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Abstract: Increasing energy demands exacerbated by energy shortages have highlighted the urgency
of research on renewable energy technologies. Carbon materials that can be employed as advanced
electrodes and catalysts can increase the accessibility of efficient and economical energy conversion
and storage solutions based on electrocatalysis. In particular, carbon materials derived from biomass
are promising candidates to replace precious-metal-based catalysts, owing to their low cost, anti-
corrosion properties, electrochemical durability, and sustainability. For catalytic applications, the
rational design and engineering of functional carbon materials in terms of their structure, morphology,
and heteroatom doping are crucial. Phytic acid derived from natural, abundant, and renewable
resources represents a versatile carbon precursor and modifier that can be introduced to tune the
aforementioned properties. This review discusses synthetic strategies for preparing functional carbon
materials using phytic acid and explores the influence of this precursor on the resulting materials’
physicochemical characteristics. We also summarize recent strategies that have been applied to
improve the oxygen reduction performance of porous carbon materials using phytic acid, thereby
offering guidance for the future design of functional, sustainable carbon materials with enhanced
catalytic properties.

Keywords: phytic acid; biomass; sustainable carbon material; oxygen reduction reaction (ORR);
P-doped carbon; electrocatalysis

1. Introduction

As energy crises and environmental regulations associated with fossil fuel consump-
tion have intensified, extensive investigations have focused on developing technologies to
make clean and sustainable energy more accessible. Significant efforts have been devoted
to efficient electrochemical energy conversion and storage processes, which are integral for
devices such as fuel cells, batteries, supercapacitors, and solar cells. Research regarding
proton-exchange membrane fuel cells (PEMFCs) and rechargeable metal–air batteries—both
of which rely on the electrochemical oxygen reduction reaction (ORR)—aims to replace
precious metal catalysts with inexpensive sustainable alternatives.

Carbon nanomaterials that exhibit high electrocatalytic activity and anti-corrosion
performance and can be manufactured using relatively simple and inexpensive processes
are promising alternatives to conventional noble-metal-based catalysts [1]. Recently, the
use of biomass for preparing sustainable functional carbon materials has become an at-
tractive alternative to the use of conventional fossil fuels, which are nonrenewable, ex-
pensive, and yield toxic byproducts upon carbonization [2]. Various naturally occurring
precursors—such as wood [3], chitosan [4], cattle bones [5], folic acid [6], soybean shells [7],
prawn shells [8], coconut shells [9], saccharides [10–13], cellulose [14], lignin [15], spongin
scaffolds [16], seaweed [17], and lemon peel [18]—have been used to synthesize carbon
materials via chemical, biological, or thermochemical processes [19]. Despite the fact that
significant progress in using more environmentally benign precursors has been observed
recently, increased attention must be also paid to the synthetic methods, which often lack
sustainable character (e.g., involve physical and chemical activation with KOH and ZnCl2).
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The chemical composition, structure, and form/state (i.e., solid or liquid/liquefiable
biomass) of the precursors lead to carbon materials with varying carbon content, mor-
phology, porosity, heteroatom/metal doping, and overall yield. Recent progress in the
synthesis of bio-derived carbon materials has contributed to the development of products
with electrocatalytic activity comparable to that of commercial noble metal catalysts [20].

Environmental and economic issues have highlighted the need for carbon materials
that can be fabricated using simple synthetic procedures and inexpensive, abundant pre-
cursors that ideally provide carbon materials with different specific functionalities at once,
acting as “all-in-one” precursors. Naturally occurring phytic acid (PA) (also known as
inositol hexakisphosphate, or IP6) is a precursor that can be introduced at different stages of
the fabrication process. Following carbonization, PA can produce carbon materials with a
high carbonization yield, high specific surface area, and desirable phosphorous doping [21].
When used as a modifier, PA can alter the properties of existing carbon (nano)materials in
terms of their morphology, porosity, and heteroatom doping [22]. Moreover, it can promote
the uniform distribution of metals by limiting their aggregation [23].

PA is present in various cereals, legumes, nuts, oilseeds, and tubers (its content ranges
from 0.1% to 9.4%) [24]; thus, it is commonly extracted with aqueous acids [25,26]. Owing
to its presence in common plant foods, the nutrient properties of PA have been studied
since 1985 [27]. It has been established that PA is a natural antioxidant [28,29] that regulates
the metabolic processes of many plants [30] and can chelate multivalent cations [30] and
proteins [31]. In addition, PA–metal complexes are insoluble in water and stable (i.e.,
resistant to degradation) at temperatures up to 120 ◦C [32]. Several review articles have
discussed the antioxidant, anti-carcinogenic, and antidiabetic properties of PA [33–36].

Recently, PA has garnered the attention of materials scientists owing to its poten-
tial applications in the construction of sustainable, functional materials for catalytic [37],
electrochemical [38,39], and flame-retardant materials [40], as well as its biomolecular
sensing capabilities [41]. Figure 1 outlines the last decade’s progress in the development of
functional carbon materials with PA.
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PA (Figure 2) is a sugar (inositol) derivative with a structure that is rich in phosphate
groups (11% phosphorus; 44% oxygen; 11% carbon), thus making PA an attractive precursor
for manufacturing P-doped carbon materials upon carbonization.
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Figure 2. Structure of PA and its possible influence on the derived carbon materials.

At acidic pH, the phosphate groups on PA are fully protonated, providing a unique
structure and affecting its physicochemical properties. At neutral pH, PA can form com-
plexes with multivalent metal ions, such as calcium, zinc, or iron [42,43]. Therefore, upon
carbonization, it can generate materials simultaneously that are doped with phosphorus
and metal (e.g., Fe [20,44], Co [45], Ni [46], Sn [47], Al [48], Mn [49]). The six phosphate
groups exhibit strong affinity for amino groups through ionic interactions or hydrogen
bonds, enabling PA to serve as a crosslinking agent [50,51]. During pyrolysis, in the tem-
perature range of approximately 500–800 ◦C, PA can produce carbon materials with acidic
properties due to functionalization with phosphonate and phosphate groups [21]. More-
over, the presence of –PO4 groups on the surface provides excellent hydrophilicity [52].
Thus, PA can also function as a surfactant during the formation of hydrogels [53].

This review presents the most common synthetic protocols for preparing carbon
materials with PA and discusses their influence on the physiochemical and electrochemical
properties of the derived materials. The most recent approaches are discussed, covering
the state of the art since 2015. We also describe the electrocatalytic activities of biomass-
derived/functionalized materials toward the ORR to explore their potential applications in
energy conversion and storage.

