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Abstract: Phosphorylation plays a key role in plant biology, such as the accumulation of plant
cells to form the observed proteome. Statistical analysis found that many phosphorylation sites
are located in disordered regions. However, current force fields are mainly trained for structural
proteins, which might not have the capacity to perfectly capture the dynamic conformation of the
phosphorylated proteins. Therefore, we evaluated the performance of ff03CMAP, a balanced force
field between structural and disordered proteins, for the sampling of the phosphorylated proteins.
The test results of 11 different phosphorylated systems, including dipeptides, disordered proteins,
folded proteins, and their complex, indicate that the ff03CMAP force field can better sample the
conformations of phosphorylation sites for disordered proteins and disordered regions than ff03. For
the solvent model, the results strongly suggest that the ff03CMAP force field with the TIP4PD water
model is the best combination for the conformer sampling. Additional tests of CHARMM36m and
FB18 force fields on two phosphorylated systems suggest that the overall performance of ff03CMAP
is similar to that of FB18 and better than that of CHARMM36m. These results can help other
researchers to choose suitable force field and solvent models to investigate the dynamic properties of
phosphorylation proteins.

Keywords: phosphorylation; force field; ff03CMAP; disordered proteins

1. Introduction

Post-translational modification (PTM) is common in nature [1]. It refers to the process
by which a chemical group or small protein is covalently bound to an amino acid or
protein. PTM plays a key role in mediating cellular signaling [2], regulation [3], and
metabolic activities [4]. Therefore, the study of the mechanistic role of post-translational
modifications has become a popular research field. Until now, more than 5000 types of
PTM have been identified. Among all these types of PTM, the most common and pervasive
one is phosphorylation [1]. It is estimated that one-third of all proteins in eukaryotic
cells, including human cells, undergo phosphorylation and dephosphorylation mediated
by roughly 500 putative kinases and 150 phosphatases. Phosphorylation modifications
occur mainly on serine, threonine, and tyrosine, while some other residues can sometimes
undergo O- and N-phosphorylation.

Reversible phosphorylation plays an important function in the cell. The reversible
phosphorylation process is involved in signal transduction pathways, amplification, in-
tegration during the cell cycle, and reactions to external effectors. Moreover, specific
phosphorylation controls protein turnover [5], localization (e.g., nuclear transportation [6]),
chromatin remodeling [7], and the assembly of protein complexes [8,9]. In these biologi-
cal processes, phosphorylation often functions by affecting residue–residue interactions.
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Compared with the 20 types of canonical residues, phosphorylated residues have novel
physicochemical properties and negative charges to form electrostatic interactions. For ex-
ample, the salt bridge between phosphoserine and lysine can stabilize the helical structure,
especially when it is on the N-terminal end of the helix [10].

Previous statistical research found that many phosphorylation sites are located in disor-
dered regions, which are preferred substrates of protein kinases [1]. Intrinsically disordered
proteins (or intrinsically disordered regions) refer to peptides (or fragments) that lack a
well-defined three-dimensional structure in solution under physiological conditions [11].
Phosphorylation in disordered proteins and regions is involved in the transition between
disordered and folded states, changes in the association state, and the activation or deacti-
vation of a protein [12–15]. For example, in the Ets-1 domain, phosphorylation can trigger
disordered-to-folded transitions [16]. Recent research found that phosphorylation can also
induce folding of the disordered translational inhibitor 4E-BP2 [14,17].

To detect phosphorylated protein structures and their regulation mechanisms, there
are a series of experimental and computational methods that can be used. X-ray, NMR
(Nuclear Magnetic Resonance), SAXS (Nuclear Magnetic Resonance) and FRET (Förster
resonance energy transfer) can be used to detect phosphorylated protein structures [18]. The
experimental measurements include atom coordinates, chemical shifts, scalar couplings,
and so on. However, these experimental methods only reflect the average structural insights
and have difficulty in tracing the motion of proteins, thus have the limitation of revealing
mechanisms at the atomistic level.

