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Abstract: Finding reliable miRNA markers and revealing their potential mechanisms will play
an important role in the diagnosis and treatment of NSCLC. Most existing computational methods for
identifying miRNA biomarkers only consider the expression variation of miRNAs or rely heavily on
training sets. These deficiencies lead to high false-positive rates. The independent regulatory model
is an important complement to traditional models of co-regulation and is more impervious to the
dataset. In addition, previous studies of miRNA mechanisms in the development of non-small cell
lung cancer (NSCLC) have mostly focused on the post-transcriptional level and did not distinguish
between NSCLC subtypes. For the above problems, we improved mainly in two areas: miRNA
identification based on both the NOG network and biological functions of miRNA target genes; and
the construction of a 4-node directed competitive regulatory network to illustrate the mechanisms.
NSCLC was classified as lung adenocarcinoma (LUAD) and lung squamous cell carcinoma (LUSC) in
this work. One miRNA biomarker of LUAD (miR-708-5p) and four of LUSC (miR-183-5p, miR-140-5p,
miR-766-5p, and miR-766-3p) were obtained. They were validated using literature and external
datasets. The ceRNA-hub-FFL involving transcription factors (TFs), microRNAs (miRNAs), mRNAs,
and long non-coding RNAs (lncRNAs) was constructed. There were multiple interactions among
these components within the net at the transcriptional, post-transcriptional, and protein levels. New
regulations were revealed by the network. Meanwhile, the network revealed the reasons for the
previous conflicting conclusions on the roles of CD44, ACTB, and ITGB1 in NSCLC, and demonstrated
the necessity of typing studies on NSCLC. The novel miRNA markers screening method and the
4-node directed competitive ceRNA-hub-FFL network constructed in this work can provide new
ideas for screening tumor markers and understanding tumor development mechanisms in depth.

Keywords: non-small cell lung cancer; miRNA biomarker; independent regulation model; regulatory
network; mechanism

1. Introduction

Lung cancer (LC) is one of the primary causes of cancer-related deaths worldwide [1].
Approximately 80–85% of LC is classified as non-small cell lung cancer (NSCLC), and
the majority of NSCLC comprises two major histological subtypes: lung adenocarcinoma
(LUAD) and lung squamous cell carcinoma (LUSC) [2]. Although significant progress has
been made in the diagnosis and treatment strategies for LC, the 60-month overall survival
(OS) and 5-year survival rates for LC are only 16% to 18%, because 70% to 80% of LC
patients are already at an advanced stage when initially diagnosed [3]. With early diagnosis
and treatment, the 5-year survival rate for LC can approach 45–65% [4]. Therefore, it
becomes increasingly important to diagnose LC as early as possible.

The diagnosis of LC relies mainly on imaging, cytology, and biochemical examination.
Due to the various limitations, there are problems with a high false-positive rate, low
sensitivity, and specificity [5]. The use of microRNAs (miRNAs) in diagnosis and prognosis
has several advantages: they can be detected in circulating plasma [6]; they have higher
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stabilities [7]; there are statistically significant differences in miRNA expression levels
in the serum of NSCLC patients compared to normal tissues [8]; they are specific in
tissue expression and temporal expression to reflect the evolutionary pattern of disease
development easily and accurately [9]. Moreover, nearly half of the annotated human
miRNAs are located at vulnerable and critical points in the genome [10]. Many studies
have shown that miRNA biomarkers have the potential to be used in the diagnosis and
prognosis of LC [11,12].

Most studies identifying miRNA biomarkers only consider the changes in the ex-
pression level of miRNA itself, but do not involve its regulatory genes. The difference
in the expression levels of miRNAs can be reflected in the expression levels of the target
genes regulated by miRNAs. The underlying mechanisms of various biological phenomena
cannot be illustrated by an individual bio-molecule but a well-studied biological network
can reveal the inherent laws of life activities at the systemic level. The systematic com-
putational method of integrating miRNA regulatory data and gene expression data will
be more effective in inferring potentially aberrant miRNA activity in cancer [13]. From
this point of view, several regulatory models based on miRNA-mRNA regulation net-
works have been used in biomarker identification works. However, these studies rely
heavily on the training set, leading to high false positives. Moreover, in these studies,
the miRNA that regulates hub genes in the co-regulation model is regarded as the most
critical molecule, and it is chosen as a biomarker [14]. Recently, the miRNA-independent
regulation model has been proposed to quantify the possibilities of miRNA biomarkers
by two metrics [15]: the number of genes uniquely targeted (NOG) by a specific miRNA
and the percentage of transcription factor genes (TFP) targeted by the miRNA. The NOG
values reflect the independent regulatory ability of miRNAs, and the TFP values reflect
the functional importance of miRNA-regulated genes. The independent regulation model
is more “fragile” and “influential” than the co-regulation model. MiRNAs can be used
as biomarkers if they can independently regulate hub genes with important roles in the
protein–protein interaction (PPI) network [16]. Some investigators have well demonstrated
the generality and predictive ability of the independent regulation model in complex dis-
eases, such as prostate cancer [17], colorectal cancer [18], and so on [19]. However, the
model only divides regulatory genes into genes that are independently regulated, genes
that are non-independently regulated, and transcription factor (TF) genes, but does not
consider the biological significance of miRNA-regulated genes. It is well-known that
genes often play different roles in different environments. We believe that if the target
of a miRNA is associated with a disease, then this miRNA will be more involved in the
evolution of the disease. Therefore, the combination of the independent regulatory model
with the biological function of miRNA target genes will make the obtained markers more
reliable (Figure 1).

Biological regulation is complex and multilayered. The regulatory mechanisms of
miRNAs reported before are mostly based on the post-transcriptional level, such as the
competition between miRNAs and long non-coding RNAs (lncRNAs) or the interaction
between miRNAs and target genes [20], and the obtained conclusions would be very
one-sided. By controlling the transcriptional activity of genes at the transcriptional level by
binding to cis-regulatory elements of genes [21], TFs can direct cell division, cell growth and
death, as well as the migration and organization of cells during embryonic development.
TFs are essential for a series of biological processes. The expression of protein-coding
genes is regulated at the transcriptional level (TFs) and the post-transcriptional level
(miRNAs) [22]. There is growing evidence for cooperation and crosstalk between miRNAs
and TFs, primarily to buffer gene expression and/or tune signals [23].

In addition, lncRNAs are associated with many biological processes in a variety of
diseases, such as cancer and cardiovascular disease [24,25]. LncRNAs can compete with
mRNAs for the same miRNA response element (MRE) and alleviate miRNA repression on
target genes (mRNAs). Thus, lncRNAs, serving as competing endogenous RNAs (ceRNAs),
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lead to the down-regulation of these miRNAs in the cytoplasm and have undeniable effects
on gene regulation and diseases [26].
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Figure 1. MiRNA-mRNA regulatory network combines the independent regulatory model with the
biological function of target genes. MiRNA4 is more likely to be a marker than other miRNAs in the
figure because its targets include independent genes, TF genes, and important disease-related genes.

In a word, both TFs and lncRNAs affect the development and progression of diseases
and are important regulators that cannot be ignored. A complicated network, which
combines miRNAs, mRNAs, TFs, and lncRNAs, would deeply reveal the mechanisms of
transcriptional and post-transcriptional regulation, while it has rarely been considered
before. Moreover, the protein–protein interaction (PPI) network can reveal insights into
biological regulatory pathways at the protein level. Investigating underlying biological
meaning at the transcript level, post-transcript level to protein level will be more systematic.

In this study, we identify reliable miRNA biomarkers for the diagnosis of the two
major subtypes of NSCLC (LUAD and LUSC), respectively. An independent regulatory
model including NOG and TFP values of miRNAs and the biological significance of the
target genes would be taken into consideration. Furthermore, to understand the potential
molecular mechanisms of miRNAs in NSCLC at the systemic level, a 4-node ceRNA-hub-
FFL network involving TFs, lncRNAs, genes, and miRNAs would be constructed based
on the obtained miRNA biomarkers. In the constructed network, PPI would be used to
identify functionally important target genes.

2. Results
2.1. Data Pre-Processing and Differential Expression Analysis Results

The data of LUAD and LUSC were downloaded from the TCGA database. After data
pre-processing, there were 16,498 mRNAs and 523 mature miRNAs for each sample in
LUAD, and 16,727 mRNAs and 531 mature miRNAs in LUSC.

Differential expression analysis showed that 1438 mRNAs and 111 miRNAs were
up-regulated, and 1084 mRNAs as well as 74 miRNAs were down-regulated in LUAD
(Figure 2a,b). In LUSC, there were 1991 up-regulated mRNAs and 1861 down-regulated
mRNAs, 125 up-regulated miRNAs, and 83 down-regulated miRNAs (Figure 2c,d).

2.2. Screening and Validation of the Lung Cancer Biomarkers
2.2.1. Obtaining miRNA Biomarkers Based on the Independent Regulatory Model

A de-redundant operation was carried out to the data of experimentally validated
databases and the computer-predicted databases, so 319,574 and 9405 miRNA-mRNA inter-
action pairs were left, respectively. The human miRNA-mRNA network was constructed
using 325,729 miRNA-mRNA interaction pairs. Then, a disease-specific miRNA-mRNA
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network was extracted from it using differential expression mRNAs and miRNAs. NOG
and TFP values of miRNAs were calculated based on the network. The distribution of
NOG values conformed to the Power distribution. Finally, ten candidate miRNAs in LUAD
(Table S1) and nine in LUSC were obtained (Table S2).
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2.2.2. Identifying Candidate miRNA Biomarkers Based on Biological Significance of
Target Genes

• Obtaining the most relevant gene sets for LC using WGCNA

A WGCNA network was built using mRNA expression data of paired normal and
tumor samples of LUAD and LUSC, respectively, and highly cancer-related gene modules
were obtained from it (Figure 3). In LUAD, the best soft-thresholding power β = 7 was cho-
sen for constructing the co-expression network based on the fit and connectivity. Eighteen
modules were identified using the dynamic cutting algorithm. The correlations between
the modules were calculated, and the modules with a correlation bigger than 0.75 were
combined into one module, resulting in 13 modules. Normal and tumor samples in LUAD
were used as clinical traits, and the strongest negative correlation was detected between the
Turquoise module with the tumor samples (r = −0.95, p = 1 × 10−57). Figure 3a–d shows
that the expression profile of genes in the Turquoise module was strongly correlated with
LUAD sample traits. Therefore, the gene set in the Turquoise module was selected. Simi-
larly, in LUSC, 12 modules were identified finally, and the strongest negative correlation
was detected between the Brown module with the tumor samples (r = −0.96, p = 4 × 10−53).
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Figure 3e–h shows that the expression profile of genes in the Brown module was strongly
correlated with LUSC sample traits, so the gene set in the Brown module was selected.
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Figure 3. Identification of LUAD/LUSC-related gene set based on WGCNA. (a,e) are the scale-free fit
indices of various soft-thresholding powers, both with the best soft-thresholding value of 7. (b,f) The
average connectivity of various soft-thresholding powers, and the y-axis is a decreasing function of
the soft-thresholding power β(x-axis). (c,g) The gene modules associated with the clinical features of
LUAD/LUSC. Each module contains the corresponding correlation and p-value, and the correlation
coefficient represents the correlation between the gene modules and the clinical features; the color
shade represents the correlation size, red indicates a positive correlation, and blue indicates a negative
correlation. (d,h) Scatter plots of the clinical trait between module membership (x-axis) and gene
significance (y-axis) in the Turquoise module. Module membership (x-axis) refers to the correlation
between the genes and the module, with larger values indicating the greater correlation between the
genes and the module, and gene significance refers to the correlation between the genes and the trait,
with larger values indicating the stronger correlation between the genes and the trait (LUAD: r = 0.97,
p < 1× 10−200; LUSC: r = 0.99, p < 1× 10−200).

