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Abstract: Approximately 21% of patients with renal cell cancer (RCC) present with synchronous
metastatic disease at the time of diagnosis, and metachronous metastatic disease occurs in 20–50% of
cases within 5 years. Recent advances in adjuvant treatment of aggressive RCC following surgery
suggest that biomarker-based prediction of risk for distant metastasis could improve patient selection.
Biometrical analysis of TCGA-KIRC data identified candidate loci in the NK6 homeobox 2 gene
(NKX6-2) that are hypermethylated in primary metastatic RCC. Analyses of NKX6-2 DNA methylation
in three gene regions including a total of 16 CpG sites in 154 tumor-adjacent normal tissue, 189 RCC,
and 194 metastatic tissue samples from 95 metastasized RCC patients revealed highly significant
tumor-specific, primary metastatic-specific, and metastatic tissue-specific hypermethylation of NKX6-
2. Combined CpG site methylation data for NKX6-2 and metastasis-associated genes (INA, NHLH2,
and THBS4) demonstrated similarity between metastatic tissues and metastatic primary RCC tissues.
The random forest method and evaluation of an unknown test cohort of tissues using receiver
operator characteristic curve analysis revealed that metastatic tissues can be differentiated by a
median area under the curve of 0.86 (p = 1.7 × 10−8–7.5 × 10−3) in 1000 random runs. Analysis of
variable importance demonstrated an above median contribution for decision-making of at least one
CpG site in each of the genes, suggesting superior informativity for sites annotated to NHLH2 and
NKX6-2. Thus, DNA methylation of NKX6-2 is associated with the metastatic state of RCC tissues
and contributes to a four-gene-based statistical predictor of tumoral and metastatic renal tissues.

Keywords: renal cell carcinoma; metastasis; NKX6-2; NHLH2; INA; THBS4; hypermethylation;
signature; prognosis; CpG-methylation; DNA-methylation

1. Introduction

Renal cell carcinoma (RCC) occurs as the sixth most frequent cancer in men and
tenth most frequent cancer in women, with increasing incidence [1]. Approximately 20% of
patients present with metastatic disease at the time of diagnosis, whereas disease recurrence
and metachronous metastasis following surgery is observed in 20–50% of patients within
5 years [2,3]. Although new therapies have improved the prognosis of metastatic disease,
the 5-year survival of affected patients is still limited [4]. Therefore, reducing the risk
of developing metastases is of primary interest, and the recent approval of an adjuvant
treatment regimen using the PD-1 antibody pembrolizumab in high-risk RCC represents
the first therapeutic answer to this treatment challenge [5]. Inclusion criteria for patients
currently rely on clinical and histological parameters or scoring systems, such as the
University of California Integrated Staging System (UISS), but limitations in the prognostic
accuracy of these models underline the need for additional prognostic biomarkers to
improve individual clinical predictions and permit personalized therapeutic strategies and
selection for adjuvant therapies [6–8].
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The understanding of RCC has evolved substantially due to the comprehensive molec-
ular characterization of RCC provided by The Cancer Genome Atlas (TCGA) project,
including detailed information about genetic and epigenetic alterations in the most com-
mon histological subtype, clear cell renal carcinoma ccRCC (KIRC database) [9]. Inter-
estingly, data show that somatic mutations other than VHL alterations are relatively rare
in sporadic RCC. Moreover, a limited association or low informativity of genetic alter-
ations with clinicopathological parameters or RCC prognosis has been observed; thus,
the translational clinical use of genetic mutation profiles seems to be questionable [8–10].
In contrast, epigenetic alterations, such as DNA hypermethylation, frequently followed
by subsequent epigenetic silencing of tumor suppressor genes, has been demonstrated to
occur in RCC and to be associated with clinical or histopathological parameters and the
clinical course of RCC, suggesting epigenetic alterations as promising biomarker candi-
dates in RCC [10–14]. Numerous investigations, including our own work, have revealed
associations of hypermethylation and adverse histopathological characteristics [15–20] with
metastatic disease [15–18,20,21], as well as associations with survival [15,16,18,20,22–26] or
the therapeutic response [27,28].