Phosphorylation also plays a key role in plant biology [19]. In plant cells, many
proteins undergo post-translational modifications and form the mature proteoforms that
accumulate to form the observed proteome [20]. Plant PTM Viewer, a PTM database for
plants, contains 437,404 PTMs matching 103,992 proteins from plants, of which 74.7%
of modifications are phosphorylations [21]. In Arabidopsis, at least 7603 nonredundant
proteins have been experimentally identified as phosphorylated at 42,649 different sites [19].
Phosphorylation can function as a molecular switch in regulation, and many signaling
pathways work through phosphorylation. A well-studied example is the MAP kinase
network, consisting of a hierarchy in which MAP triple-kinases phosphorylate and activate
MAPK kinases, which in turn phosphorylate and activate MAPKs at conserved Thr and
Tyr residues [22].

Using molecular dynamics (MD) to study the dynamical properties is an important
complement to experimental methods [12]. Recently, many studies have used molecular
dynamics simulations to study structural change via phosphorylation. Parameters for
major types of phosphorylation (phosphorylated serine, threonine, and tyrosine) can be
found in most well-known force fields. In the AMBER force field series, the ff9x family
contains phosphorylated parameters from Homeyer et al. [23]. The AMBER ff03 family has
the post-translational modification parameter Forcefield_PTM from Duan et al. [24]. Another
popular force field family, CHARMM, includes phosphorylated parameters for version
27, 36 and 36 m [25,26]. The Gromos force field family also includes two sets of modified
residue parameters [27–29]. These force fields have already been used in modified protein
structural research.

The accuracy of chosen force-field and phosphorylation parameters is the key for better
dynamic simulation results. Unfortunately, recent studies carried out on phosphorylated
residue parameters showed that the simulation result did not fit well with experimental
data for dipeptides or disordered proteins. Vymetal et al. simulated the dipeptide structures
of the top three phosphorylated amino acids with three commonly used force fields with
their corresponding parameters for phosphorylation, the ff99SBildn and ff03 in AMBER,
and CHARMM36m. Results showed that dihedral angle distributions and the trends of the
secondary structure changes for modifications were inconsistent [30]. Both the ratios in
the α-helical, β-sheet and disordered regions, and the distribution of dihedral angles ϕ/ψ,
showed significant inconsistency among the three force fields. For J-coupling constants,
the results showed that the CHARMM36m force field had a greater difference from the
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experimental value compared to the other two force fields. Furthermore, all three force
fields were not accurate enough. In another study, simulation of the SN15 peptides was
carried out with ff99SBildn and CHARMM36m. The results of CHARMM36m were worse
than those of ff99SBildn for SAXS values. However, the results of the AMBER force field
were not perfect where the proportion of α-helix is higher than the actual conformation [31].

Considering that most of the popular major force fields (ff99SBildn [32], ff03 [33] and
ff14SB [34]) are more suitable for folded proteins, while phosphorylation sites are more likely to
be located in disordered regions, we conjecture that the balanced force field ff03CMAP [35] might
outperform other force fields in the simulation of phosphorylated proteins. Compared with
the ff03 force field, ff03CMAP adds a correction map (CMAP) parameter to adjust the dihedral
angle potential energy, which affects the conformation of the proteins in simulation, achieving
improvements in the simulation of disordered proteins without affecting the accuracy of folded
proteins [35]. The CMAP method has been widely used to improve the accuracy of force
fields [36,37], especially for disordered proteins [38–44]. The solvent model also affects protein
conformations in simulations, therefore we also tested two water models of TIP4P-Ew [45]
and TIP4P-D [46] with the two force fields to show a combination effect on phosphorylated
protein simulation. To fully cover all kinds of phosphorylated proteins, we chose test systems
ranging from dipeptides, disordered proteins, folded proteins, and disordered-folded protein
complexes. This diverse test set can adequately cover most types of phosphorylated proteins.
The results indicate that the combination between ff03CMAP and TIP4PD can better sample the
conformations of phosphorylation sites for disordered proteins or disordered regions than ff03.

2. Material and Methods
2.1. Phosphorylated Protein Structural Propensity

At first, statistical analysis was carried out for all phosphorylated proteins in the PDB
database [47]. This analysis was performed to determine the propensity of modification
sites, which can help us to better understand the characteristics of the PTM protein structure.