• Screening LC-related genes based on databases of oncogenes and tumor suppressor genes

In order to determine whether the above-obtained genes are associated with LC, gene-
lung-related enrichment analysis was performed using DAVID. A total of 711 genes in
LUAD and 1560 genes in LUSC were selected. In addition, further screening was carried
out based on whether the genes are oncogenes or tumor suppressor genes. Finally, 100 and
198 oncogenes or tumor suppressor genes were obtained in LUAD and LUSC, respectively
(Tables S3 and S4).

• Identifying miRNA biomarkers based on biological significance of genes

A strongly correlated miRNA-mRNA network was constructed by the above NSCLC-
related important genes. The miRNAs in the network were the candidate biomarkers
that can regulate important LC-related genes. Finally, 13 candidate miRNAs in LUAD
(Table S5) and 51 candidate miRNAs in LUSC (Table S6) were obtained.
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2.2.3. The Final miRNA Biomarkers for LC

Considering both the independent regulation model and the biological significance
of the target genes, two and five candidate biomarkers were obtained in LUAD and
LUSC, respectively (Tables 1 and 2). Then, ROC curves and AUC were used to identify
potential biomarkers (AUC > 0.85). The final miRNA biomarker was miR-708-5p in LUAD.
There were four miRNAs (miR-766-5p, miR-766-3p, miR-140-5p, and miR-183-5p) in LUSC.
The above five miRNAs not only had strong independent regulatory abilities, but their
target genes were also biologically important. Those genes are all oncogenes or tumor
suppressor genes.

Table 1. MiRNAs obtained from the intersection of two screening methods in LUAD.

miRNA ID NOG Value TFP Value Important Gene NOG Gene AUC

miR-101-3p 8 0.177 EMP1, KLF6 OCIAD2, BRIP1, NPC1L1, KL, FOXF1,
AJAP1, NKX6-1, MAOB 0.838

miR-708-5p 6 0.1628 SLIT2 JAM2, TMEM88, MAG, KANK4,
DNAH10, FAM107A 0.894

Note The significance test values of ROC curves for all miRNAs: p-value < 0.00001.

Table 2. MiRNAs obtained from the intersection of two screening methods in LUSC.

miRNA ID NOG Value TFP Value Important Gene NOG Gene AUC

miR-101-3p 12 0.1572 FHL1, KLF2
SNX31, CNTN4, PHACTR3, RNASE4,

RNASE1, KL, FOXF1, C17orf104,
KRT10, CACNA1D, ADD2, MAOB

0.792

miR-140-5p 7 0.2195 BIRC5, CCNB1 TEX19, RASL11B, GRIN1, SRD5A1,
FAM162A, ADA, CADPS2 0.874

miR-183-5p 7 0.16 FOS,
CAV1, KLF6

E2F8, RAI2, HIST1H2AI, GBP4,
DNAH3, FAM83A, FMN1 0.976

miR-766-5p 10 0.1667 CCNB1
EFR3B, NPM3, CALCOCO1,

CYP27C1, ASIC1, IL16, PCDHA3,
GPBAR1, PPFIA4, KCTD1

0.957

miR-766-3p 16 0.1587 DLC1

SP8, TRIM45, TRIM15, TTBK1, TTC25,
IL1RL2, RCCD1, TEKT1, HIST2H2AB,

ZNF670, CENPH, TRPV3, CGNL1,
VAMP5, KIRREL2, TNNT1

0.973

Note The significance test values of ROC curves for all miRNAs: p-value < 0.00001.

2.2.4. Validating the Reliability and Rationality of miRNA Biomarkers

• Validation using literature

Table 3 shows the amount of literature associated with the obtained miRNAs in Web
of Science and PubMed databases. The relevance of each miRNA and LC was reported,
although the reports are very few. However, it is evident that in most of the literature,
subtypes are not distinguished.

Table 3. The literature search result of miRNA biomarkers.

miRNA ID LUAD LUSC NSCLC Subtype Study Total

miR-708-5p 1 1 6 1 9
miR-766-3p 1 - 1 - 2
miR-766-5p 1 - - - 1
miR-183-5p 12 2 19 - 33
miR-140-5p 4 - 19 1 24



Int. J. Mol. Sci. 2022, 23, 11303 7 of 32

• Validation using external datasets

Validation of the ability to distinguish LUAD from normal: Three GEO datasets,
GSE102286, GSE63805, and GSE36681, were used to validate the potential to distinguish
LUAD from normal based on the expression and AUC of miR-708-5p. Because there
were two different sample preparation methods (FF and FFPE) in the GSE36681 dataset,
the dataset was bisected. In all three datasets, the expression of miR-708-5p in LUAD
was significantly higher than in normal samples, which was consistent with our results
(Figure 4). The AUC values of miR-708-5p in the four datasets were 0.70, 0.79, 0.79 and
0.71, respectively.
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Figure 4. Validation results of miRNA markers in LUAD. FF: Fresh Frozen; FFPE: Formalin-Fixed
and Paraffin-embedded. The green dot indicates the normal sample, while the red dot indicates the
tumor sample.

Validation of the ability to distinguish LUSC from normal: The GEO datasets GSE15008
and GSE74190 were used to validate the potential to distinguish LUSC from normal based
on the expression and AUC of biomarkers. MiR-766-5p could not be validated because
there is no miR-766-5p in the sequencing platform microarray. As to miR-140-5p, there was
no significant difference in expression in GSE15008 (Figure 5), but it was significantly down-
regulated in LC samples than in normal tissues in GSE74190 (Figure 6). The expression
levels of other biomarkers were significantly up-regulated in LC samples in the two datasets.
The AUC values of miR-140-5p, miR-183-5p, and miR-140-5p were 0.52, 0.85, and 0.61
using GSE15008, respectively, and were 0.96, 0.99, and 0.63 in GSE74190, respectively
(Figures 5 and 6). There are no more datasets available for validation in the GEO database.

Validation of the ability to distinguish NSCLC from normal tissue using a TCGA inte-
gration dataset without distinction of subtypes: Validation was performed using paired and
unpaired samples, respectively. MiR-766-3p was not validated because of too many missing
values. In both unpaired and paired samples, miR-183-5p and miR-708-5p were signifi-
cantly over-expressed, and miR-766-5p and miR-140-5p were significantly low-expressed
(Figures 7 and 8). The AUC values of miR-183-5p, miR-708-5p, miR-766-5p, and miR-140-5p
were 0.97, 0.68, 0.86, and 0.86 in unpaired samples, and 0.96, 0.65, 0.81, and 0.88 in paired
samples, respectively.
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Evaluation of the ability of biomarkers to distinguish between LUAD and LUSC:
There are some pathological differences between LUAD and LUSC. However, only a few
published papers have explored miRNA biomarkers for stratifying LC subtypes. Thus, we
carried out this study.

In terms of expression level, miR-183-5p was not significantly different between the
two subtypes. As to miR-766-3p, it could not be compared because of too many missing
values in LUAD, but it was detectable in LUSC, indicating that the expression level of
miR-766-3p was higher in LUSC than in LUAD. The expression levels of other miRNAs
were significantly different between the two subtypes (Figure 9).
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The AUC values of miR-183-5p, miR-708-5p, miR-766-5p, and miR-140-5p were 0.52,
0.59, 0.82, and 0.67, respectively.

2.3. Construction of ceRNA-hub-FFL Network Based on miRNA Biomarkers
2.3.1. Construction of FFL Network

MiRNAs and TFs can co-regulate shared target genes in feed-forward loops (FFLs) [27]
in at least three situations: (1) TFs regulate miRNA expression in their promoter regions [28],
(2) TFs and miRNAs can regulate each other by forming feedback loops (FBLs), and
(3) both miRNAs and TFs can co-regulate shared target genes and form feed-forward loops
(FFLs). Previous studies have explored the underlying molecular mechanisms of diseases
or cellular conditions through the key regulators (miRNAs and TFs) and their interactions
in these networks [29].

The interaction pairs of the four regulatory factors, TFs, miRNAs, genes, and lncRNAs,
at the transcriptional and post-transcriptional levels, were obtained (Table S7). Then, TCGA
expression data was used to obtain the direction of regulation.

The FFL network was extracted from the above network (Figure S1). There were
4662 I-FFLs, 681 II-FFLs, and 318 III-FFLs (Table S8).
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2.3.2. Obtaining hub-FFL Network and Further Extracting ceRNA-hub-FFL Network

To obtain the key subnets from the above FFL network, a PPI net was constructed
(Figure S2) to identify miRNA-regulated target genes whose proteins play important
functions, and these key genes were used to extract the hub-FFL subnetworks from the FFL
network (Figure S3).

LncRNAs in the cytoplasm can also interact with miRNAs as competitive endoge-
nous RNAs and participate in the regulation of target gene expression, so the subcellular
localization of the lncRNAs in the hub-FFL network was analyzed using both the lncLoca-
torand and iLoc-lncRNA (Figure 10), and the intersection was obtained. Finally, 8 lncRNAs
were determined, and they were used to extract the ceRNA-hub-FFL network from the
hub-FFL network.
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The last ceRNA-hub-FFL network is shown in Figure 11.

Int. J. Mol. Sci. 2022, 23, x FOR PEER REVIEW 14 of 37 
 

 

 
Figure 11. CeRNA-hub-FFL network: (a) The total network can be divided into three different types 
of ceRNA-hub-FFL networks; (b) Type I subnetwork; (c)Type II subnetwork; (d) Type III subnet-
work. 