2. Methods for Synthesizing Heteroatom-Doped Carbon Materials

The most common strategies for synthesizing carbon materials using PA involve
the direct pyrolysis of PA, which acts as both the carbon source and the heteroatom
source [5,20,53,54]. The addition of a hard template (often silica) into the precursor mixture
provides additional porosity when it is removed after the pyrolysis step [20,49,52,55,56].
Another strategy involves the chemical or thermal modification of previously prepared
carbon nanomaterials with PA; in this case, PA functions as an activator (improving the
porosity/microstructure) and/or heteroatom doping agent [57–59]. The properties of the as-
prepared materials (e.g., structure, composition, catalytic performance) depend heavily on
the precursor (or mixture of precursors), carbonization conditions, and template/support
(if used).

2.1. Template-Free Synthesis

Although template-assisted synthetic methods can yield carbon materials with high
surface area and high pore volume, they also require expensive templates and several
synthetic steps, rendering them costly and time-consuming [60–62]. Thus, template-free
synthetic methods are more attractive, especially for the large-scale synthesis of electrocata-
lysts (Table 1).

Jintao Zhang et al. synthesized materials by carbonizing hydrogels obtained following
the polymerization of aniline in the presence of PA [53]. The first step involved the forma-
tion of a PA-based protic salt through a simple reaction between PA and amine (aniline),
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followed by polymerization of aniline in the presence of NH4S2O8. Next, the obtained
hydrogel was freeze-dried to produce an aerogel, which was subsequently carbonized.
The microstructure of the resulting carbon material depended on the molar ratio of aniline
to phytic acid. At a relatively low concentration of aniline (aniline:phytic acid 1:1), the
polymerization process generated spherical micelles, which later transformed into larger
spheres and, upon carbonization, yielded aggregated coralliform structures. However, as
the concentration of aniline increased, the spherical micelles transformed into cylindrical
structures, leading to the formation of a hierarchical porous carbon material composed of
interconnected fibers. Similar synthetic approaches based on hydrogel carbonization have
been applied to fabricate chitosan-derived carbon materials [51].

In another approach, o-phenylenediamine was polymerized in the presence of an
oxidant to produce hollow nanospheres, which were further treated with an aqueous
solution of PA [63]. The subsequently dried materials were subjected to carbonization
at 900 ◦C. The amphiphilic nature of the o-phenylenediamine monomers allowed them
to form droplets in water without introducing an additional surfactant. When monomer
polymerization occurred on the droplet surfaces, hollow structures were generated with
additional holes on the surface. This method is often thought of as self-templating. The
procedure can be modified by simultaneously mixing o-phenylenediamine, PA, and iron(III)
chloride to produce P-, Fe-, and N-doped carbon materials [64]. The distribution and
content of N, P, and Fe atoms in the obtained material is precisely controlled by the acid–
base reaction between the PA and o-phenylenediamine, as well as the coordination between
the remaining PA hydroxyl groups and iron ions.

Table 1. Physicochemical properties of PA-derived carbon materials obtained via template-free
synthesis.

Electrocatalyst Precursors Doped Atoms
(wt%)

Surface Area
(m2 g−1) Porous Structure Ref.

Template-Free Synthesis

NPCNS_700T Phytic acid, chitosan N: 6.40
P: 5.80 - - [54]

N,P-HLC Phytic acid, melamine,
glucose

N: 4.92
P: 0.55 422 - [65]

FeP@SA-Fe/HC
Phytic acid, melamine,

iron nitrate,
2-aminoterephthalic acid

N: 3.17
P: 4.55
Fe: 0.45

111 Average pore size:
3.87 nm [66]

NPFe-C
Phytic acid, melamine,

iron(III) chloride
hexahydrate

N: 3.12
P: 3.51

Fe: 0.81
775

Micropore distribution:
0.90 nm

Mesopore distribution:
2–35 nm

[67]

NP+NG/PG
Phytic acid,

2,6-diaminopyridine,
5-aminouracil

N: 4.52
P: 0.67 1114

Micropore distribution:
1–2 nm

Mesopore distribution:
2–10 nm

[68]

N, P, O-Carbon-PA
Phytic acid,

o-phenylenediamine,
ammonium hydroxide

N: 5.52
P: 2.15 367 Average pore size:

4.00 nm [63]

P-Fe-NC

Phytic acid,
o-phenylenediamine,

ferric chloride
hexahydrate

N: 3.08
P: 1.15
Fe: 0.42

1216 Average pore size:
1.87 nm [64]
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Table 1. Cont.

Electrocatalyst Precursors Doped Atoms
(wt%)

Surface Area
(m2 g−1) Porous Structure Ref.

Fe, P, N-Carbon

Phytic acid,
o-phenylenediamine,

iron(III) nitrate
nonahydrate

N: 4.98
P: 2.97

Fe: 1.68
458

Average pore size:
4.00 nm

Pore volume:
0.38 cm3 g−1

[69]

Fe−P−C Phytic acid, iron chloride P: 3.10
Fe: 0.50 1371 Pore size distribution:

>3.00 nm [44]

FeP/C Phytic acid, iron(III)
nitrate nonahydrate

P: 15.00
Fe: 7.00 1269 Average pore size:

0.67 nm [70]

PANI-Fe/PA-
N1050

Phytic acid, aniline, ferric
chloride hexahydrate

N: 2.67
P: 1.11

Fe: 0.42
- - [71]

FeP@NPCs Phytic acid, folic acid,
iron chloride

N: 10.09
P: 1.24
Fe: 0.64

381 Average pore size:
2.10 nm [6]

FCPA-900
Phytic acid, ferric chloride

hexahydrate, cobalt
chloride hexahydrate

P: 0.90
Fe: 0.16
Co: 1.20

1646

Micropore size distribution:
1 nm

Mesopore size distribution:
5–25 nm

[45]

Co2P2O7/C@
N,P−C HNTs

Phytic acid, aniline, urea,
cobalt nitrate hexahydrate - 459 Average pore size:

2.63 nm [72]

NPS-PC Phytic acid, zinc
pyrithione

N: 3.74
P: 6.61
S: 0.92

712

Average pore size:
3.40 nm

Pore volume
0.40 cm3 g−1

[73]

Fe2P/FeP-PNC Phytic acid, urea, glucose,
ferric chloride

N: 10.25
P: 0.97

Fe: 0.73
- - [74]

NPMC-1100 Phytic acid, aniline N: 1.80
P: 0.10 1663

Pore size distribution
>10.00 nm

Pore volume:
0.42 cm3 g−1

[53]

NPCNFs Phytic acid, aniline N: 8.00
P: 0.90 741

Average pore size:
14.42 nm

Pore volume:
0.45 cm3 g−1

[75]

Fe-N/P/C-850 Phytic acid, aniline,
ferrocene

N: 3.65
P: 3.64
Fe: 0.87

615 - [76]

PNC Phytic acid,
2,6-diamino pyridine

N: 1.92
P: 1.65 952 Average pore size:

~4.00 nm [77]

NPMC-1000 Phytic acid, glucose, urea N: 5.00
P: 2.33 1026

Average pore size:
~0.90 nm

Pore volume:
1.12 cm3 g−1

[78]

NiCoP/NSP-
HPCNS

Phytic acid, thiourea,
cobalt acetate, nickel

phthalocyanine

N: 6.00
P: 1.50
S: 0.32

Ni: 0.79
Co: 0.75

32 Average pore size:
3.97 nm [79]
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Table 1. Cont.

Electrocatalyst Precursors Doped Atoms
(wt%)

Surface Area
(m2 g−1) Porous Structure Ref.