In this statistical analysis, all proteins with phosphorylated serine, threonine, and
tyrosine were collected. For each type of phosphorylation, the amount of phosphorylated
protein and phosphorylated sites were calculated. We also compared the statistics with
former research on the Swiss-Prot database [1]. We used the DSSP program [48,49] to assign
the secondary structure of proteins and phosphorylation sites. In the DSSP prediction
results, H, G and I were classified as helixes, B, E, T, S were considered as sheets, and
blank was considered a disordered region. We calculated the protein secondary structure
propensity by calculating the ratio between disordered residues and all residues. Differ-
ences between the secondary structure composition in protein and modification sites can
present the structural tendency of modification sites.

2.2. Molecular Dynamics Simulation

After understanding the secondary structure tendency of post-translational modifi-
cation sites, molecular dynamics simulations were conducted on various selected phos-
phorylated modified proteins, including dipeptides, disordered proteins, folded proteins
and complexes of disordered and folded proteins. The test set covered all typical types of
phosphorylated proteins. In simulation tests, we used 2 different force fields with 2 differ-
ent solvent models to compare their performances on phosphorylated proteins. For force
fields, we chose the widely-used ff03 force field and the ff03CMAP force field, which has a
well-balanced performance between folded and disordered proteins. For solvent models,
TIP4P-Ew and TIP4P-D were chosen. In previous ff03CMAP simulation tests, TIP4P-Ew
performed well in folded proteins while TIP4P-D performed better in disordered proteins.
With the phosphorylated residue parameters from Forcefield_PTM [24], we can compare
these 4 different methods in simulating modified peptides/proteins to determine the best
force field and solvent model set in phosphorylated protein simulations. In addition, to
obtain a broader view of the performance of ff03 and ff03CMAP, we included the tests for
two other force fields combined with their recommended water models: CHARMM36m [50]
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(with TIP3P) and FB18 [51] (with TIP3PFB). The simulation systems and conditions are
gathered in Table 1.

Table 1. All simulated phosphorylated systems and simulation conditions.

System Description Modification
Type Length Initial

Structure Ions
Number

of
Waters

Simulation
Time
(ns)

Number of
Tested Force

Fields

Number of
Trajectories

Dipeptide

GpSG [52] Phosphoserine
dipeptide pSer 3 Extended 2 Na+ 962 500 4 1

GpTG [52] Phosphothreonine
dipeptide pThr 3 Extended 2 Na+ 811 500 4 1

GpYG [52] Phosphotyrosine
dipeptide pTyr 3 Extended 2 Na+ 1089 500 4 1

Disordered Protein

TF [53] Cytoplasmic Tail of
Tissue Factor 2*pSer 19 2CEF 2 Na+ 2511 100 6 5

Vg [54] Vitellogenin pSer 35 2LID 7 Na+ 6316 100 4 5
Folded Protein

β3 [55] β3 cytoplasmic tail pSer 24 2LKJ 1 Na+ 3303 100 4 5
αM [56] αM cytoplasmic tail 2*pTyr 47 2LJE 2 Na+ 3828 100 4 5

Ets1 [57] Ets1 pSer, pThr 111 2KMD 9 Na+ 7644
100 6 5

1000 4 1
p-Ubiquitin

[58]
Phosphorylated

ubiquitin pSer 76 5XK4 2 Na+ 3613 100 4 5

Complex

SH2 [59]

SH2 domain of Csk
in complex with a
phosphopeptide

from Cbp

pTyr 137 2RSY 7 Na+ 8267 100 4 5

TrkB [60]
FRS2a PTB domain
with neurotrophin

receptor TrkB
pTyr 138 2MFQ 7 Na+ 8756 100 4 5

Initial structures of the G-X-G systems were built in the LEaP module in the AMBER
18 suite [61] and other structures were taken from the PDB database. All simulation
systems were neutralized and solvated in octahedron boxes of TIP4P-Ew or TIP4P-D
solvent models with 10 Å to the edge. We checked that the water boxes were big enough
to keep the minimum distance between periodic images greater than the cutoff value,
as shown in Figure S1. All bonds involving hydrogen atoms were constrained with the
SHAKE algorithm [62]. The van der Waals interactions and short-range electrostatic
interactions were truncated with 8 Å cutoff. The Particle-Mesh Ewald (PME) algorithm
was used to calculate long-range electrostatic interactions [63]. Initial structures were
relaxed by 3000 steps of minimization with the steepest descent method, followed by
3000 steps of minimization with the conjugate gradient algorithm. The minimized
structures were then heated up to 298.15 K over 50 ps at constant volume, followed
by another heating with the same temperature over 100 ps at a constant pressure of
1 bar, and equilibrated over 100 ps at the constant pressure. The production simulations
were performed in the pmemd.cuda [64] with simulation time corresponding to Table 1.
The simulation temperature was set to room temperature. As postulated in previous
research [65,66], ionic concentration had significant impacts on the stability of solute’s
intramolecular salt bridges and in turn changed the conformation ensemble. In this
study, sodium ions were set to neutralized protein charges.
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2.3. Evaluation Metrics