2.4. Analysis of Potential Molecular Mechanisms of Lung Cancer Based on ceRNA-hub-FFL 
Network 

The ceRNA-hub-FFL subnetwork of each miRNA biomarker was extracted to explore 
the potential mechanism in depth. 

Figure 11. CeRNA-hub-FFL network: (a) The total network can be divided into three different types
of ceRNA-hub-FFL networks; (b) Type I subnetwork; (c)Type II subnetwork; (d) Type III subnetwork.

2.4. Analysis of Potential Molecular Mechanisms of Lung Cancer Based on ceRNA-hub-FFL Network

The ceRNA-hub-FFL subnetwork of each miRNA biomarker was extracted to explore
the potential mechanism in depth.
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2.4.1. Mechanism Revealed by miR-708-5p Related ceRNA-hub-FFL Regulatory Subnetwork

The miR-708-5p related ceRNA-hub-FFL subnetwork is shown in Figure 12a. As it can
be seen, at the transcriptional level, the two TF genes, MAZ and EZH2, act as activators
of the miR-708-5p and repressors of the gene CD44 and the four lncRNAs. At the post-
transcriptional level, miR-708-5p acts as a repressor of CD44, and the four lncRNAs can
competitively combine with miR-708-5p, thus weakening its repressive effect on CD44.
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Figure 12. MiR-708-5p related ceRNA-hub-FFL subnetwork and target genes: (a) MiR-708-5p related
ceRNA-hub-FFL subnetwork (only I-FFL). Green dashed line indicates inhibition, while red indicates
activation, and line thickness indicates the strength of correlation; (b) MiR-708-5p expression data
of LUAD in TCGA; (c) CD44 proteome data of LUAD in CPTAC; (d) CD44 mRNA expression data
of LUAD in UALCAN; (e) CD44 mRNA expression data of LUSC in UALCAN; (f) CD44 mRNA
expression data of LUAD and LUSC in TIMER. The blue dots/boxs indicate the normal samples,
while the red dots/boxs indicate the tumor samples. *: p < 0.05; **: p < 0.01; ***: p < 0.001.
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According to our differential expression analysis and the ceRNA-hub-FFL subnetwork,
it can be inferred that miR-708-5p promoted the development and migration of LUAD by
up-regulating itself and further inhibiting CD44 (Figure 12b). The previous study suggested
that the down-regulation of CD44 (or its variants) was associated with an increased invasive
and metastatic capacity [30].

To validate our conclusion, the protein and mRNA expression data of CD44 in normal
tissues versus in LUAD were downloaded from the CPTAC, UALCAN [31], and TIMER [32]
databases, respectively, and the data confirmed the down-regulation of CD44 at the protein
and mRNA levels (Figure 12c,d,f). All the above confirmed the reliability of our results.

However, there are opposite views on the role of CD44 in cancer. These studies found
that miR-708-5p directly targeted CD44 in prostate cancer; that the reduced expression
level of miR-708-5p resulted in the increased expression level of CD44 and AKT2, resulting
in the initiation, development, and progression of prostate cancer [33]; and that deletion
or decrease in CD44 inhibited cancer stem cell properties, induced cell cycle arrest and
apoptosis [34].

To uncover the cause of the two contradictory opinions, we studied the two major
subtypes of NSCLC, LUAD, and LUSC, separately. MRNA level data from the UALCAN
and TIMER databases showed that CD44 was significantly down-regulated in LUAD
samples compared to normal samples, but the difference was not significant in LUSC
(Figure 12d–f). The mRNA data of CD44 and miRNA data of miR-708 were downloaded
from the DepMap (https://depmap.org/portal/, accessed on 19 September 2022) database,
and the outliers were removed using z-score (|z-score| < 2). Finally, 55 cell lines of
LUAD and 17 of LUSC were obtained. The correlation between miR-708 and CD44 was
calculated. The result showed that, in most cell lines (44/55) of LUAD, miR-708 had
a negative correlation with CD44 (r = −0.5926) (Figure 13a), but no correlation in LUSC
(Figure 13b). However, there were a few cell lines (11/55) where the correlation was just
the opposite. Due to the extreme lack of data on CD44 mutation-positive NSCLC cell lines
and the precise staging information of these cell lines, the possible reason for the different
expression of CD44 between different cell lines in LUAD needs to be further revealed. The
above results showed that the expression of CD44 was different in the two subtypes. If the
two subtypes are not distinguished, completely opposite conclusions may occur depending
on the sample sizes of the two subtypes. This further illustrates the necessity of exploring
the two subtypes separately.
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2.4.2. Mechanism Revealed by miR-183-5p Related ceRNA-hub-FFL Regulatory
Subnetworks

There are three types of FFL in the miR-183-5p related ceRNA-hub-FFL subnetworks
(Figure 14). As seen from the type II and III networks (Figure 14d,e), mutual inhibition
exists between TF ZEB1 and miR-183-5p at the transcriptional and post-transcriptional
levels, and the two factors regulate ITGB1 gene expression simultaneously.
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In the TF-meditated FFL (I-FFL) subnetwork (Figure 14a), some TFs activate miR-
183-5p and correspondingly repress the two lncRNAs, leading to the suppression of the
two genes ITGB1 and ACTB. While other TFs play the opposite roles, they finally activate
the two genes. According to our differential expression analysis and the ceRNA-hub-FFL
subnetwork, it can be inferred that miR-183-5p was significantly up-regulated in LUSC
(Figure 15a), which targeted ACTB and ultimately led to the down-regulation of ACTB and
ITGB1 in LUSC.

ACTB gene encodes β-actin. β-actin is a highly conserved cytoskeletal protein that
commonly expresses and is essential for cell migration, mitosis, intracellular transport, and
maintenance [35]. It has been considered an endogenous house-keeping gene and reference
gene in cells and tissues for many years [36], which leads to its role in cancer being ignored.
However, the emerging evidence suggests that ACTB expresses unstably and plays a key
role in a variety of human diseases, particularly cancer [37]. Previous studies showed that
the mRNA level of ACTB was down-regulated in esophageal cancer, colon cancer, and
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LUSC compared to normal tissues [38,39]. The same is also true for ITGB1. Some studies
indicated that down-regulation of ITGB1 triggered lung disease and even cancer, such as
colon cancer [40] and breast cancer [41]. These may be the mechanisms of miR-183-5p
regulating the development of lung cancer.
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Figure 15. Expression data of miR-183-5p and target genes: (a) MiR-183-5p expression data in TCGA;
(b) Proteome expression data of ACTB and ITGB1 of LUSC in CPTAC; (c) ACTB mRNA expression
data of LUSC in UALCAN; (d) ACTB mRNA expression data of LUAD in UALCAN; (e) ITGB1 mRNA
expression data of LUSC in UALCAN; (f) ITGB1 mRNA expression data of LUAD in UALCAN;
(g) ACTB mRNA expression data of LUAD and LUSC in TIMER; (h) ITGB1 mRNA expression data
of LUAD and LUSC in TIMER. The blue dots/boxs indicate the normal samples, while the red
dots/boxs indicate the tumor samples. *: p < 0.05; **: p < 0.01; ***: p < 0.001.



Int. J. Mol. Sci. 2022, 23, 11303 17 of 32

To further validate the above conclusions, we analyzed the data with different databases
at different levels. Using the protein and mRNA expression data of ACTB and ITGB1 from
the CPTAC, UALCAN, and TIMER databases, the results showed down-regulated ACTB
and ITGB1 in LUSC tissues compared to normal tissues (Figure 15b,c,e,g,h). The mRNA
data of ACTB and ITGB1 and miRNA data of miR-183 were downloaded from the DepMap
database, and the outliers were removed using z-score (|z-score| < 2). Finally, 55 cell lines
of LUAD and 17 of LUSC were obtained. The correlations between miR-183 and ACTB,
miR-183 and ITGB1 were calculated, respectively. The results showed that, in all 17 cell
lines of LUSC, miR-183 had a negative correlation with ACTB (r = −0.5477), and with ITGB1
(r = −0.5203), respectively, (Figure 16a,c), but no correlation in all 55 cell lines of LUAD
(Figure 16b,d). All the above data proved the reliability of the conclusion we obtained.
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Figure 16. The correlations between miR-183 and ACTB, miR-183 and ITGB1 in NSCLC cell lines:
(a) The correlation between miR-183 and ACTB of LUSC cell lines; (b) The correlation between
miR-183 and ACTB of LUAD cell lines; (c) The correlation between miR-183 and ITGB1 in LUSC cell
lines; (d) The correlation between miR-183 and ITGB1 of LUAD cell lines.

However, some other studies found the opposite results, suggesting that ACTB was
up-regulated in some cancers, such as esophageal cancer (ES) and NSCLC (not typed)
compared to normal samples [42,43], and a study showed that up-regulated ACTB was
associated with poor prognosis in LUAD [39]. These studies did not distinguish between
LUAD and LUSC. Similarly, different voices had emerged on the role of ITGB1 in tumors,
that is up-regulated ITGB1 promoted the development of LC [44]. Some studies found that
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down-regulated ITGB1 inhibited NSCLC [45], and the samples with up-regulated ITGB1 in
LUAD had worse overall survival [46].

To discern the correctness of the above results, we analyzed the mRNA expression
data from the UALCAN and TIMER databases. The results showed that ACTB was not
significantly different in LUAD in both UCLCAN and TIMER (Figure 15d,g), and ITGB1 was
not significantly different in LUAD in TIMER (Figure 15h). These results further illustrated
the necessity of studies for NSCLC subtypes. Unfortunately, ACTB has been considered
as an endogenous house-keeping gene in cells and tissues and as a reference gene for
quantitative experiments for many years [47]. The belief that it expresses stably in cells
has led to its neglected role in cancer. Our results brought to light the unstable expression
of ACTB in NSCLC, making the role of ACTB as a cancer reference gene challenging. The
mechanism of ACTB action in NSCLC also needs to be further elucidated. Similarly, no
studies have been seen on miR-183-5p targeting ITGB1 and thus affecting the development
of NSCLC.