NPMC/CoFe

Phytic acid,
dicyandiamide, iron(III)

nitrate nonahydrate,
cobalt nitrate hexahydrate

N: 4.82
P: 1.37

Fe: 12.51
Co: 5.68

679 Average pore size:
19.65 nm [80]

CoP NPs/CNSs
Phytic acid, melamine,

cobalt(II) acetate
tetrahydrate

- 234

Average pore size:
2.00 nm

Pore volume:
0.32 cm3 g−1

[81]

Fe2P/NPCs

Phytic acid, aniline,
trimethylbenzene, citric

acid, polyethylene-
polypropylene-glycol,

ferric chloride

N: 2.68
P: 2.18
Fe: 0.91

523 Average pore size:
~3.46 nm [82]

NPC1000 Phytic acid, gelatin
powder

N: 3.60
P: 2.07 1056 Average pore size:

3.37 nm [83]

2.2. Template-Assisted Synthesis

To increase the porosity of carbon materials, templating methods can be applied to
facilitate the formation of an ordered microstructure and a fine-tuned architecture. In
this approach, a template assists the formation of pores with narrow size distribution,
thereby increasing the surface area, mass transport, and diffusion, which are essential for
catalytic applications [84] (Table 2). Duraisamy et al. synthesized homogeneous N- and
P-doped carbon spheres through a polymerization reaction [55]. In the first synthetic step,
tetraethoxysilane (TEOS) was used to prepare silica spheres, which were subsequently
coated with polydopamine and PA. The as-prepared hybrids were carbonized at 900 ◦C,
and then the silica was removed to produce N- and P-doped hollow mesoporous spheres.

Zhou et. al. used TEOS to modify N- and P-doped graphene sheets obtained by
polymerizing aniline in the presence of PA on a graphene oxide surface [57]. This approach
combined post-functionalization and hard templating methods, preventing the restacking
of graphene sheets and creating macropores to facilitate reagent diffusion.

Commercially available silica nanoparticles are also often used as a hard template.
Zhu et al. fabricated N- and P-doped mesoporous carbon composites, which were also
coordinated with manganese atoms [49]. They employed a facile synthesis strategy that
involved mixing manganese nitrate, o-phenylenediamine, and a silica colloid in a PA
solution, followed by carbonization at 900 ◦C. Then, alkaline and acidic leaching of the as-
received carbon residue removed the matrix and the unreactive Mn species. The resulting
materials had highly porous structures with uniform pores (~10 nm) resulting from the
applied template. The material had a surface area of 891 m2 g−1, indicating that the hard
template may not necessarily lead to a higher surface area but, rather, may cause a change
in morphology. For comparison, the P-, Fe-, and N-doped carbon material described above
(Section 2.1) attained a specific surface area (SBET) as high as 1216 m2 g−1 without using a
template [64]. The superior pore-generating ability of PA is discussed further in Section 3.

Although silica is the most commonly used hard template, other materials—such
as inorganic salts or oxides (e.g., NaCl, KCl, MgO, CaCO3) [85], carbon spheres [86],
and organic polymer spheres [87,88]—can also effectively play this role. One interesting
example of a hard template is rubidium chloride [52], which can be mixed with PA to afford
aggregated, spherical carbon particles (<30 µm) after annealing at 800 ◦C. The addition of
an alkaline metal, which could be easily removed from the obtained catalyst after a thermal
acid treatment, increased the SBET from 793 to 1380 m2 g−1.
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Table 2. Physicochemical properties of PA-derived carbon materials obtained via template-assisted
synthesis.

Electrocatalyst Precursors Doped Atoms
(wt%)

Surface Area
(m2 g−1) Porous Structure Lit.

Template-Assisted Synthesis

N,P-HCS-20 Phytic acid, melamine,
tetraethyl orthosilicate

N: 3.08
P: 0.64 721

Average pore size:
3.82 nm

Pore volume:
2.8 cm3 g−1

[56]

MnNPC-900
Phytic acid,

o-phenylenediamine, silica
solution, manganese nitrate

N: 1.59
P: 1.42

Mn: 0.39
891 Average pore size:

4.26 nm [49]

NPHS-0.4
Phytic acid, dopamine

hydrochloride, tetraethyl
orthosilicate

N: 2.66
P: 0.21 1120

Average pore size:
7.00 nm

Pore volume:
0.36 cm3 g−1

[55]

NPHG Phytic acid, aniline, graphene
oxide, tetraethyl orthosilicate

N: 8.88
P: 1.62 332 Pore volume:

2.02 cm3 g−1 [57]

FeNPC
Phytic acid, dopamine

hydrochloride, ferric chloride,
tetraethyl orthosilicate

N: 2.43
P: 0.04
Fe: 0.61

1656

Average pore size:
5.86 nm

Macropore average size:
~120 nm

Mesopore average size:
~10 nm

[23]

PON/C-“Rb” Phytic acid, rubidium chloride N: 8.41
P: 2.41 1380 - [52]

2.3. Post-Modification

PA can be used as a modifier of various carbon (nano)materials—including graphene
oxide (GO) [89], active carbon [90], graphite carbon nitride [22,74], manganese [91] or
cobalt [72] oxide nanorods, carbon nanotubes (CNTs) [92], carbon nanospheres [56],
cellulose carbon nanofibers [93], metal-organic frameworks [94], and cerium oxide
nanosheets [95]—to tune their properties and enhance their electrochemical activities
(Table 3).

Jang et al. modified GO by mixing it with PA and refluxing the mixture for 12 h.
Continued stirring at 90 ◦C for an additional 12 h with an aqueous ammonium hydroxide
solution led to the precipitation of agglomerated, black N- and P-doped particles [96]. The
powder obtained using this straightforward low-temperature procedure had a specific
surface area of 354 m2 g−1 and exhibited electrocatalytic ORR activity.

To inhibit GO nanosheet aggregation, Zhang et al. functionalized GO with poly
(oxypropylene) diamine, which was further reacted with PA to produce a supramolecular
protic salt [59]. In the first stage, GO and poly(oxypropylene) diamine were dispersed in
water, and a homogeneous suspension was obtained following ultrasonication. Afterwards,
the supramolecular aggregate was formed in the form of a precipitate, to which PA was
slowly added, followed by filtration and drying at 80 ◦C. Subsequent functionalization
with Co- and Mn-layered double hydroxides (LDHs) via a hydrothermal process yielded a
highly crosslinked hydrogel. The authors conducted an additional freeze-drying procedure
to promote the uniform dispersion of CoMn-LDH nanoplates on N- and P-doped GO
composites.