To compare the performance of various force fields and solvent models, we used a
series of quantification metrics to evaluate simulation results. For dynamical properties,
RMSD, RMSF and radius of gyration (Rg) were used for evaluation, and all of these
metrics were calculated by CPPTRAJ in AmberTools [67]. For protein structural properties,
chemical shifts, secondary structures and contact maps were used in comparison. Chemical
shifts were calculated by SPARTA+ [68] for Cα, Cβ, C, N, Hα and HN atom types [68]. The
detailed experimental data are listed in Table S1. Secondary structure and contact maps
were also calculated by CPPTRAJ in AmberTools [67]. The PyMOL molecular visualization
system was used to present structures for all simulated proteins [69].

In addition, the quantification metric force field was used for the benchmark for all
methods. The force field score was calculated as in Equation (1) [70]

FFscore =
1
N

i=1

∑
N

FFrmsd
rmsdnorm

(1)

where N is the number of classes of experimental measurements, FFrmsd is the RMSD of
the i th class for simulated and experimental values, and rmsdnorm is the lowest RMSD
of i th class in all force fields. Based on the force field score, which considers the overall
properties of a protein, we crafted another metric called the modification site force field
score to evaluate the experimental values corresponding to post-translational modification
site. The modification site force field score was defined as in Equation (2)

ModificationFFscore =
1
N

i=1

∑
N

ModificationFFrmsd
rmsdnorm

(2)

where ModificationFFrmsd is the RMSD of the i th class for simulated and experimental
values in modified residues, and rmsdnorm is the lowest RMSD of i th class among all force
fields in modified residues. According to this metric, FFscore and ModificationFFscore are
always larger than or equal to 1, and 1 is the best score theoretically.

3. Results
3.1. Structural Statistics of Phosphorylated Proteins in PDB Database

As we compared the secondary structure propensity of phosphorylation modifica-
tions in PDB, we found distinct secondary structure propensity of the modification sites.
Phosphorylated proteins are widely distributed in both disordered and folded proteins.
Most of the proteins havd a folded conformation and only a small number of proteins
were disordered (>50% disordered region) (shown in Figure 1A). In all three kinds of
phosphorylated proteins, secondary structures were distributed similarly among the helix,
sheet and coil. The helix and sheet take up around 40%, and the coil usually takes up the
smallest part at 22~23% (Figure 1B). On the contrary, the secondary structure distribution
of phosphorylated sites was significantly different. Most of the phosphorylation sites
occurred in disordered regions; 52.18% of phosphotyrosine, 73.44% of phosphoserine, and
89.31% of phosphothreonine were located in disordered regions (Figure 1C). Considering
the low percentage of coil structure in the overall structure, there is a clear tendency for
phosphorylation to occur in disordered regions.

To sum up, phosphorylated proteins in PDB had a balanced distribution on major
secondary structures, but phosphorylation sites tended to be located in disordered regions.
Therefore, the precise sampling for disordered regions should be important. The findings
suggested that a balanced force field for phosphorylated proteins’ simulation might achieve
better accuracy in proteins with both folded and disordered regions.
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Figure 1. Structural analysis of phosphorylated proteins in PDB. Distributions of phosphorylated
proteins’ disorder percentage and protein length (A), total protein secondary structure (B) and
modification site secondary structure (C). In (A), each point represents a phosphorylated protein
in the PDB database, and its color shows whether it had a phosphorylated residue in a disordered
region (red) or not (blue). Selected simulation systems are marked by a cross in pink (modification
in disordered region) and cyan (modification in folded region). In (B), the white numbers show the
three kinds of secondary structures’ percentage in all residues in modified proteins. In (C), we present
the two kinds (helix and sheet are considered as structured) of secondary structures’ percentage in
all three kinds of phosphorylation site. (B,C) show that the phosphorylation is usually located in
disordered regions.