2.4.3. Mechanism Revealed by miR-766-5p Related ceRNA-hub-FFL Regulatory Subnetworks

There are three types of FFL in the miR-766-5p related ceRNA-hub-FFL subnetworks
(Figure 17). In the TF-mediated (I-FFL) network, most TFs (right) have repressive effects on
miR-766-5p, with activating effects on CCNB1 and related four lncRNAs, while the other
seven TFs act in the opposite way.
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In the miR-766-5p-mediated FFL (II-FFL), TFs MAZ, HDAC2, and KDM5B have
activating effects on CCNB1 and lncRNAs. However, miR-766-5p represses the three TFs
at the post-transcriptional level. Eventually, these interactions enhance the repressive
effect of miR-766-5p on CCNB1. According to our differential expression analysis and the
ceRNA-hub-FFL subnetwork, it can be inferred that miR-766-5p was significantly down-
regulated in LUSC (Figure 18a), and the enhanced inhibitory effect of TFs on miR-766-5p
led to the up-regulation of the regulated CCNB1. A previous study has confirmed that the
protein encoded by CCNB1 is a regulatory protein involved in mitosis, which has been
demonstrated to be associated with the development of LC [48]. Reduced expression of
CCNB1 can induce G2/M cell cycle arrest and promote apoptosis [49]. This may be the
mechanism of miR-183-5p regulating the development of lung cancer.
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of LUSC in TCGA; (b) CCNB1 proteome expression data of LUSC in CPTAC; (c) CCNB1 mRNA
expression data of LUSC in UALCAN; (d)CCNB1 mRNA expression data of LUAD in UALCAN;
(e) CCNB1 mRNA expression data of LUAD and LUSC in TIMER. The blue dots/boxs indicate
the normal samples, while the red dots/boxs indicate the tumor samples. *: p < 0.05; **: p < 0.01;
***: p < 0.001.
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To validate our conclusion, the protein and mRNA expression data of CCNB1 in
normal tissues versus in LUSC and LUAD were analyzed based on the CPTAC, UALCAN,
and TIMER databases, respectively, and the data confirmed the significantly up-regulated
expression of CCNB1 (Figure 18b–e). All the above proved the reliability of our results.

2.4.4. Mechanisms Revealed by miR-140-5p Related ceRNA-hub-FFL Regulatory Subnetworks

There are three types of FFL in the MiR-140-5p-related ceRNA-hub-FFL subnetworks
(Figure 19).
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In the miRNA-mediated FFL (II-FFL) and composite FFL (III-FFL) regulatory net-
works, TF TRIM28 and miR-140-5p inhibit each other at the transcriptional level and
post-transcriptional level. They form a feedback loop that co-regulates the expression of the
target genes CDC6, YWHAG, CCNB1, and BRIC5. TF MYBL2 participates in the activation
of the four target genes at the transcript level also.

Most of the key regulators exist in TF-mediated FFL (I-FFL) (Figure 19a,d). Five genes,
YWHAG, YWHAQ, CCNB1, CDC6, and BIRC5, are regulated by activation or repression of
different factors. At the transcriptional level, the TFs ETS1 and GATA1 activate miR-140-5p
and correspondingly repress the lncRNA SNHG1, TUG1, and the target gene YWHAG.
However, the effects of TCF3, KDM5B, EZH2, TRIM28, and HDAC2 are the opposite. As
for YWHAQ, it is almost the same. Six TFs TCF3, TRIM28, KDM5B, HDAC2, HDAC1,
and EZH2 have activating effects on gene CCNB1 and lncRNAs TUG1 and SNHG1 at the
transcriptional level, repressive effects on miR-140-5p. The other five TFs NFIC, JUND,
ZEB1, ELF1, and ETS1 have the opposite effect. CCNB1 is an oncogene. It is possible that
six TFs play a dominant role in the repression of miR-140-5p, and thus low-expressed
miR-140-5p in LUSC weakens the repressive effect on oncogene CCNB1. The same thing
is true for CDC6 and oncogene BIRC5. According to our differential expression analysis
and the I-FFL, it could be inferred that miR-140-5p was significantly down-regulated in
LUSC (Figure 20a), so down-regulated miR-140-5p led to a diminished inhibitory effect on
YWHAG, YWHAQ, CCNB1, BIRC5, and CDC6.
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Figure 20. Expression data of miR-140-5p and related proteins: (a) MiR-140-5p expression data of
LUSC in TCGA; (b) Proteome expression data of CCNB1, YWHAQ, YWHAG, and BIRC5 of LUSC in
CPTAC; (c) YWHAG mRNA expression data of LUSC in UALCAN; (d) YWHAG mRNA expression
data of LUAD in UALCAN; (e) YWHAQ mRNA expression data of LUSC in UALCAN; (f) YWHAQ
mRNA expression data of LUAD in UALCAN; (g) CCNB1 mRNA expression data of LUSC in
UALCAN; (h) CCNB1 mRNA expression data of LUAD in UALCAN; (i) BIRC5 mRNA expression
data of LUSC in UALCAN; (j) BIRC5 mRNA expression data of LUAD in UALCAN; (k) CDC6 mRNA
expression data of LUSC in UALCAN; (l) CDC6 mRNA expression data of LUAD in UALCAN.
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YWHAG and YWHAQ are members of the 14-3-3 protein family. 14-3-3 proteins have
been demonstrated to contribute to the regulation of key cellular processes such as signal
transduction, cell cycle control, apoptosis, and malignant transformation [50], especially
many cellular processes associated with cancer development [51], and over-expression of
YWHAG has been observed in a variety of tumors [52]. It was reported that YWHAG could
inhibit the death of apoptotic cells and promote cell migration in breast cancer [53] and
have clinical prognostic significance as an oncogene in advanced NSCLC [54]. CCNB1 and
BIRC5 are all oncogenes. BIRC5 is a member of the inhibitors of apoptosis (IAP) gene family,
which encodes negative regulatory proteins that prevent apoptotic cell death. Unlike other
IAPs, BIRC5 expresses intensely in most tumors, including LUAD and LUSC [55], and
it could serve as a predictive biomarker for NSCLC, especially for LUAD [56], but does
not express or only expresses at low levels in most normally differentiated tissues [57],
and down-regulated BIRC5 was positively associated with NSCLC survival time [58]. Cell
division cycle 6 (CDC6) is an important regulator of DNA replication, and there is evidence
that silencing of CDC6 may lead to G1 phase arrest [59]. Over-expression of CDC6 has
been detected in several types of cancer, and up-regulation of CDC6 is associated with
poor prognosis in cancer patients [60]. A study has confirmed that the expression level of
CDC6 is significantly elevated in NSCLC tumor tissues [61]. This may be the mechanism of
miR-140-5p regulating the development of LC.

To further validate the above conclusions, we analyzed the data in different databases
at different levels. At the proteomic and mRNA levels of LUSC and LUAD in CPTAC,
UALCAN, and TIMER databases, YWHAG, YWHAQ, CCNB1, and BIRC5 were significantly
up-regulated (Figures 18b–e, 20b–j and 21a–c). There is no CDC6 proteome data in the
CPTAC database, but in UALCAN and TIMER databases at the mRNA level, CDC6 was
up-regulated in LUSC and LUAD compared to normal samples (Figures 20k,l and 21d).
These all proved the reliability of our findings.
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Figure 21. Differential expression of YWHAG, YWHAQ, BIRC5, and CDC6 in the TIMER: (a) YWHAG
mRNA expression data of LUAD and LUSC in TIMER; (b) YWHAQ mRNA expression data of LUAD
and LUSC in TIMER; (c) BIRC5 mRNA expression data of LUAD and LUSC in TIMER; (d) CDC6
mRNA expression data of LUAD and LUSC in TIMER. The blue dots/boxs indicate the normal
samples, while the red dots/boxs indicate the tumor samples. *: p < 0.05; **: p < 0.01; ***: p < 0.001.

3. Discussion

The biology network can deepen our understanding of the intrinsic mechanisms of
disease. Based on the network, the complex interactions within the organism can be fully
considered from a systematic perspective.

Most studies aiming to explore diagnostic and prognostic miRNA markers are based
on the coordinated relationships in the regulatory networks. They look for coordinated
relationships in the many-to-many relationships between miRNAs and genes, find disease-
related miRNA modules and identify markers from them eventually [17]. Disease-related
miRNAs in the caner-miRNA modules enhance the common action on the co-regulated
genes, i.e., synergistic effects [62]. However, according to the view of systematic biology [63],
biomarkers are important indicators reflecting changes between different biological states,
so biomarker identification should consider their effects on system stability. Therefore,
a different model—an independent regulation model of miRNAs has been proposed.
Independent regulation relationships are fragile. If the protein coded by the miRNA
target gene is a key node in the network, the abnormal expression of the miRNA with
independently regulatory ability to this gene will lead to large changes in this “fragile”
structure and affect the stability of the biological system. In biological networks, the
independent regulation model is an important complement to a synergistic effect and is
more impervious to the dataset [15]. There are some meaningful studies based on this
model [16,64], but this model does not consider the biological functions of the target genes.
We argue that if the miRNA target gene is highly correlated with the disease, then the
miRNA will be more directly and definitively involved in the progression of this disease.
Therefore, this miRNA is more likely to become a marker for the disease. The identification
of markers using a low-cost and highly accurate method is only the first step. It is more
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important to gain insight into the potential mechanisms of these markers in disease, which
will provide guidance for finding new markers, therapeutic targets, and treatment regimens.

The involvement of miRNAs in the pathogenesis of NSCLC is extremely complex.
Most previous studies have analyzed their regulatory mechanisms based only on the
post-transcriptional level [65]. This would lead to very one-sided conclusions and even
produce erroneous results. The regulation of eukaryotic gene expression can occur at
many different hierarchies, including the genetic level, transcriptional level, and post-
transcriptional level. Each hierarchy involves multiple factors. At the transcriptional level,
TFs as important regulatory molecules can directly control the timing, location, and intensity
of gene expression. They control the transcription of DNA into mRNA by combining with
specific DNA sequences, and they can also bind to RNA produced by gene transcription
and then control the transcription, localization, and stability of RNA. At the same time,
many TFs are regulated by factors in the signal transduction pathway. LncRNAs are
involved in regulating protein-coding genes at multi-levels, including epigenetic regulation,
transcriptional regulation, and post-transcriptional regulation. LncRNAs and miRNAs
can interact with each other by competing with some shared RNAs to participate in the
expression regulation of target genes in the cytoplasm [66].

The above shows the importance and complexity of TFs and lncRNAs in biological
regulatory networks. In short, TFs can regulate the expression of mRNA, miRNA, and
lncRNA genes at the transcriptional level, and miRNAs can regulate mRNAs (TF mRNAs
and non-TF mRNAs) and lncRNAs at the post-transcriptional level. Such a relationship
between TFs and miRNAs can connect the transcriptional level and the post-transcriptional
level [67]. Based on this bridging role of TFs, we constructed a 4-node directed competitive
ceRNA-hub-FFL network based on miRNA markers in NSCLC for the first time, and the
regulatory directions were determined in the network based on the correlation between
expressions. Based on the constructed ceRNA-hub-FFL network, the mechanisms of the
obtained markers were deeply explored, and we indeed got some novel conclusions and
depicted a more comprehensive regulatory mechanism. The constructed network revealed
for the first time that miR-708-5p affects the development of LUAD by regulating CD44,
miR-183-5p affects the development of LUSC through regulating ITGB1 and ACTB, and
miR-766-5p affects the development of LUSC through regulating CCNB1. These conclusions
were validated using multiple databases. In addition, the constructed ceRNA-hub-FFL
network provided a more comprehensive landscape of the different roles of lncRNAs and
TFs in miRNA regulation of gene expression. Meanwhile, through the ceRNA-hub-FFL
network, we clarified that the expression levels of CD44, ACTB, and ITGB1 are significantly
different in LUAD and in LUSC. This is because multiple factors play different regulatory
roles in gene expression, and the final results depend on the synergistic effect of various
regulatory factors. The necessity of subtyping studies on NSCLC becomes evident.