Wang et al. developed an interesting approach where PA was used as a precursor
for obtaining carbon dots decorating the surface of GO [97]. The GO surface has oxygen-
containing groups and multiple defects, which provide accessible active sites for decoration
with phosphate linkages to PA. Upon anchoring, these moieties were further converted
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into carbon dots under hydrothermal conditions. This strategy enabled the production of a
composite comprising 7–9 wt% carbon derived from biomass.

Another GO modification method using g-C3N4 and PA was proposed by Liao
et al. [22]. The authors modified GO via two synthetic routes (Figure 3). The first in-
volved treating GO with g-C3N4 under hydrothermal conditions, followed by pyrolysis
with PA at 900 ◦C. The second method used the reversed order, i.e., GO was treated with
PA under hydrothermal conditions, followed by pyrolysis with g-C3N4. The order of the
steps influenced the specific surface area and the extent of GO doping. Initial treatment
with a N source led to a material with high SBET (935 m2 g−1), higher P doping (2.6%), and
higher O doping (13.6%), whereas initial treatment with PA produced a material with lower
SBET (125 m2 g−1), P doping (1.2%), and O doping (7.7%).
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GO can also be fine-tuned with PA by exclusively using high-temperature treatments.
Li et al. polymerized aniline in the presence of PA on the surface of GO [98]. The hydroxyl
and carboxyl groups on the GO surface enabled the formation of a conformal coating
through crosslinks formed between GO, aniline, and PA during polymerization. Following
thermal treatment at 850 ◦C, the material adopted a sandwich-like hierarchically porous
structure. Similar structures were observed when using melamine instead of aniline,
without a polymerization step [58].

Razmjooei et al. functionalized PA with iron(II) chloride to produce ferric phytate,
which was then used for the modification of GO. Introducing Fe atoms into the composite
before carbonization increased the degree of P doping and enhanced the electrochemical
activity of the obtained composite [99].

Other nanomaterials (e.g., oxides) have also been successfully modified with PA or
its salts to generate a carbon layer on the surface, thereby boosting their electrochemical
activity. The polymerization of aniline on the surface of MnO2 nanorods in the presence
of PA yielded a porous shell following carbonization at 800 ◦C. The core–shell approach
produced a material with uniformly distributed Mn, O, N, and P atoms. Additionally,
N- and P-doped carbon layers have also been formed on hollow carbon spheres [56] and
vertically aligned carbon nanotubes on graphene foam [60]. The latter is an advanced,
durable, free-standing structure synthesized via a multistage process (Figure 4). The
synthesis procedure involved the formation of a graphene foam, which was covered with
a bimetallic Fe−Co catalyst that promoted the growth of CNTs using plasma-enhanced
chemical vapor deposition. The surface of the resulting hybrid material was oxidized using
HNO3; this treatment formed –COOH groups on the surface, which could then anchor
the aniline molecules. Polymerization of aniline in the presence of PA created a core–shell
structure after annealing at 700–1000 ◦C. Specifically, the outer layer comprised numerous
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dopants and defects, which served as catalytic active sites, and the core was composed of
highly conductive CNTs.

Table 3. Physicochemical properties of PA-derived carbon materials obtained by post-modification.

Electrocatalyst Precursors Doped Atoms
(wt%)

Surface Area
(m2 g−1) Porous Structure Lit.

Synthesis by Post-Modification

N,P-MC Phytic acid, pyrrole,
polystyrene microsphere

N: 3.56
P: 0.60 305

Micropore average size:
0.9 nm

Mesopore average size:
10 nm

[100]

N,P-Fe/C
Phytic acid, aniline,

polystyrene microspheres,
iron acetylacetonate

N: 2.64
P: 1.65
Fe: 0.81

460 Average pore size:
5.02 nm [101]

N,P-HPC Phytic acid, dicyandiamide,
cattle-bone-derived carbon

N: 3.20
P: 3.96 1516

Micropore size distribution:
0.8–1.1 nm

Mesopore size distribution:
2.8–4.8 nm

[5]

S,N,P-HPC
Phytic acid, thiourea,

dicyandiamide, cattle bone
derived carbon

N: 4.35
P: 2.96
S: 1.29

1533 Average pore size:
1.40 nm [102]

MPSA/GO Phytic acid, melamine,
graphene oxide

N: 3.20
P: 2.10 375 Average pore size:

2.50 nm [58]

NPC/G Phytic acid, chitosan,
graphene oxide

N: 0.93
P: 0.65 1824 Average pore size:

2.10 nm [51]

NP8-VACNT-GF
Phytic acid, aniline, cobalt

acetate, iron chloride,
graphene foam

N: 9.40
P: 0.70
Fe: 0.20
Co: 0.10
Cu: 1.60

- Pore size distribution:
5−10 nm [60]

P-N-Gr Phytic acid, graphene oxide,
graphitic carbon nitride

N: 0.73
P: 2.61 935

Average pore size:
3.71 nm

Pore volume:
0.87 cm3 g−1

[22]

GNP–900
Phytic acid,

polyethylenimine, graphene
oxide

N: 2.61
P: 2.26 613 Average pore size:

3.48 nm [103]

CoMn-
LDH/NPGA

PA, poly(oxyproylene)
diamine, cobalt nitrate

hexahydrate, manganese
nitrate tetrahydrate, graphene

oxide

N: 4.20
P: 3.34

Co: 17.87
Mn: 4.83

106 Pore size distribution:
4.0–30.0 nm [59]

P-CD/G Phytic acid, graphene oxide P: 2.31 448 Average pore size:
3.50 nm [97]

N,P-GCNS Phytic acid, aniline, graphene
oxide

N: 4.71
P: 1.72 900 - [98]

N-P-rG-O Phytic acid, ammonium
hydroxide graphite oxide

N: 7.7
P: 0.61 354 Pore size distribution

<40 nm [96]

GPFe Phytic acid, iron(II) chloride,
graphene oxide

P: 0.84
Fe: 0.6 612

Average pore size:
3.17 nm

Pore volume:
0.56 cm3 g−1

[99]

NPS G2
Phytic acid, ethylene glycol
reduction, graphene oxide

N: 5.57
P: 3.38
S: 0.83

605
Average pore size:

0.55 nm
Pore volume:
0.27 cm3 g−1

[104]
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Table 3. Cont.

Electrocatalyst Precursors Doped Atoms
(wt%)

Surface Area
(m2 g−1) Porous Structure Lit.