3.2. Convergence of Simulation System

In order to evaluate the convergence, five independent trajectories of 100 ns each
were obtained for each system. Convergence of the simulation needs to be considered first
because it reflects the adequacy of the simulation time. We calculated the RMSE between
the secondary chemical shifts of experimental value and the cumulative average value over
time during the simulation. The results show that the simulation of the representative Ets1
system converges under ff03CMAP, ff03, FB18, and CHARMM36m force fields after 100 ns
(shown in Figure 2). At the same time, we also compared the performance of sampling
between multiple short trajectories (5*100 ns) and a single long trajectory (1000 ns). The
results indicate that multiple short trajectories have better sampling ability than a single
long trajectory (shown in Figure S2).
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3.3. Phosphorylated Dipeptides

The simulations of phosphoserine, phosphothreonine and phosphotyrosine dipep-
tides behaved inconsistently in all four force fields. Using the FFscore as the metric,
two force fields with TIP4Pew in phosphoserine, ff03/TIP4Pew in phosphothreonine, and
ff03CMAP/TIP4PD in phosphotyrosine had the best performance. None of the four force
fields performed optimally in all three types of phosphorylation (shown in Figure 3A).

In addition to chemical shifts, Ramachandran plots in Figure 3B presented the back-
bone dihedral angle distribution of all simulated dipeptides. TALOS-N [71]-predicted
distributions from experimental chemical shifts were used as references. In reference Ra-
machandran plots, phosphoserine and phosphotyrosine were enriched in the PPII region,
while phosphothreonine was enriched in the sheet region. Only simulation results from
ff03CMAP/TIP4PD had a PPII- and sheet-like distribution, while those from other force
fields had high helical propensity in phosphoserine and phosphothreonine.

In general, all force fields have similar accuracy and inconsistent performance in all
three types of phosphorylated dipeptides, and ff03CMAP has a small advantage over ff03
in force field scores and dihedral distributions. This is consistent with the previous studies
of Vymetal J et al. [30], showing that force fields showed inconsistent performance on
phosphorylated dipeptides. Therefore, further evaluation was performed for modified
disordered proteins and folded proteins.
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(A) present the inconsistency of different force fields. Predicted and simulated Ramachandran
plots (B) showed simulated distribution of backbone dihedral angle distribution difference between
experiments and simulations.

3.4. Phosphorylated Disordered Proteins

As discovered in statistical analysis through PDB, most phosphorylation sites were
located in disordered regions. Further simulation tests on phosphorylated disordered
proteins can serve as paradigms (references) for further (future) research. Two modified
disordered proteins, tissue factor cytoplasmic tail (TF, PDB:2CEF) [53] and vitellogenin (Vg,
PDB:2LID) [54], were selected as simulation targets.

Figure 4 shows the RMSD of chemical shifts, overall force field score (FFscore) and
modification site force field score (Modification Score). Overall force field scores show that
ff03/TIP4PD and ff03CMAP/TIP4PD were the best, while modification site force field scores
preferred ff03CMAP/TIP4PEw. This elucidated that if we focus on the modification site, the
performance of ff03CMAP is better than that of the ff03 force field. Radius of gyration (Rg)
and end-to-end distance distribution showed that four force fields have a huge difference
in simulated Rg distribution (shown in Figure S3). ff03/TIP4PEw has the lowest average
Rg which represents a more condensed status, while ff03CMAP/TIP4PD has the largest
average and the widest range of Rg, which represents the extended structure of disordered
proteins. In simulated ensembles’ secondary structure, ff03CMAP tends to have a more
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disordered structure than ff03, while the difference between TIP4PEw and TIP4PD is not
significant (shown in Figure S4).
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of different force field energy landscapes of phosphorylated disordered protein TF (A) and Vg (B)
showed sampling efficiency advantage of ff03CMAP force field with both solvent models.