The network can give us a more comprehensive and systematic understanding of the
underlying molecular mechanisms of NSCLC. The constructed 4-node network can be
deeply mined at the level of key subnetwork modules, FFL modules, and relations among
TFs, miRNAs, genes, and lncRNAs, thus, the inherent laws of NSCLC can be explored at
the systemic level. It is expected to find new regulatory pathways and rules from multiple
angles and multiple layers, and it is also expected to identify potential oncogenes and drug
targets of NSCLC [68,69].

However, another non-coding RNA, circular RNAs (circRNAs), can also act as
a sponge to compete with miRNAs to bind mRNAs and indirectly regulate the expression
of target genes [70]. A previous study has demonstrated the regulatory function of circR-
NAs in tumor progression [71]. Therefore, our study is still deficient. The independent
regulation model only reflects the regulatory relationship at the miRNA-mRNA level, and it
would be more reasonable and valuable if the regulatory effects of lncRNAs and circRNAs
on miRNAs and mRNAs are further considered, as well as to further examine the general-
ity of this method. Furthermore, many factors in organisms are temporally and spatially
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regulated, so a multi-node multi-level dynamic network will reflect the mechanisms more
accurately and fully.

4. Methods and Materials
4.1. Data Download and Pre-Processing

The sequencing data of miRNAs, mRNAs, and lncRNAs in LUAD and LUSC was
downloaded from The Cancer Genome Atlas (TCGA, https://portal.gdc.cancer.gov/,
accedded on 17 June 2021) and pre-processed. Three datasets (GSE102286, GSE63805,
and GSE36681) and another two datasets (GSE74190 and GSE15008) were downloaded
from Gene Expression Omnibus (GEO, https://www.ncbi.nlm.nih.gov/geo/, accessed
on 18 September 2021) as external validation datasets for LUAD and LUSC
biomarkers, respectively.

4.2. Differential Expression Analysis of mRNAs and miRNAs

Differentially expressed mRNAs and miRNAs were analyzed using the R package
“DESeq2” [72]. The data were normalized using variance stabilizing transformation (VST)
and library composition. The threshold for the identification of differentially expressed
miRNAs and genes was |log2 (FC)| ≥ 1.5 and adjusted p-value ≤ 0.05.

4.3. Screening and Validation of miRNA as Biomarkers
4.3.1. Identification of miRNA Biomarkers Based on the Independent Regulation Model

• Construction of human miRNA-mRNA regulatory network

Six databases were used to construct the human miRNA-mRNA regulatory network.
Among them, the data in the four databases, miR2Disease [73] (http://www.mir2disease.
org/7, accessed on 17 June 2021), miRecords [74] (http://mirecords.biolead.org/, ac-
cessed on 17 June 2021), miRTarBase [75] (https://miRTarBase.cuhk.edu.cn/, accessed on
17 June 2021), and TarBase [76] (http://www.microrna.gr/tarbase, accessed on 17 June
2021), mainly comes from biological experiments. The data of the other two databases,
miRDB [77] (http://mirdb.org, accessed on 17 June 2021) and miRWalk [78]
(http://mirwalk.umm.uni-heidelberg.de, accessed on 17 June 2021), mainly comes from
computer algorithm prediction.

• Obtaining candidate biomarkers based on miRNA independent regulation model

Differential miRNAs and mRNAs were used to extract disease-specific miRNA-mRNA
networks from the human miRNA-mRNA network, and the NOG and TFP values were
calculated based on the net. MiRNAs with significantly high NOG and TFP values were
screened out with Wilcoxon signed rank test (threshold of NOG and TFP: p < 0.05). Because
miRNAs with higher NOG values are more likely to be biomarkers [15], the median NOG
values of the obtained miRNAs were calculated further, and miRNAs with NOG values
bigger than the median were selected as candidate biomarkers.

4.3.2. Screening miRNA Biomarkers Based on the Biological Significance of Target Genes

A weighted gene co-expression network analysis (WGCNA) was built, and the key
target gene set was obtained from it. Then, key LC-related genes, oncogenes, and tumor
suppressor genes were screened out from these target genes enriched in lung tissue. The
miRNA-mRNA target pairs of these key lung cancer-related genes were identified from
the interactions obtained experimentally. The Pearson correlation coefficients between the
target pairs were calculated, and the interaction pairs with high correlation were selected
as the strongly correlated pairs. Finally, miRNAs in strongly correlated pairs were regarded
as candidate biomarkers, which regulate key LC-related genes.

• Obtaining the gene set most relevant to LC using WGCNA

To obtain the gene modules highly relevant to cancer, mRNA expression data of
paired normal and tumor samples of LUAD and LUSC was obtained from the TCGA

https://portal.gdc.cancer.gov/
https://www.ncbi.nlm.nih.gov/geo/
http://www.mir2disease.org/7
http://www.mir2disease.org/7
http://mirecords.biolead.org/
https://miRTarBase.cuhk.edu.cn/
http://www.microrna.gr/tarbase
http://mirdb.org
http://mirwalk.umm.uni-heidelberg.de


Int. J. Mol. Sci. 2022, 23, 11303 26 of 32

database, respectively. The top 75% of variant genes were selected by a robust method
of median absolute deviation (MAD) [79]. A WGCNA was constructed and Module
Eigengene (ME) dissimilarities were calculated using the R package. The association
between ME and LC sample phenotypes was assessed by Pearson correlation values. The
p-value < 0.05 is significant. The module that was highly correlated with the LC sample
phenotypes was selected as the gene module most relevant to LC, and it would be used for
subsequent analysis.

• Screening LC-related genes based on databases of oncogenes and tumor
suppressor genes

To screen out the genes expressed in lung tissue from the gene set obtained above, en-
richment analysis was performed using DAVID [80] (https://david.ncifcrf.gov/, accessed
on 20 June 2021). The lung-enriched genes were further screened in the oncogene database
TSGene [81] and tumor suppressor genes database on Gene [82]. Finally, oncogenes or
tumor suppressor genes that express in lung tissue and are highly associated with LC
were obtained.

• Construction of the strong relationship pairs between LC-related genes and miRNAs

To identify the miRNAs that regulate the above-obtained oncogenes or tumor sup-
pressor genes, strong interactions between miRNAs and target genes must be found. The
miRNA-mRNA pairs from the four experimentally validated databases (in “Construction
of human miRNA-mRNA regulatory network”) were selected and Pearson correlation
coefficients between the target pairs were calculated based on TCGA expression data. The
threshold of strong relationship pairs: r < −0.3, p-value < 0.05.

4.3.3. The Final miRNA Biomarkers for LC

Candidate miRNA biomarkers were obtained from the intersection of the two methods.
Then the final biomarkers were identified by the ROC curve (AUC > 0.85).

4.3.4. Validating the Reliability and Rationality of Biomarkers

• Validation based on the existing literature

The biomarkers were submitted to the PubMed database. Literature screening criteria
for a certain miRNA: “miR-XXX” [All Fields] AND “humans” [MeSH Terms]. Literature
screening criteria for whether miRNA is associated with cancer: “Neoplasms” [MeSH
Terms] AND “miR-XXX” [All Fields] AND “humans” [MeSH Terms]. Literature screening
criteria for the association of a miRNA with LC: “Lung Neoplasms” [MeSH Terms] AND
“miR-XXX” [All Fields] AND “humans” [MeSH Terms]. The literature related to NSCLC
was searched in the Web of Science database. Literature screening criteria: TS = ((“LUAD”
OR “LUSC” OR “NSCLC” OR “non-small cell lung cancer” OR “non-small-cell lung cancer”
OR “lung squamous cell carcinomas” OR “lung adenocarcinoma” OR “non-small cell lung
carcinomas”) AND (“miR-XX” OR “miR XX” OR “microRNA XX” OR “microRNA-XX”)).
The screening covered literature published up to 16 September 2021.

• Validation based on external datasets

The ability to distinguish LUAD/LUSC from normal was validated using the expres-
sion and ROC of external GEO datasets GSE102286, GSE63805, GSE36681, and GSE74190,
GSE15008, respectively. The ability to distinguish NSCLC from normal tissue of the
biomarkers was verified using the unpaired and paired data of normal and tumor samples
from mixed subtypes in the TCGA database. The ability to distinguish LUAD from LUSC
was tested using the expression data and ROC of LUAD and LUSC tumor samples in the
TCGA database. p-value < 0.05 was considered statistically significant.

https://david.ncifcrf.gov/
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4.4. Construction of 4-Node ceRNA-hub-FFL Network Based on miRNA Biomarkers
4.4.1. Identifying the Interaction Pairs between TFs, miRNAs, Genes, and lncRNAs and
Calculating the Direction of Interactions

First, a TF dataset based on existing databases was established: TFs with a quality
rating reaching C and above were downloaded from HOCOMOCO V11 database [83];
TFs were downloaded from HumanTFDB (hust.edu.cn, accessed on 9 October 2021),
a sub-database of AnimalTFDB 3.0 [84]; TFs were extracted from the following databases:
TRRUST [85], ENCODE [86], TRANSFAC [87], ChIP-X Enrichment Analysis [88], Trans-
miR [89], and HTRIdb [90]. Finally, the above TFs were merged as the TF dataset for
this study.

The miRNA-TF relationship pairs were obtained based on the TF dataset constructed
above. Then, the interaction pairs between the miRNA biomarkers and genes were ex-
tracted from the human miRNA-mRNA network constructed in “Construction of human
miRNA-mRNA regulatory network”; miRNA-lncRNA relationship pairs were obtained
from the intersection of starBase 3.0 database [91] and lncBase database [92]. The interaction
pairs of TFs and targets, including TF-miRNA, TF-gene, and TF-lncRNA, were extracted
from ENCODE, CHIP-X, HTRIdb, TRANSFAC, and TRRUST databases. Furthermore,
TF-miRNA pairs were additionally extracted from puTmiR database [93].