NC@CoPx/PyCNTs

Phytic acid, melamine,
4-aminopyridine, 5,10,15,20-
tetra(4-pyridyl)porphyrin,
cobalt acetate tetrahydrate,

multiwalled carbon nanotubes

N: 7.90
P: 2.26

Co: 5.08
389 Pore size distribution:

2–30 nm [92]

NPC@AC Phytic acid, aniline,
activated carbon

N: 4.54
P: 2.21 649

Pore size distribution
<10.00 nm

Pore volume:
0.66 cm3 g−1

[90]

Co3O4/NPC

Phytic acid, melamine, urea,
ethylene glycol solution,

cobalt acetate tetrahydrate,
carbon black

N: 1.20
P: 0.09

Co: 2.10
- - [105]

NSC/MPA-5
Phytic acid, melamine,

ammonium thiocyanate,
cellulose nanofibril

N: 3.30
P: 2.50
S: 0.60

682 Pore size distribution:
>20.00 nm [93]

2.5Co2P-NPC-
CeO2

Phytic acid, dopamine CeO2
nanosheets, cobalt nitrate

hexahydrate

P: 5.12
Ce: 6.49
Co: 1.11

- - [95]

MnO2@PANI-800
Phytic acid, aniline,

manganese(II) sulfate
monohydrate

N: 18.91
P: 1.97

Mn: 6.11
-

Diameter:
~130 nm

Carbon shell thickness:
~25 nm

[91]

Co2P@NPC
Phytic acid, melamine,

dimethylimidazole, cobalt
nitrate hexahydrate, ZIF-67

Co: 40.2 259 Average size:
~18.2 nm [94]

PA-ZIF-67–900 Phytic acid, ZIF-67 - 292 Pore size distribution:
1.74–32.00 nm [106]

CMD-900-4
Phytic acid,

diaminonaphthalene,
g-C3N4

838 Pore size distribution:
6.00–10.00 nm [107]

Int. J. Mol. Sci. 2022, 23, 11282 9 of 23 
 

 

and defects, which served as catalytic active sites, and the core was composed of highly 

conductive CNTs. 

 

Figure 4. Procedure for synthesizing P- and N-doped vertically aligned carbon nanotubes on gra-

phene foam (NP−VACNTs−GF). Reproduced with permission from [60]. Copyright 2019 American 

Chemical Society. 

Table 3. Physicochemical properties of PA-derived carbon materials obtained by post-modification. 

Electrocatalyst Precursors 
Doped Atoms 

(wt%) 

Surface Area 

(m2 g−1) 
Porous Structure Lit. 

Synthesis by Post-Modification 

N,P-MC 
Phytic acid, pyrrole, 

polystyrene microsphere 

N: 3.56 

P: 0.60 
305 

Micropore average size: 

0.9 nm 

Mesopore average size: 10 

nm 

[100] 

N,P-Fe/C 

Phytic acid, aniline, polystyrene 

microspheres, iron 

acetylacetonate 

N: 2.64 

P: 1.65 

Fe: 0.81 

460 
Average pore size: 

5.02 nm 
[101] 

N,P-HPC 
Phytic acid, dicyandiamide, 

cattle-bone-derived carbon 

N: 3.20 

P: 3.96 
1516 

Micropore size 

distribution: 

0.8–1.1 nm 

Mesopore size 

distribution: 

2.8–4.8 nm 

[5] 

S,N,P-HPC 

Phytic acid, thiourea, 

dicyandiamide, cattle bone 

derived carbon 

N: 4.35 

P: 2.96 

S: 1.29 

1533 
Average pore size: 

1.40 nm 
[102] 

MPSA/GO 
Phytic acid, melamine, 

graphene oxide 

N: 3.20 

P: 2.10 
375 

Average pore size: 

2.50 nm 
[58] 

NPC/G 
Phytic acid, chitosan, graphene 

oxide 

N: 0.93 

P: 0.65 
1824 

Average pore size: 

2.10 nm 
[51] 

NP8-VACNT-GF 

Phytic acid, aniline, cobalt 

acetate, iron chloride, graphene 

foam 

N: 9.40 

P: 0.70 

Fe: 0.20 

- 
Pore size distribution: 

5−10 nm 
[60] 

Figure 4. Procedure for synthesizing P- and N-doped vertically aligned carbon nanotubes on
graphene foam (NP−VACNTs−GF). Reproduced with permission from [60]. Copyright 2019 Ameri-
can Chemical Society.



Int. J. Mol. Sci. 2022, 23, 11282 11 of 23

3. Effects of Phytic Acid on the Physicochemical Properties of Doped
Carbon Materials

Research has shown that heteroatom doping can change the structure as well as the
chemical and electronic properties of carbon materials, promoting electrochemical reactions
on their surface [1,84,108]. Biomass-derived PA represents an attractive phosphorus source
and a promising alternative to inorganic acids or salts, such as H3PO4, NaH2PO2, and
NH4H2PO4. Moreover, the porosity and developed surface area of doped carbon materials
increase the availability of active centers for reactants [109]. The presence of micro-, meso-
and macropores can also facilitate the transport of oxygen and electrolyte ions during the
electrochemical reaction by shortening the diffusion pathways [110]. This section discusses
the influence of PA on the structural properties of carbon materials, i.e., doping level,
specific surface area, and average pore size.

3.1. Structure of Carbon Materials

The selected precursors and carbonization conditions (e.g., temperature, time, solvent)
influence the structure and physicochemical properties of the fabricated carbon materials.

PA primarily serves as a carbon source [44], although during the carbonization process
it also plays the role of a porogen [23,49,65,89] and phosphorus dopant [46,54] owing to its
numerous phosphate groups.

PA is typically used in the form of an aqueous solution; however, at temperatures
above 100 ◦C, it hydrolyzes to phosphoric acid (H3PO4; Equation (1)). Between 400 and
500 ◦C, H3PO4 is transformed into phosphorus pentoxide (P2O5), which creates pores upon
sublimation (Equation (2)). When the temperature is further increased to 900 ◦C, some
of the remaining P2O5 is reduced, thereby producing red phosphorus, which acts as a
self-sacrificing template to form mesopores (Equation (3)) [90,91].

C6H18O24P6 + 6H2O→ 6H3PO4 + C6H12O6 (1)

2H3PO4 → P2O5 + 3H2O (2)

P2O5 + 5C→ 2P + 5CO (3)

Thus, micro- and mesopores are formed during thermal treatment via dehydration or
dephosphorization. These processes produce gases, such as H2O, CO, and P2O5, which
create pores when they escape the carbon structure.

Carbonization of PA alone can result in a highly porous carbon structure, where
the specific surface area depends on the annealing temperature. Prior to hydrothermal
treatment at 120 ◦C for 24 h, PA carbonized at 500 ◦C yielded carbon residues with low
SBET (34 m2 g−1). However, increasing the annealing temperature to 600 ◦C increased the
SBET value significantly (to 1039 m2 g−1). Increasing the annealing temperature to 800 ◦C
further increased the SBET to 1637 m2 g−1 [21]. Meanwhile, carbon residues with an SBET of
only 577 m2 g−1 were reported for PA carbonized at 900 ◦C [44].