Sampling is another important factor for disordered protein simulation. The RMSD-Rg
free energy landscape indicator can help to predict the sampling efficiency of different force
fields. For disordered proteins, a wider energy landscape means the simulated structure
will be more reasonable. As shown in Figure 3B, the energy landscape of ff03/TIP4PEw
constrained in several conformations, while other force fields obtained a more adequate
sampled conformation. With a better sampled landscape, ff03CMAP was able to obtain a
more disordered conformation.

We compared the Ramachandran plot between simulation and the TALOS-N predic-
tion from experimental data. The results show that ff03CMAP/TIP4PD has a propensity to
be distributed in the PPII region, similar to the pattern found in phosphorylated dipeptides.
This propensity has a superimposed effect, which means when we use the combination
of ff03CMAP and TIP4PD, it will have a higher proportion in the PPII region. Analysis of
hydrogen bonds also showed a difference between ff03 and ff03CMAP, as ff03CMAP has
less hydrogen bonds in all residues and modification sites (shown in Figure S5). After com-
paring chemical shifts, force field scores, Rg distributions, secondary structures, and energy
landscapes, we can conclude that ff03CMAP/TIP4PD is the best system for phosphorylated
disordered proteins.

3.5. Phosphorylated Folded Proteins and Complexes

Folded protein takes up the largest part of phosphorylated proteins. In nature, most
protein function depends on specific structures, indicating that they are typically folded
proteins with a defined, stable tertiary structure. In structural analysis, we found phos-
phorylation sites were usually located at the loop region (and also disordered regions) in a
folded protein, or sometimes at a disordered protein which was bound to a folded protein.
Therefore, we chose four folded proteins and two folded-disordered protein complexes as
simulation targets for evaluation.

First, we compared the chemical shifts and force field scores. The overall force field
scores of four force field systems had similar values and were close to 1. This means
that from a holistic perspective, four force fields all have good performance, which is
consistent with the previous works [35]. However, the modification site force field score
was not unanimous among all four simulation systems. In folded modified proteins and
folded-disordered protein complexes, ff03CMAP obviously had a better modification force
field score than the ff03 force field. In 2LKJ and 2LJE, ff03CMAP/TIP4PEw had the lowest
modification site force field score, and in 2KMD and 5XK4, ff03CMAP/TIP4PD had the
lowest modification site force field score.
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In order to compare, two representative proteins were chosen for phosphorylated Ets1
(PDB: 2KMD) [57] and Ubiquitin (PDB: 5XK4) [58]. Ets1 is a reaction component of the Ras
system. The two phosphorylated residues on Ets1 N terminal disordered region provide
this motif with negative charge and repel its neighbor H0 motif from the negatively charged
protein surface [57]. Therefore, the properties of the H0 helix should be key information
for the simulation. In Figure 5A, we find that the secondary chemical shift for the H0 helix
with ff03CMAP/TIP4PD has the best agreement with the experimental one among these
force fields. RMSF (root mean square fluctuation) also shows that ff03CMAP has a relatively
higher fluctuation than ff03 simulated ensembles (shown in Figure S6). Additionally, the
hydrogen bond analysis of Ets1 shows that ff03CMAP/TIP4PD had the least hydrogen
bonds connected with two modification sites (shown in Figure S7). All of these results
reflect that ff03CMAP/TIP4PD have a higher disorder propensity than other force fields,
having secondary chemical shifts closer to zero, fewer hydrogen bonds and higher RMSF.
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Figure 5. Simulation results of phosphorylated folded protein Ets1. Secondary chemical shifts of Ets1
around H0 region (A) showed only ff03CMAP/TIP4PD simulated the H0 helix best, whose confor-
mation was greatly affected by close-site phosphorylations. Ets1 structure and its phosphorylation
sites are shown in (B). Chemical shift RMSD of modified residues and modification force field scores
(C) also support that ff03CMAP/TIP4PD performed best in phosphorylated residues.

For phosphorylated ubiquitin, multiple sites of phosphorylation can act as a pH sensor
in the cell [58]. These multi-phosphorylated ubiquitin can be found around mitochon-
dria. In phosphorylated ubiquitin, its conformational switch between protonated and
unprotonated form plays a key role in its function, and we chose unprotonated single
phosphorylated ubiquitin as the target-simulated protein. The result of chemical shifts and
force field scores indicated that phosphorylated ubiquitin had low force field scores and
was similar to the folded protein Ets1. However, at the modified serine on the disordered
region, the modification site force field score of ff03CMAP/TIP4PD was obviously better
than other force fields (Figure 5B). In addition, concerning the Ramachandran plot of modi-
fication sites, we also discovered that ff03/TIP4PEw, which were the benchmark methods in
previous research, formed an unusual distribution of dihedral angles (shown in Figure S8).