Correlations and interaction directions between all interaction pairs were calculated
based on TCGA expression data, and significantly correlated interaction pairs were retained.
For miRNA target pairs: Pearson correlation coefficient r ≤ −0.15, p < 0.05, for TFs target
pairs: Pearson correlation coefficient |r| ≥ 0.3, p < 0.05.

To reduce false positives, the intersection of the relationship pairs obtained from the
databases and the expression was chosen as the final relationship pair.

4.4.2. Construction of FFL Network

After obtaining the interaction pairs between the four kinds of factors, three types of
4-node FFL (feed-forward loop) subnetworks were extracted using MotifPredictor (pub-
licly available at https://www.uth.edu/bioinfo/software.htm and https://github.com/
emanlee/MotifPredictor, accessed on 9 December 2021). The three types are TF-mediated
FFL (I-FFL), miRNA-mediated FFL (II-FFL), and composite FFL (III-FFL), respectively
(Figure 22).
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pression levels of these target genes are significantly different in LUAD and in LUSC. 

Supplementary Materials: The following supporting information can be downloaded at: 
www.mdpi.com/xxx/s1. 

Author Contributions: Conceptualization, J.Z., R.N. and X.Z.; Investigation, R.N. and M.L.; Meth-
odology, J.Z. and R.N.; Project administration, X.Z.; Software, J.Z. and R.N.; Supervision, X.Z.; Val-
idation, R.N. and M.L.; Visualization, J.Z. and R.N.; Writing—original draft, J.Z.; Writing—review 
& editing, J.Z., R.N., M.L. and X.Z. All authors have read and agreed to the published version of the 
manuscript. 

Funding: This research received no external funding. 

Informed Consent Statement: Not applicable. No permission was required to use any repository 
data involved in this study. 

Data Availability Statement: Data is available at NCBI GEO: GSE102286, GSE63805, GSE36681, 
GSE74190, GSE15008 and TCGA dataset (TCGA-LUAD, TCGA-LUSC, The Cancer Genome Atlas, 
https://www.cancer.gov, accessed on 18 September 2021). 

Figure 22. Three types of FFL subnetworks.

4.4.3. Obtaining hub-FFL Network

Cytohubba’s “degree” and MCC methods were used to extract the top 5% of nodes
as the key nodes to construct the FFL key subnetworks [94]. Further, considering the
importance of the genes co-regulated by TFs and miRNAs, the protein products of miRNA-
regulated genes were extracted to construct a PPI network. The genes of the top 10% of
nodes extracted from the PPI network were used to extract the hub-FFL network from the
FFL key subnetworks.

hust.edu.cn
https://www.uth.edu/bioinfo/software.htm
https://github.com/emanlee/MotifPredictor
https://github.com/emanlee/MotifPredictor


Int. J. Mol. Sci. 2022, 23, 11303 28 of 32

4.4.4. Extraction of ceRNA-hub-FFL Network

For the lncRNAs in the hub-FFL networks, LNCipedia (https://lncipedia.org/, ac-
cessecd on 13 January 2022) was used to obtain their base sequences. Then, two different
algorithms were used in the databases lncLocator 2.0 (http://www.csbio.sjtu.edu.cn/
bioinf/lncLocator/, accessecd on 13 January 2022) and iLoc-lncRNA (2.0, http://lin-group.
cn/server/iLoc-LncRNA(2.0)/home.php, accessecd on 13 January 2022) to predict the
subcellular localization of lncRNAs. LncRNAs localized in the cytoplasm were retained
according to the intersection of the two algorithms. Lastly, the ceRNA-hub-FFL network
was extracted from the hub-FFL network using obtained lncRNAs.

5. Conclusions

A novel miRNA markers screening method and a 4-node directed competitive ceRNA-
hub-FFL network were constructed in this work. Finally, miRNA biomarkers of LUAD
and LUSC were obtained and validated, respectively, and the new target genes regulated
by these biomarkers were revealed to be associated with LUAD and LUSC based on the
constructed ceRNA-hub-FFL network. Moreover, we clarified that the expression levels of
these target genes are significantly different in LUAD and in LUSC.
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30. Kargi, H.; Kuyucuoğlu, M.; Alakavuklar, M.; Akpmar, O.; Erk, S. CD44 expression in metastatic and non-metastatic non-small cell

lung cancers. Cancer Lett. 1997, 119, 27–30. [CrossRef]
31. Chandrashekar, D.S.; Karthikeyan, S.K.; Korla, P.K.; Patel, H.; Shovon, A.R.; Athar, M.; Netto, G.J.; Qin, Z.S.; Kumar, S.;

Manne, U.; et al. UALCAN: An update to the integrated cancer data analysis platform. Neoplasia 2022, 25, 18–27. [CrossRef]
32. Li, T.; Fan, J.; Wang, B.; Traugh, N.; Chen, Q.; Liu, J.S.; Li, B.; Liu, X.S. TIMER: A Web Server for Comprehensive Analysis of

Tumor-Infiltrating Immune Cells. Cancer Res. 2017, 77, e108–e110. [CrossRef]
33. Saini, S.; Majid, S.; Shahryari, V.; Arora, S.; Yamamura, S.; Chang, I.; Zaman, M.S.; Deng, G.; Tanaka, Y.; Dahiya, R. miRNA-708

Control of CD44+ Prostate Cancer–Initiating Cells. Cancer Res. 2012, 72, 3618–3630. [CrossRef]

http://doi.org/10.1038/s41419-020-02997-7
http://www.ncbi.nlm.nih.gov/pubmed/32963220
http://doi.org/10.18632/oncotarget.4038
http://doi.org/10.1073/pnas.0307323101
http://doi.org/10.1016/j.ccr.2007.12.008
http://www.ncbi.nlm.nih.gov/pubmed/18167339
http://doi.org/10.1177/15330338221080981
http://www.ncbi.nlm.nih.gov/pubmed/35230198
http://doi.org/10.1158/1535-7163.MCT-11-0055
http://www.ncbi.nlm.nih.gov/pubmed/21768329
http://doi.org/10.3892/ol.2022.13264
http://doi.org/10.1080/15476286.2018.1502590
http://doi.org/10.7717/peerj.12369
http://doi.org/10.1186/1479-5876-12-66
http://doi.org/10.18632/oncotarget.13659
http://www.ncbi.nlm.nih.gov/pubmed/27903980
http://doi.org/10.1155/2016/4618323
http://doi.org/10.3389/fgene.2022.851391
http://doi.org/10.1016/j.pbi.2022.102232
http://www.ncbi.nlm.nih.gov/pubmed/35679803
http://doi.org/10.1093/bib/bbz082
http://www.ncbi.nlm.nih.gov/pubmed/31589286
http://doi.org/10.1038/nrg.2016.134
http://www.ncbi.nlm.nih.gov/pubmed/27795564
http://doi.org/10.1093/bib/bbv107
http://doi.org/10.1101/gr.106849.110
http://doi.org/10.1158/0008-5472.CAN-13-3555
http://doi.org/10.1158/0008-5472.CAN-16-2634
http://doi.org/10.1161/CIRCRESAHA.116.302521
http://doi.org/10.1038/s41568-020-00306-0
http://doi.org/10.1016/S0304-3835(97)00254-1
http://doi.org/10.1016/j.neo.2022.01.001
http://doi.org/10.1158/0008-5472.CAN-17-0307
http://doi.org/10.1158/0008-5472.CAN-12-0540


Int. J. Mol. Sci. 2022, 23, 11303 30 of 32

34. Yin, J.; Zhang, H.; Wu, X.; Zhang, Y.; Li, J.; Shen, J.; Zhao, Y.; Xiao, Z.; Lu, L.; Huang, C.; et al. CD44 inhibition attenuates EGFR
signaling and enhances cisplatin sensitivity in human EGFR wild-type non-small-cell lung cancer cells. Int. J. Mol. Med. 2020,
45, 1783–1792. [CrossRef]

35. Dominguez, R.; Holmes, K.C. Actin Structure and Function. Annu. Rev. Biophys. 2011, 40, 169–186. [CrossRef]
36. Tang, M.; Hu, Z.; Rao, C.; Chen, J.; Yuan, S.; Zhang, J.; Mao, C.; Yan, J.; Xia, Y.; Zhang, M.; et al. Burkholderia pseudomallei

interferes with host lipid metabolism via NR1D2-mediated PNPLA2/ATGL suppression to block autophagy-dependent inhibition
of infection. Autophagy 2021, 17, 1918–1933. [CrossRef]

37. Latham, S.L.; Ehmke, N.; Reinke, P.Y.A.; Taft, M.H.; Eicke, D.; Reindl, T.; Stenzel, W.; Lyons, M.J.; Friez, M.J.; Lee, J.A.; et al.
Variants in exons 5 and 6 of ACTB cause syndromic thrombocytopenia. Nat. Commun. 2018, 9, 4250. [CrossRef]

38. Rubie, C.; Kempf, K.; Hans, J.; Su, T.; Tilton, B.; Georg, T.; Brittner, B.; Ludwig, B.; Schilling, M. Housekeeping gene variability
in normal and cancerous colorectal, pancreatic, esophageal, gastric and hepatic tissues. Mol. Cell. Probes 2005, 19, 101–109.
[CrossRef]

39. Gu, Y.; Tang, S.; Wang, Z.; Cai, L.; Lian, H.; Shen, Y.; Zhou, Y. A pan-cancer analysis of the prognostic and immunological role of
β-actin (ACTB) in human cancers. Bioengineered 2021, 12, 6166–6185. [CrossRef]

40. Kuwada, S.K.; Kuang, J.; Li, X. Integrin α5/β1 Expression Mediates HER-2 Down-regulation in Colon Cancer Cells. J. Biol. Chem.
2005, 280, 19027–19035. [CrossRef]

41. Lanzafame, S.; Emmanuele, C.; Torrisi, A. Correlation of α2ß1 Integrin Expression with Histological Type and Hormonal Receptor
Status in Breast Carcinomas. Pathol. Res. Pactr. 1996, 192, 1031–1038. [CrossRef]

42. Liu, Z.; Feng, J.-G.; Tuersun, A.; Liu, T.; Liu, H.; Liu, Q.; Zheng, S.-T.; Huang, C.-G.; Lv, G.-D.; Sheyhidin, I.; et al. Proteomic
identification of differentially-expressed proteins in esophageal cancer in three ethnic groups in Xinjiang. Mol. Biol. Rep. 2011,
38, 3261–3269. [CrossRef]

43. Saviozzi, S.; Cordero, F.; Iacono, M.L.; Novello, S.; Scagliotti, G.V.; Calogero, R.; Silvia, S.; Francesca, C.; Marco, L.I.;
Silvia, N.; et al. Selection of suitable reference genes for accurate normalization of gene expression profile studies in non-small
cell lung cancer. BMC Cancer 2006, 6, 200. [CrossRef]