For carbon materials that are also doped with nitrogen, an increase in the specific
surface area may be due to NH3 released during the decomposition of the precursor (i.e.,
nitrogen source). Zan et al. compared P-doped and P/N-co-doped porous carbon materials
derived from cattle bones [5]. The material treated with PA had an SBET of 1389 m2 g−1,
whereas the analogous material treated with both PA and dicyandiamide reached an SBET
of 1516 m2 g−1. Additional N and P doping contributed to the development of larger
mesopores compared with the unmodified material.

The amount of PA used as a precursor can also significantly influence the morphology
of the resulting material. Zhang et al. reported that as the amount of PA precursor
increased, the morphology of the investigated honeycomb-like carbon materials became
fluffier because the overloaded PA triggered the collapse of the mesopores (Figure 5) [65].
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The amount of PA when used as a modifier can also drastically influence the mi-
crostructure of the resulting material. Yang et al. observed that if the PA loading when
modifying hollow carbon nanostructures (prepared from an iron metal–organic framework)
was too high, their spindle shape was completely destroyed (Figure 6a,b) [66]. Similarly,
if the amount of PA was too low, it was difficult to obtain a porous and doped carbon
composite. Therefore, selecting the PA loading is often a compromise between achieving a
desired structure and a suitable doping level.
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PA is commonly used as an activator to increase the specific surface area of a material.
The SBET values of carbon aerogels prepared using chitosan and PA as precursors were
improved significantly (from 279 to 737 m2 g−1) when the mass ratio of PA to chitosan was
increased from 0.5 to 2 [51]. Moreover, when the aerogel was incorporated into graphene
and carbonized at 1000 ◦C, the composite reached an SBET as high as 1824 m2 g−1, which is
the best result among all of the materials described in this review. Liu et al. confirmed that
the presence of PA (acting as a porogen) could significantly increase the surface area and
porosity of graphene-based materials [51]. The formation of P2O5 during carbonization
distorted the graphitic structure, forming pores and wrinkles [99]. Moreover, the addition
of PA can contribute to increased spacing between graphite layers because of the larger
atomic radius of P relative to that of carbon [101].
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A recent study demonstrated that the amount of PA and the duration of its addition
when preparing functional carbon materials can influence their ultimate shape and size.
Duraisamy et al. investigated the loading and duration of the addition of PA during the
synthesis of carbon spheres using silica, dopamine hydrochloride (DA), and PA. Adding
PA to the DA–SiO2 mixture for 10 h resulted in the formation of spherical, joined particles
(diameter ~198 nm) [55]. Extending the duration of the addition of PA to 30 h generated
spheres with larger diameters (~264 nm) and thicker sphere walls (thickness increased
from 25 to 53 nm), owing to a greater degree of aggregation of polydopamine and PA.
Interestingly, the shell thickness and sphere diameter decreased as the PA loading increased.
The authors explained this phenomenon based on the fact that the change in pH during the
reaction potentially hindered the formation of certain structures.

3.2. Chemical Doping

The introduction of P atoms (electronegativity = 2.19) into a carbon structure can
induce interactions with C atoms (electronegativity = 2.55), thereby triggering the redistri-
bution of charge and spin density [1]. The disrupted electron neutrality of the carbon matrix
increases the electrocatalytic ORR activity of doped carbon materials [44]. Different-sized
heteroatoms can also disturb the geometry of the carbon lattice and generate structural
defects, which can also enhance the material’s catalytic properties.

Obtaining uniform distribution of heteroatoms throughout the carbon network re-
mains a challenge; however, PA (which contains the same number of carbon and phospho-
rus atoms) may enable uniform doping during the carbonization process [21]. Moreover,
owing to its carbon-rich structure, low cost, availability, and bio-derived origin, PA has
become a commonly used carbon source, following the trend of synthesizing functional
carbon materials using non-toxic and abundant plants, agricultural and forestry waste prod-
ucts, and microorganisms [111–114]. Direct carbonization of PA produces P-doped carbon
materials without an additional carbon source [20,96]. Additionally, pyrolyzing a mixture
of PA and iron chloride yielded a nonprecious-metal-based carbon catalyst [44]. Finally, PA
has been used to fabricate P-doped carbon coatings on various inorganic materials [72,97].

3.2.1. Doping with Phosphorous and Other Atoms

Although it is not as effective as N doping, P doping can enhance the electrocatalytic
properties of carbon materials. Density functional theory (DFT) calculations on P-doped
graphene suggest that the phosphorus dopant serves as the active site to adsorb oxygen
species during ORR, because of the positive charge of phosphorus atoms (0.652 a.u.) com-
pared with the more negative charge of the neighboring carbon atoms (0.298 a.u.) [115,116].
The calculations demonstrated that P-doped graphene exhibits higher charge mobility
and better donor–acceptor properties than analogous unmodified materials. There are
several configurations whereby phosphorus atoms can integrate into the carbon struc-
ture. X-ray photoelectron spectroscopy (XPS) analysis of PA carbonized at 600 ◦C revealed
two types of phosphorus species: including P–C and P–O groups, observed at ~132 and
134 eV, respectively [20,99,117]. The P–O groups can be a part of phosphonate, phosphate,
and/or phosphine oxide groups, which build up around the edge of the carbon lattice. The
phosphonate and phosphate groups endow the carbon material with additional Brønsted
acidity [21].

Upon increasing the pyrolysis temperature, the overall content of phosphorus incor-
porated into the carbon structure decreases (similar phenomena have been observed with
other heteroatoms). Direct carbonization of PA at 500 ◦C yielded carbon residues with P con-
tent up to 13.59%, which decreased to 3.6% after raising the temperature to 800 ◦C [18]. In
general, high temperatures promote the conversion of phosphorous-containing functional
groups into atomic phosphorus in the carbon network [50,55,57].

Co-doping in P-doped carbon materials is typically accomplished with N doping,
which can lead to increased ORR activity owing to the synergistic electronic action of both
dopants (e.g., P doping makes the N sites more catalytically active) [118]. The highest



Int. J. Mol. Sci. 2022, 23, 11282 14 of 23

phosphorus content reported for P- and N-doped carbon synthesized at 600 ◦C was 6.9%;
this material was derived from chitosan and had a nitrogen content of 6.1% [54]. However,
an excessive amount of PA promotes the loss of nitrogen-containing species from the carbon
structure, because the higher amount of gases produced during pyrolysis may facilitate
their escape [22].

3.2.2. Doping with Phosphorus and Nonprecious Metals

Owing to its strong complexing capabilities, PA can facilitate co-doping with metals,
while also promoting their uniform distribution [70], limiting agglomeration [23], increas-
ing the carbonization efficiency [74], and improving the resulting material’s mechanical
strength [70].