We also tested the performance of CHARMM36m [50] and FB18 [51] force fields on the
folded protein Ets1 and the disordered protein TF, the chemical shift RMSD and force field
scores of which are shown in Figures S9 and S10. The results show that FB18 had better
performance than CHARMM36m for both systems, and close with the performance of
ff03CMAP. For the disordered protein TF, ff03CMAP/TIP4PD had the lowest general force
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field score, while FB18 had the lowest modification force field score. For folded protein
Ets-1, all force fields except for CHARMM36m had a relative optimal general force field
score (less than 1.1), while ff03CMAP/TIP4PD had the lowest modification force field score.

4. Discussion

In our research, the main goal is to find an ideal force field for molecular dynamics
simulations of post-translationally modified proteins. First, we studied the structural
features of post-translationally modified proteins by analyzing the PDB protein structure
database. We found that phosphorylation modifications, which occur most predominantly
in post-translational modifications, have a distinct tendency to occur in the disordered
regions of the protein. The conventional force fields for folded proteins sometimes might
have inaccurate simulations of disordered proteins or disordered regions. Furthermore,
previous studies have shown that existing force fields for post-translational modification
are not accurate and consistent enough to simulate post-translationally modified peptides
or proteins [29]. Therefore, we introduced the balanced ff03CMAP force field, which can
perform well in molecular dynamics simulations of both folded and disordered proteins, to
compare with the conventional ff03 force field.

By simulating a series of phosphorylated dipeptides, disordered proteins, folded
proteins, and disordered-folded protein complexes, we summarized the results of the
simulations of several force fields and focused on the discussion of the ff03CMAP force
field and ff03 force field with TIP4PEw and TIP4PD solvent models (shown in Figure 6).
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Modification Ffscore higher than 10.
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The comparison with force fields, including CHARMM36m and FB18 on folded proteins,
indicates that the ForceField_PTM compatible ff03 force field family is ideal for the simulation
of phosphorylated proteins in a broader view of force fields. For the ff03 force field family,
the ff03CMAP force field showed improvement in simulation results of phosphorylated
disordered proteins with less difference from experimental values compared with the ff03
force field, and TIP4PD was better between the two solvent models. In folded proteins,
the two force fields performed similarly, but when the post-translational modification
site was located in the disordered region, the modification site simulation results were
closer to the experimental values using the ff03CMAP force field. In the disordered-folded
protein complexes, the test results were similar to those of the folded protein, and the
post-translational modification site on the occurring disordered protein was closer to the
experimental value in the simulation results of ff03CMAP. Overall, the simulations using the
ff03CMAP force field outperformed the ff03 force field when simulating biomolecules with
post-translational modification sites located on disordered proteins or disordered regions.

Based on previous studies on potential charge in post-translational modification sites,
it has been widely accepted that charge is an important component in the process of
modeling post-translational modification sites [24,70]. In this research, our analysis reveals
that the vast majority of phosphorylation occurs in the disordered region of the protein,
which leads us to consider introducing CMAP energy for dihedral angles to improve the
simulation of phosphorylated proteins. CMAP energy has been widely used to simulate
disordered proteins [38–44] and can also be used to improve the balanced force field for
disordered and structural proteins [35]. We have tried using the balanced force field to
simulate phosphorylated proteins with both structured and disordered regions, and indeed
the simulation of the modification sites in the disordered region was more accurate than
other force field. This further illustrates that the methods used to develop disordered
protein force fields can be used to improve the simulation of phosphorylated proteins.

However, the ff03CMAP force field also has limitations. Considering the simulation
results of dipeptides, we found that neither the ff03 force field nor the ff03CMAP force field
was the consistent result for all three post-translational modifications. Similarly, in the
protein simulations, we found that the dihedral angle distribution at the post-translational
modification sites still notably differed from the predicted dihedral angle distribution.
ff03CMAP still needs further improvement in the dihedral angle distribution at the post-
translational modification sites.
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