44. Xu, X.; Zhang, X.; Zhang, Y.; Wang, Z. Curcumin suppresses the malignancy of non-small cell lung cancer by modulating the
circ-PRKCA/miR-384/ITGB1 pathway. Biomed. Pharmacother. 2021, 138, 111439. [CrossRef]

45. Zhao, M.; Tong, C.; Hao, Z.; Zhao, R.; Wang, L. MicroRNA -374b mediates the initiation of non-small cell lung cancer by regulating
ITGB1 and p53 expressions. Thorac. Cancer 2020, 11, 1670–1678. [CrossRef]

46. Deng, H.; Huang, Y.; Wang, L.; Chen, M. High Expression of UBB, RAC1, and ITGB1 Predicts Worse Prognosis among Nonsmoking
Patients with Lung Adenocarcinoma through Bioinformatics Analysis. BioMed Res. Int. 2020, 2020, 2071593. [CrossRef]

47. Sadek, K.H.; Cagampang, F.R.; Bruce, K.D.; Macklon, N.; Cheong, Y. Variation in stability of housekeeping genes in healthy and
adhesion-related mesothelium. Fertil. Steril. 2012, 98, 1023–1027. [CrossRef]

48. Oh, H.-N.; Kwak, A.-W.; Lee, M.-H.; Kim, E.; Yoon, G.; Cho, S.-S.; Liu, K.; Chae, J.-I.; Shim, J.-H. Targeted inhibition of c-MET by
podophyllotoxin promotes caspase-dependent apoptosis and suppresses cell growth in gefitinib-resistant non-small cell lung
cancer cells. Phytomedicine 2021, 80, 153355. [CrossRef]

49. Park, C.; Cha, H.-J.; Lee, H.; Hwang-Bo, H.; Ji, S.Y.; Kim, M.Y.; Hong, S.H.; Jeong, J.-W.; Han, M.H.; Choi, S.H.; et al. Induction of
G2/M Cell Cycle Arrest and Apoptosis by Genistein in Human Bladder Cancer T24 Cells through Inhibition of the ROS-Dependent
PI3k/Akt Signal Transduction Pathway. Antioxidants 2019, 8, 327. [CrossRef]

50. Zha, J.; Harada, H.; Yang, E.; Jockel, J.; Korsmeyer, S.J. Serine Phosphorylation of Death Agonist BAD in Response to Survival
Factor Results in Binding to 14-3-3 Not BCL-XL. Cell 1996, 87, 619–628. [CrossRef]

51. Aitken, A. 14-3-3 proteins: A historic overview. Semin. Cancer Biol. 2006, 16, 162–172. [CrossRef]
52. Com, E.; Clavreul, A.; Lagarrigue, M.; Michalak, S.; Menei, P.; Pineau, C. Quantitative proteomic Isotope-Coded Protein Label

(ICPL) analysis reveals alteration of several functional processes in the glioblastoma. J. Proteom. 2012, 75, 3898–3913. [CrossRef]
53. Kim, J.-O.; Kim, S.-R.; Lim, K.-H.; Kim, J.-H.; Ajjappala, B.; Lee, H.-J.; Choi, J.-I.; Baek, K.-H. Deubiquitinating enzyme USP37

regulating oncogenic function of 14-3-3γ. Oncotarget 2015, 6, 36551–36576. [CrossRef]
54. Wang, P.; Deng, Y.; Fu, X. MiR-509-5p suppresses the proliferation, migration, and invasion of non-small cell lung cancer by

targeting YWHAG. Biochem. Biophys. Res. Commun. 2017, 482, 935–941. [CrossRef]
55. Liu, J.; Lu, Y.; Huang, W.; He, Z. Comprehensive Analysis of Inhibitor of Apoptosis Protein Expression and Prognostic Significance

in Non–Small Cell Lung Cancer. Front. Genet. 2021, 12, 764270. [CrossRef]
56. Zhang, Y.; Sun, Y.; Jia, Y.; Zhang, Q.; Zhu, P.; Ma, X. α5-nAChR and survivin: Two potential biological targets in lung

adenocarcinoma. J. Cell. Physiol. 2021, 236, 1787–1797. [CrossRef]
57. Mazur, J.; Roy, K.; Kanwar, J.R. Recent advances in nanomedicine and survivin targeting in brain cancers. Nanomedicine 2018,

13, 105–137. [CrossRef]
58. Nitschkowski, D.; Marwitz, S.; Kotanidou, S.A.; Reck, M.; Kugler, C.; Rabe, K.F.; Ammerpohl, O.; Goldmann, T. Live and

let die: Epigenetic modifications of Survivin and Regucalcin in non-small cell lung cancer tissues contribute to malignancy.
Clin. Epigenetics 2019, 11, 157. [CrossRef]

59. Faghihloo, E.; Sadeghizadeh, M.; Shahmahmoodi, S.; Mokhtari-Azad, T. Cdc6 expression is induced by HPV16 E6 and E7
oncogenes and represses E-cadherin expression. Cancer Gene Ther. 2016. online ahead of print. [CrossRef]

http://doi.org/10.3892/ijmm.2020.4562
http://doi.org/10.1146/annurev-biophys-042910-155359
http://doi.org/10.1080/15548627.2020.1801270
http://doi.org/10.1038/s41467-018-06713-0
http://doi.org/10.1016/j.mcp.2004.10.001
http://doi.org/10.1080/21655979.2021.1973220
http://doi.org/10.1074/jbc.M410540200
http://doi.org/10.1016/S0344-0338(96)80045-8
http://doi.org/10.1007/s11033-010-0586-0
http://doi.org/10.1186/1471-2407-6-200
http://doi.org/10.1016/j.biopha.2021.111439
http://doi.org/10.1111/1759-7714.13457
http://doi.org/10.1155/2020/2071593
http://doi.org/10.1016/j.fertnstert.2012.06.033
http://doi.org/10.1016/j.phymed.2020.153355
http://doi.org/10.3390/antiox8090327
http://doi.org/10.1016/S0092-8674(00)81382-3
http://doi.org/10.1016/j.semcancer.2006.03.005
http://doi.org/10.1016/j.jprot.2012.04.034
http://doi.org/10.18632/oncotarget.5336
http://doi.org/10.1016/j.bbrc.2016.11.136
http://doi.org/10.3389/fgene.2021.764270
http://doi.org/10.1002/jcp.29956
http://doi.org/10.2217/nnm-2017-0286
http://doi.org/10.1186/s13148-019-0770-6
http://doi.org/10.1038/cgt.2016.51


Int. J. Mol. Sci. 2022, 23, 11303 31 of 32

60. Borlado, L.R.; Méndez, J. CDC6: From DNA replication to cell cycle checkpoints and oncogenesis. Carcinogenesis 2008, 29, 237–243.
[CrossRef]

61. Zhang, X.; Lian, T.; Fan, W.; Zhang, G.; Chen, Z.; Gou, X.; Jha, R.K. Long-Noncoding RNA CASC9 Promotes Progression
of Non-Small Cell Lung Cancer by Promoting the Expression of CDC6 Through Binding to HuR. Cancer Manag. Res. 2020,
12, 9033–9043. [CrossRef]

62. Bandyopadhyay, S.; Mitra, R.; Maulik, U.; Zhang, M.Q. Development of the human cancer microRNA network. Silence 2010,
1, 6–14. [CrossRef]

63. Lin, Y.; Qian, F.; Shen, L.; Chen, F.; Chen, J.; Shen, B. Computer-aided biomarker discovery for precision medicine: Data resources,
models and applications. Brief. Bioinform. 2019, 20, 952–975. [CrossRef]

64. Santo, G.D.; Frasca, M.; Bertoli, G.; Castiglioni, I.; Cava, C. Identification of key miRNAs in prostate cancer progression based on
miRNA-mRNA network construction. Comput. Struct. Biotechnol. J. 2022, 20, 864–873. [CrossRef]

65. Zhang, Q.; Kang, L.; Lingkai, K.; Li, Z.; Wen, S.; Fu, X. Bioinformatics Analysis Predicts hsa_circ_0026337/miR-197-3p as
a Potential Oncogenic ceRNA Network for Non-small Cell Lung Cancers. Anti-Cancer Agents Med. Chem. 2022, 22, 874–886.
[CrossRef]

66. Cesana, M.; Cacchiarelli, D.; Legnini, I.; Santini, T.; Sthandier, O.; Chinappi, M.; Tramontano, A.; Bozzoni, I. A Long Noncoding
RNA Controls Muscle Differentiation by Functioning as a Competing Endogenous RNA. Cell 2011, 147, 358–369. [CrossRef]

67. Hobert, O. Gene Regulation by Transcription Factors and MicroRNAs. Science 2008, 319, 1785–1786. [CrossRef]
68. Crudele, F.; Bianchi, N.; Reali, E.; Galasso, M.; Agnoletto, C.; Volinia, S. The network of non-coding RNAs and their molecular

targets in breast cancer. Mol. Cancer 2020, 19, 61. [CrossRef]
69. Schulte-Sasse, R.; Budach, S.; Hnisz, D.; Marsico, A. Integration of multiomics data with graph convolutional networks to identify

new cancer genes and their associated molecular mechanisms. Nat. Mach. Intell. 2021, 3, 513–526. [CrossRef]
70. Liu, Y.; Wang, L.; Liu, W. Roles of circRNAs in the Tumorigenesis and Metastasis of HCC: A Mini Review. Cancer Manag. Res.