Deng et al. developed N/P/Fe-tri-doped carbon foams using a simple PA-assisted
self-templating strategy and showed that the acid–base reaction between PA and
o-phenylenediamine enabled control over the contents of N and P atoms; meanwhile,
the contents of nonprecious metals could be controlled by coordinating Fe to the hydroxyl
groups, leading to the uniform distribution of all dopants [64]. Xue at al. demonstrated
that carbon nitride (g-C3N4) sheets modified with PA and Fe were uniformly covered
with dopant; however, the analogous material prepared without PA had a homogeneous
distribution of C and N, but suffered from Fe aggregation. The authors observed that the
Fe aggregates catalyzed the combustion of g-C3N4, thus decreasing the efficiency of the
synthetic process [74].

Recently, Li et al. showed that the order of precursor addition during the synthesis of
tri-doped carbon materials is relevant [69]. The simultaneous addition of iron precursors
and PA to hollow nanospheres obtained via polymerization of o-phenylenediamine led to
agglomeration of iron after carbonization (Figure 7). However, when double carbonization
was performed (after adding Fe precursor, and again after adding PA), uniform doping
was achieved.

Wang et al. elucidated the phase structure of FexP in N- and P-doped nanospheres [82].
They demonstrated that the phase structure of FexP depends on the Fe/P molar ratio
used in the hydrothermal synthesis. Notably, when the Fe/P ratio was small (Fe/P < 0.1),
FeP was the main product. However, as the Fe/P ratio increased, Fe2P (Fe/P ≈ 0.2) or
Fe3P (Fe/P > 0.4) dominated. The increased proportion of the iron precursor may induce
the formation of smaller nanospheres on the carbon surface during high-temperature
treatment [119].

Although carbon materials co-doped with Fe as a nonprecious metal are the most
common, Wang et al. studied doped carbon structures prepared using zinc pyrithione
and PA as precursors (i.e., Zn/N/S/P-doped) [73]. The incorporation of zinc in the final
material only reached 0.37% when PA was added. In contrast, the material obtained
without PA contained 2.91% Zn. Therefore, the authors speculated that PA promoted the
evaporation of Zn, which acted as an additional pore-shaping agent during this process.
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Figure 7. (i) Schematic diagram illustrating the synthesis of tri-doped hollow nanospheres (carbon
atoms–brown, hydrogen atoms–white, nitrogen atoms–blue, phosphorous atoms- ?, oxygen atoms–
red, iron atoms–orange, iron-phosphorous nanoclusters–purple). (ii) (a) Scanning electron microscopy
(SEM), (b) transmission electron microscopy (TEM), and (c) energy-dispersive X-ray spectroscopy
(EDS) images of the materials synthesized via simultaneous addition of precursors; (d) SEM, (e) TEM,
and (f) EDS images of the material synthesized via the two-step procedure. Reproduced with
permission from [69]. Copyright 2021 Elsevier Inc. All rights reserved.

4. Oxygen Reduction Performance of PA-Derived Electrocatalysts

PA contributes to carbon materials in terms of doping, introducing defects, and
generating porous structures, all of which influence their electrocatalytic ORR performance.
Recent progress in the engineering of metal-free electrocatalysts using PA has enabled the
development of materials with activities comparable to those of precious metals.

The electrochemical behaviors of newly developed ORR catalysts are commonly
screened using a rotating disk electrode (RDE) or a rotating ring-disk electrode (RRDE),
which provide data for the Koutecky–Levich analysis. For electrochemical investigations,
both methods use carbon powders, typically dispersed in an alcohol–water mixture, which
is then deposited on glassy carbon electrodes to form films. The electrochemical perfor-
mances of recently reported PA-derived carbon materials are summarized in Table 4.

Although nitrogen is the most commonly used element for doping of carbon materials,
P doping (effectively implemented by using PA) can increase electrocatalytic ORR perfor-
mance. Zhang et al. showed that a mesoporous carbon foam co-doped with nitrogen and
phosphorus exhibited higher electrocatalytic activity than the analogous material doped
exclusively with nitrogen atoms [53]. The N- and P-doped carbon material synthesized at
1000 ◦C had an onset potential of 0.94 V versus the reversible hydrogen electrode (RHE),
i.e., it was comparable to that of Pt/C. Li et al. prepared hollow spheres using various
phosphorus sources (e.g., NaH2PO2, H3PO4, and PA) and observed the highest electro-
catalytic performance (onset potential = 0.85 V) for the PA-modified material [63]. The
incorporation of PA led to carbon spheres with the highest phosphorous doping among the
studied phosphorus sources. Simultaneous N/P/S doping of carbon materials enhanced
their electrocatalytic ORR performance. The tri-doped porous carbon nanosheets with
3.74% N, 6.61% P, 0.92% S, and surface area = 711.6 m2 g−1 had a more positive half-wave
potential (0.91 V) than commercial Pt/C (0.87 V); moreover, they had better stability in
alkaline electrolytes and excellent activity in acidic electrolytes [73].
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The ultimate content of dopant is also related to the pyrolysis temperature, which
simultaneously affects the degree of graphitization. Zhang et al. observed that increasing
the pyrolysis temperature from 900 to 1000 ◦C had a positive influence on the performance
of the electrocatalyst because of the higher degree of graphitization, which promoted
electrical conductivity [53]. However, further increasing the pyrolysis temperature to
1100 ◦C led to the decomposition of the dopants and a negative shift of the potential peak.

The electrocatalytic performance of doped carbon materials is also highly dependent
on the porosity of the structure. The mesoporous carbon foams developed by Zhang et al.
achieved comparable ORR activity relative to that of Pt/C and had a specific surface
area as high as 1548 m2 g−1 [53]. The micropores provide additional surface-active sites,
thereby increasing the ORR activity, whereas larger meso- and macropores facilitate reagent
transport [120]. As discussed earlier in this review, PA can endow nanomaterials with
additional micro- and mesopores, contributing to their increased ORR activity. In addition
to controlled doping with various heteroatoms, oxygen functionalities can also enhance the
electrochemical activity of carbon materials by increasing the hydrophilicity of the catalyst
surface [120]. Accordingly, the oxygen-rich structure of PA can be beneficial for preparing
carbon materials with oxygen-containing functional groups.

Table 4. ORR performance of PA-derived electrocatalysts.

Electrocatalyst
Catalysts’
Loading

(mg cm−2)

Electrolyte
(mol/dm3)

Onset
Potential

(V vs. RHE)

Half-Wave
Potential

(V vs. RHE)

Current Density
(mA cm−2)

(V vs. RHE)
Lit.

