown that this protein maintained its secondary structure after plasma treatment, while the
tertiary structure was slightly changed. Veerana et al. treated A. oryzae cells with two plasma
discharges, specifically a micro dielectric barrier discharge (MDBD) in nitrogen [183] and
a plasma jet in the air [184]. Using MDBD plasma, they achieved a significant increase in
the percentage of spore germination after 2 and 5 min of treatment. They also observed
a 7.4–9.3% increase in α-amylase activity 24 and 48 h after plasma treatment [183]. After
treatment with a plasma jet, they noted an approximately 10% increase in spore germination
after 5 and 10 min of treatment and a significant increase in α-amylase activity 24–96 h after
plasma treatment [184].

4. Summary and Prospects

Most studies explored NTP’s application in fungal decontamination, plasma medicine,
seed protection, fungal breeding, food processing, preservation, and cultural heritage
protection. Despite many advantages that could be exploited, we seem to have reached a
point where we must carefully evaluate the positives and negatives when applying this
technology to treat fungi. The research concerning fungi and plasma is even more complex
because it involves various plasma source configurations, dose determination, working gas
compositions, biological and nonbiological matrixes, or liquids (Figure 2).
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When working with filamentous fungi, we face many challenges that stem from fungal
diversity, the ability to form complex structures, and the formation of hundreds of types
of cells that respond to plasma treatment differently. On the one hand, NTP could help
combat the emergence of novel pathogens and antifungal-resistant strains by reducing
antifungal agents. Nevertheless, on the other hand, the generation and potential spread of
genetically modified strains should be of concern when the large-scale employment of NTP
is planned. In the future, we have to address not only technical challenges. We must also
fill those gaps in understanding the molecular mechanisms involved in fungal interactions
with reactive species present in plasma.
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plasma produced by corona discharge and dielectric barrier discharge. Folia Microbiol. 2018, 63, 63–68. [CrossRef] [PubMed]

79. Nishime, T.M.C.; Borges, A.C.; Koga-Ito, C.Y.; Machida, M.; Hein, L.R.O.; Kostov, K.G. Non-thermal atmospheric pressure plasma
jet applied to inactivation of different microorganisms. Surf. Coat. Technol. 2017, 312, 19–24. [CrossRef]

80. Lee, G.J.; Park, G.; Choi, E.H. Optical and biological properties of plasma-treated Neurospora crassa spores as studied by absorption,
circular dichroism, and Raman spectroscopy. J. Korean Phys. Soc. 2017, 71, 670–678. [CrossRef]

http://doi.org/10.1111/j.1469-7793.2001.0001j.x
http://doi.org/10.1021/acs.est.8b05386
http://www.ncbi.nlm.nih.gov/pubmed/30657659
http://doi.org/10.1007/s10482-020-01457-8
http://www.ncbi.nlm.nih.gov/pubmed/32766937
http://doi.org/10.1007/s00253-022-11828-y
http://doi.org/10.1007/s11705-018-1786-8
http://doi.org/10.1007/s00253-018-8758-2
http://doi.org/10.1088/0022-3727/46/28/285401
http://doi.org/10.1111/1751-7915.13696
http://doi.org/10.1371/journal.pone.0232724
http://doi.org/10.1088/1361-6463/abb8ab
http://doi.org/10.1002/ctpp.201800064
http://doi.org/10.1007/s11090-018-9913-3
http://doi.org/10.1016/j.foodres.2018.01.009
http://www.ncbi.nlm.nih.gov/pubmed/29579955
http://doi.org/10.1007/s12223-011-0005-5
http://www.ncbi.nlm.nih.gov/pubmed/21399943
http://doi.org/10.1111/jfpp.15045
http://doi.org/10.1088/1361-6463/abb624
http://doi.org/10.1016/j.scitotenv.2019.134965
http://doi.org/10.3390/app10186378
http://doi.org/10.3390/ijms21218100
http://doi.org/10.1088/1361-6463/ab273d
http://doi.org/10.1016/j.jbiosc.2018.12.008
http://doi.org/10.1109/TPS.2018.2871856
http://doi.org/10.3390/app9183921
http://doi.org/10.1007/s12223-017-0535-6
http://www.ncbi.nlm.nih.gov/pubmed/28623536
http://doi.org/10.1016/j.surfcoat.2016.07.076
http://doi.org/10.3938/jkps.71.670


Int. J. Mol. Sci. 2022, 23, 11592 17 of 21
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161. Rehakova, M.; Čeppan, M.; Mikula, M. Study of stabilization of documents containing iron gall inks by treatment of atmospheric

DBD N2 plasma. Chem. Listy 2008, 102, 1061–1063.
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