2022, 14, 1847–1856. [CrossRef]
71. Xia, X.; Li, X.; Li, F.; Wu, X.; Zhang, M.; Zhou, H.; Huang, N.; Yang, X.; Xiao, F.; Liu, D.; et al. A novel tumor suppressor protein

encoded by circular AKT3 RNA inhibits glioblastoma tumorigenicity by competing with active phosphoinositide-dependent
Kinase-1. Mol. Cancer 2019, 18, 131. [CrossRef]

72. Love, M.I.; Huber, W.; Anders, S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2.
Genome Biol. 2014, 15, 550. [CrossRef] [PubMed]

73. Jiang, Q.; Wang, Y.; Hao, Y.; Juan, L.; Teng, M.; Zhang, X.; Li, M.; Wang, G.; Liu, Y. miR2Disease: A manually curated database for
microRNA deregulation in human disease. Nucleic Acids Res. 2009, 37, D98–D104. [CrossRef]

74. Xiao, F.; Zuo, Z.; Cai, G.; Kang, S.; Gao, X.; Li, T. miRecords: An integrated resource for microRNA-target interactions.
Nucleic Acids Res. 2009, 37, D105–D110. [CrossRef]

75. Huang, H.-Y.; Lin, Y.-C.; Cui, S.; Huang, Y.; Tang, Y.; Xu, J.; Bao, J.; Li, Y.; Wen, J.; Zuo, H.; et al. miRTarBase update 2022:
An informative resource for experimentally validated miRNA–target interactions. Nucleic Acids Res. 2021, 50, D222–D230.
[CrossRef]

76. Karagkouni, D.; Paraskevopoulou, M.D.; Chatzopoulos, S.; Vlachos, I.S.; Tastsoglou, S.; Kanellos, I.; Papadimitriou, D.;
Kavakiotis, I.; Maniou, S.; Skoufos, G.; et al. DIANA-TarBase v8: A decade-long collection of experimentally supported
miRNA–gene interactions. Nucleic Acids Res. 2018, 46, D239–D245. [CrossRef]

77. Chen, Y.; Wang, X. miRDB: An online database for prediction of functional microRNA targets. Nucleic Acids Res. 2020,
48, D127–D131. [CrossRef]

78. Sticht, C.; De La Torre, C.; Parveen, A.; Gretz, N. miRWalk: An online resource for prediction of microRNA binding sites.
PLoS ONE 2018, 13, e0206239. [CrossRef]

79. Langfelder, P.; Horvath, S. WGCNA: An R package for weighted correlation network analysis. BMC Bioinform. 2008, 9, 559.
[CrossRef]

80. Jiao, X.; Sherman, B.T.; Huang, D.W.; Stephens, R.; Baseler, M.W.; Lane, H.C.; Lempicki, R.A. DAVID-WS: A stateful web service
to facilitate gene/protein list analysis. Bioinformatics 2012, 28, 1805–1806. [CrossRef]

81. Zhao, M.; Kim, P.; Mitra, R.; Zhao, J.; Zhao, Z. TSGene 2.0: An updated literature-based knowledgebase for tumor suppressor
genes. Nucleic Acids Res. 2016, 44, D1023–D1031. [CrossRef]

82. Liu, Y.; Sun, J.; Zhao, M. ONGene: A literature-based database for human oncogenes. J. Genet. Genom. 2017, 44, 119–121.
[CrossRef] [PubMed]

83. Kulakovskiy, I.V.; Vorontsov, I.E.; Yevshin, I.S.; Sharipov, R.N.; Fedorova, A.D.; Rumynskiy, E.I.; Medvedeva, Y.A.;
Magana-Mora, A.; Bajic, V.B.; Papatsenko, D.A.; et al. HOCOMOCO: Towards a complete collection of transcription
factor binding models for human and mouse via large-scale ChIP-Seq analysis. Nucleic Acids Res. 2017, 46, D252–D259. [CrossRef]
[PubMed]

84. Hu, H.; Miao, Y.-R.; Jia, L.-H.; Yu, Q.-Y.; Zhang, Q.; Guo, A.-Y. AnimalTFDB 3.0: A comprehensive resource for annotation and
prediction of animal transcription factors. Nucleic Acids Res. 2019, 47, D33–D38. [CrossRef]

85. Han, H.; Cho, J.-W.; Lee, S.-Y.; Yun, A.; Kim, H.; Bae, D.; Yang, S.; Kim, C.Y.; Lee, M.; Kim, E.; et al. TRRUST v2: An expanded
reference database of human and mouse transcriptional regulatory interactions. Nucleic Acids Res. 2018, 46, D380–D386. [CrossRef]

http://doi.org/10.1093/carcin/bgm268
http://doi.org/10.2147/CMAR.S268375
http://doi.org/10.1186/1758-907X-1-6
http://doi.org/10.1093/bib/bbx158
http://doi.org/10.1016/j.csbj.2022.02.002
http://doi.org/10.2174/1871520621666210712090721
http://doi.org/10.1016/j.cell.2011.09.028
http://doi.org/10.1126/science.1151651
http://doi.org/10.1186/s12943-020-01181-x
http://doi.org/10.1038/s42256-021-00325-y
http://doi.org/10.2147/CMAR.S362594
http://doi.org/10.1186/s12943-019-1056-5
http://doi.org/10.1186/s13059-014-0550-8
http://www.ncbi.nlm.nih.gov/pubmed/25516281
http://doi.org/10.1093/nar/gkn714
http://doi.org/10.1093/nar/gkn851
http://doi.org/10.1093/nar/gkab1079
http://doi.org/10.1093/nar/gkx1141
http://doi.org/10.1093/nar/gkz757
http://doi.org/10.1371/journal.pone.0206239
http://doi.org/10.1186/1471-2105-9-559
http://doi.org/10.1093/bioinformatics/bts251
http://doi.org/10.1093/nar/gkv1268
http://doi.org/10.1016/j.jgg.2016.12.004
http://www.ncbi.nlm.nih.gov/pubmed/28162959
http://doi.org/10.1093/nar/gkx1106
http://www.ncbi.nlm.nih.gov/pubmed/29140464
http://doi.org/10.1093/nar/gky822
http://doi.org/10.1093/nar/gkx1013


Int. J. Mol. Sci. 2022, 23, 11303 32 of 32

86. The ENCODE Project Consortium. An Integrated Encyclopedia of DNA Elements in the Human Genome. Nature 2012,
489, 57–74. [CrossRef] [PubMed]

87. Matys, V.; Kel-Margoulis, O.V.; Fricke, E.; Liebich, I.; Land, S.; Barre-Dirrie, A.; Reuter, I.; Chekmenev, D.; Krull, M.;
Hornischer, K.; et al. TRANSFAC(R) and its module TRANSCompel(R): Transcriptional gene regulation in eukaryotes.
Nucleic Acids Res. 2006, 34, D108–D110. [CrossRef]

88. Keenan, A.B.; Torre, D.; Lachmann, A.; Leong, A.K.; Wojciechowicz, M.L.; Utti, V.; Jagodnik, K.M.; Kropiwnicki, E.; Wang, Z.;
Ma’Ayan, A. ChEA3: Transcription factor enrichment analysis by orthogonal omics integration. Nucleic Acids Res. 2019,
47, W212–W224. [CrossRef] [PubMed]

89. Tong, Z.; Cui, Q.; Wang, J.; Zhou, Y. TransmiR v2.0: An updated transcription factor-microRNA regulation database.
Nucleic Acids Res. 2019, 47, D253–D258. [CrossRef]

90. Bovolenta, L.A.; Acencio, M.L.; Lemke, N. HTRIdb: An open-access database for experimentally verified human transcriptional
regulation interactions. BMC Genom. 2012, 13, 405. [CrossRef]

91. Li, J.-H.; Liu, S.; Zhou, H.; Qu, L.-H.; Yang, J.-H. starBase v2.0: Decoding miRNA-ceRNA, miRNA-ncRNA and protein–RNA
interaction networks from large-scale CLIP-Seq data. Nucleic Acids Res. 2014, 42, D92–D97. [CrossRef] [PubMed]

92. Karagkouni, D.; Paraskevopoulou, M.D.; Tastsoglou, S.; Skoufos, G.; Karavangeli, A.; Pierros, V.; Zacharopoulou, E.;
Hatzigeorgiou, A.G. DIANA-LncBase v3: Indexing experimentally supported miRNA targets on non-coding transcripts.
Nucleic Acids Res. 2020, 48, D101–D110. [CrossRef]

93. Bandyopadhyay, S.; Bhattacharyya, M. PuTmiR: A database for extracting neighboring transcription factors of human microRNAs.
BMC Bioinform. 2010, 11, 190. [CrossRef] [PubMed]

94. Qi, X.; Lin, Y.; Chen, J.; Shen, B. Decoding competing endogenous RNA networks for cancer biomarker discovery. Brief. Bioinform.
2020, 21, 441–457. [CrossRef] [PubMed]

http://doi.org/10.1038/nature11247
http://www.ncbi.nlm.nih.gov/pubmed/22955616
http://doi.org/10.1093/nar/gkj143
http://doi.org/10.1093/nar/gkz446
http://www.ncbi.nlm.nih.gov/pubmed/31114921
http://doi.org/10.1093/nar/gky1023
http://doi.org/10.1186/1471-2164-13-405
http://doi.org/10.1093/nar/gkt1248
http://www.ncbi.nlm.nih.gov/pubmed/24297251
http://doi.org/10.1093/nar/gkz1036
http://doi.org/10.1186/1471-2105-11-190
http://www.ncbi.nlm.nih.gov/pubmed/20398296
http://doi.org/10.1093/bib/bbz006
http://www.ncbi.nlm.nih.gov/pubmed/30715152

	Introduction 
	Results 
	Data Pre-Processing and Differential Expression Analysis Results 
	Screening and Validation of the Lung Cancer Biomarkers 
	Obtaining miRNA Biomarkers Based on the Independent Regulatory Model 
	Identifying Candidate miRNA Biomarkers Based on Biological Significance ofTarget Genes 
	The Final miRNA Biomarkers for LC 
	Validating the Reliability and Rationality of miRNA Biomarkers 

	Construction of ceRNA-hub-FFL Network Based on miRNA Biomarkers 
	Construction of FFL Network 
	Obtaining hub-FFL Network and Further Extracting ceRNA-hub-FFL Network 

	Analysis of Potential Molecular Mechanisms of Lung Cancer Based on ceRNA-hub-FFL Network 
	Mechanism Revealed by miR-708-5p Related ceRNA-hub-FFL Regulatory Subnetwork 
	Mechanism Revealed by miR-183-5p Related ceRNA-hub-FFL Regulatory Subnetworks 
	Mechanism Revealed by miR-766-5p Related ceRNA-hub-FFL Regulatory Subnetworks 
	Mechanisms Revealed by miR-140-5p Related ceRNA-hub-FFL Regulatory Subnetworks 


	Discussion 
	Methods and Materials 
	Data Download and Pre-Processing 
	Differential Expression Analysis of mRNAs and miRNAs 
	Screening and Validation of miRNA as Biomarkers 
	Identification of miRNA Biomarkers Based on the Independent Regulation Model 
	Screening miRNA Biomarkers Based on the Biological Significance of Target Genes 
	The Final miRNA Biomarkers for LC 
	Validating the Reliability and Rationality of Biomarkers 

	Construction of 4-Node ceRNA-hub-FFL Network Based on miRNA Biomarkers 
	Identifying the Interaction Pairs between TFs, miRNAs, Genes, and lncRNAs and Calculating the Direction of Interactions 
	Construction of FFL Network 
	Obtaining hub-FFL Network 
	Extraction of ceRNA-hub-FFL Network 


	Conclusions 
	References