N,P-HCS 0.46 0.1 KOH 0.88 0.81 5.62 [56]

MnNPC-900 0.25 0.1 KOH 0.95 0.82 5.0 [49]

NPHS-0.4 0.20 0.1 KOH 0.97 0.79 4.7 [55]

FeNPC 0.25 0.1 KOH 1.03 0.88 6.5 [23]

PON/C-“Rb” 0.21 0.1 KOH 1.00 0.87 - [52]

NPCNS_700T 0.10 0.1 KOH 0.73 - [54]

FeP@SA-Fe/HC - 0.1 KOH 0.94 0.84 - [66]

NP+NG/PG 0.60 0.1 KOH 1.01 0.89 - [68]

N, P, O-Carbon-PA 0.20 0.1 KOH 0.98 0.84 3.96 [63]

P-Fe-NC 0.50 0.1 KOH - 0.93 - [64]

Fe, P, N-Carbon - 0.1 KOH 1.03 0.90 5.82 [69]

Fe−P−C
- 0.1 KOH 0.95 - 5.01

[44]
- 0.1 HClO4 0.84 - 5.9

FeP/C 0.20 0.1 KOH 0.86 0.74 - [70]

PANI-Fe/PA-N1050 - 0.1 NaOH - 0.84 4.4 [71]

FeP@NPCs 0.20 0.1 KOH 0.94 0.79 5.85 [6]

Co2P2O7/C@
N,P−CHNTs - 0.1 KOH - 0.84 4.58 [72]

NPS-PC - 0.1 KOH 1.06 0.91 4.00 [73]

Fe2P/FeP-PNC
0.30 0.1 M KOH - 0.85 5.54

[74]
0.30 0.1 HClO4 - 0.70 5.31

NPMC-1100 0.50 0.1 KOH 0.94 0.85 2.00 [53]

PNC 0.40 0.1 HClO4 0.91 0.79 - [77]

NPMC-1000 0.20 0.1 KOH 0.94 0.84 - [78]

NiCoP/NSP-HPCNS 0.40 0.1 KOH 0.92 0.84 6.00 [79]
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Table 4. Cont.

Electrocatalyst
Catalysts’
Loading

(mg cm−2)

Electrolyte
(mol/dm3)

Onset
Potential

(V vs. RHE)

Half-Wave
Potential

(V vs. RHE)

Current Density
(mA cm−2)

(V vs. RHE)
Lit.

NPMC/CoFe 0.40 0.1 KOH 0.98 0.90 5.70 [80]

CoP NPs/CNSs 0.25 0.1 KOH 0.92 0.88 5.4 [81]

Fe2P/NPCs 0.50 0.1 KOH 0.95 0.820 5.58 [82]

NPC1000 0.40 0.1 KOH 0.87 0.78 4.51 [83]

N,P-MC 0.20 0.1 KOH - 0.84 - [100]

N,P-Fe/C 0.30 0.1 KOH 0.97 0.89 5.30 [101]

Co2P@am-FePO4 - 0.1 KOH 1.01 0.91 6.56 [121]

N,P-HPC 0.80 0.1 KOH - 0.85 - [5]

S,N,P-HPC-1 0.80 0.1 KOH - 0.88 - [102]

NPC/G 0.25 0.1 KOH 0.95 0.81 5.8 [51]

GNP–900 0.28 0.1 KOH 0.96 0.824 - [103]

CoMn-LDH/NPGA 0.26 0.1 KOH 0.97 0.87 - [59]

N,P-GCNS 0.14 0.1 KOH 1.01 0.67 5.56 [98]

N-P-rG-O - 0.1 KOH 0.89 0.69 5.41 [96]

NPS G2 - 0.1 KOH 1.09 0.64 4.17 [104]

NC@CoPx/PyCNTs - 0.1 KOH 0.92 0.80 4.18 [92]

NSC/MPA-5 0.25 0.1 KOH 0.23 0.76 3.3 [93]

2.5Co2P-NPC-CeO2 - 0.1 KOH 0.88 0.83 5.24 [95]

MnO2@PANI-800 0.10 0.1 KOH 0.92 0.76 4.64 [91]

Co2P@NPC 0.28 0.1 KOH 0.83 0.77 - [94]

CMD-900-4 - 0.1 KOH 0.93 0.85 5.86 [107]

FCPA-900 0.20 0.1 KOH 0.87 0.76 5.68 [45]

N,P-HLC 0.15
0.1 KOH 1.0 0.85 6.23

[65]
0.5 M H2SO4 0.87 0.67 7.11

PA-ZIF-67–900 0.42 0.1 KOH - 0.85 5.00 [106]

P-N-Gr 0.19 0.1 KOH 1.01 0.82 5.98 [22]

Fe-N/P/C-850 - 0.1 KOH 1.05 ~0.86 4.50 [76]

Excellent electrocatalytic ORR activities were achieved by incorporating nonprecious
metals—such as Fe—into the carbon structure with the support of PA [20,98,104]. The
uniformly Fe/P/N-tri-doped carbon material with a specific surface area of 458 m2 g−1 had
a more positive reduction onset potential (1.03 vs. RHE) than commercial Pt/C catalysts
and their P- and N-doped analogues [69]. Additionally, Fe- and P-doped GO showed
increased ORR performance compared with non-modified GO [51].

5. Summary and Outlook

PA represents an excellent precursor for preparing functional carbon materials for
electrocatalytic oxygen reduction applications because of its pore-generating and P-doping
capabilities, as well as its sustainable character. The synthetic strategies presented herein
demonstrate that carbon materials with different shapes, structures, morphological features,
defects, and heteroatom doping can be developed with the support of PA. Most importantly,
the natural origins of PA make it an attractive alternative to conventional phosphorous
precursors, such as inorganic acids or salts. Converting abundant and renewable biomass
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into functional nanomaterials with high added value via simple and energy-efficient syn-
thetic strategies is a key pillar of green chemistry. Despite the natural origin of PA and
its relatively simple production by extraction with aqueous acids, the synthesis of the
discussed N- and P-doped carbon materials often involves toxic nitrogen precursors such
as o-phenylenediamine or 2,6-diaminopyridine. Therefore, to produce truly sustainable
carbon materials, all of the precursors and synthesis strategies should be carefully selected.
One option could be the replacement of fossil-fuel-derived amines with amino acids (such
as waste proteins from agriculture and forestry). Another issue is the high CO2 footprint
related to the conventional synthesis of carbons (conversion to a hydrogen economy con-
tributes to reducing CO2 emissions, while large amounts of CO2 are still produced during
the synthesis of carbon electrodes). Therefore, alternative environmentally benign synthesis
strategies that involve molten salt CO2 capture and electrochemical transformation into
various carbon products have been intensively investigated [122–126].

Applying rationally designed synthesis strategies using PA can aid in the development
of carbon materials with more active sites, thereby enabling electrocatalytic performance
comparable or even superior to those of noble metal catalysts. Therefore, understanding
and controlling the mechanisms and influence of PA in hydrothermal and high-temperature
carbon manufacturing processes can lead to more sustainable carbon materials that can be
developed on a large scale. Evolution of proton-exchange membrane fuel cells (PEMFCs)
and rechargeable metal–air batteries with electrodes based on fully sustainable carbon
materials can contribute to carbon neutrality.
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