Although alterations in DNA methylation usually affect a comparatively large pro-
portion of respective tumors, clinical translation of potential markers is still hampered by
non-informative cases. Our recently published association of the DNA methylation of CpG
loci of INA, NHLH2, and THBS4 with metastasis revealed a subset of tissues showing no
alterations in the analyzed loci. Therefore, it seems rational that the translational use of
DNA methylation for the prediction of tumor behavior would be carried out using marker
panels [29]. A five CpG-methylation-based signature and a four-gene-based signature
have been suggested to predict overall survival independent of clinical parameters or
cancer-specific survival, respectively [26,30]

Here, we investigated whether detection of metastatic renal tissues using CpG-methylation
of INA, NHLH2, and THBS4 can be improved by including the methylation information of
biometrically-identified candidate loci in NKX6-2. NKX6-2 is a transcription factor with a
highly conserved DNA-binding domain, the homeobox, and is involved in neuronal and
pancreatic endocrine development [31,32]. DNA hypermethylation of NKX6-2 has been
detected in lung adenocarcinoma, colorectal carcinoma, and bladder carcinoma [33–35]. No-
tably, it has been described as part of a biomarker panel for early bladder cancer detection in
urine [33], and methylome analysis in RCC has suggested that hypermethylation of NKX6-2
is associated with more aggressive RCC, demonstrating shortened overall survival [36].

Using an extended investigation approach (Figure 1) we show that CpG sites in
different regions of NKX6-2 present hypermethylation, in both metastasized primary RCC
tissue and RCC-derived distant metastatic tissues. Moreover, specific CpG sites in NKX6-2
provide an above average contribution to the diagnostic signature for efficient and robust
detection of metastatic risk by combined use of INA, NHLH2, NKX6-2, and THBS4 CpG-
site methylation.
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Figure 1. Study design. (A) Boxes illustrate data of the TCGA KIRC, cell models (B) or renal and
metastatic tissues (C,D). The columns of the boxes represent tumor-adjacent normal renal tissues
(adN), primary renal tumor tissues without (M0, blue shading) and with distant metastasis (M+,
yellow shading), and renal metastatic tissues (Mtx, orange shading). (B) Relevance of NKX6-2
methylation was investigated using the average of methylation of 16 CpG sites in three gene regions.
(C,D) The epigenetic signatures of primary RCC with distant metastasis were evaluated by combined
CpG site-specific methylation of NKX6-2 and metastasis-associated methylation of INA, NHLH2, and
THBS4. Abbreviations used: MDS, multidimensional scaling; PCA, principal component analysis;
RMAMS, renal metastasis associated methylation signature; s1–s3, random subsets of tissue groups.

2. Results
2.1. In Silico Identification of the Association of NKX6-2 Loci Methylation and State of
Distant Metastasis

Univariate logistic regression of TCGA KIRC methylation data from 282 tumor tissues,
including 232 M0 and 52 M+ tumors, identified three loci annotated for NKX6-2 (cg06082548,
cg01384488, and cg19701540) that were associated with the state of distant metastasis in
patients. Ranking among the top 30 candidate loci, the observed mean fold changes
in methylation for M0 vs. M+ primary tumor comparisons were 1.56, 1.84, and 1.94,
with corresponding p-values of 4.36 × 10−19, 3.46 × 10−23, and 1.2 × 10−21 (Bonferroni-
Hochberg corrected).

2.2. Evaluation of NKX6-2 Candidate Loci in Primary RCC, RCC-Associated Metastatic Tissues,
and Cell Models

Following the set-up of three pyrosequencing assays covering or positioned as close as
possible to the candidate loci (Figure 2, Table 1), we observed high relative methylation in a
large part of the cell models, including representatives of renal, urothelial, prostatic, and
mammary cancers, for all of three NKX6-2 regions (R3-R1) analyzed, whereas the relative
methylation in normal primary cells was low (Figure 3).
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Figure 2. Genomic organization of NKX6-2. Localization of exons (higher part of orange rectangles)
and the 5′UTR and 3′UTR relative to genomic regions (lower part of orange rectangles), CpG sites
annotated for the region (CpG sites), localization of the CpG island (CGI), positions of CpG sites
considered in the TCGA KIRC study (KIRC), candidate CpG sites showing an association with the
state of distant metastasis.

Table 1. Genomic localization of CpG sites analyzed.

Pyroassay Gene Chromosom TCGA/KIRC
Candidate Genomic Position AssayCG

NKX6-2 10 cg06082548 134,598,909

R3 NKX6-2 10

134,598,942 CG4

134,598,945 CG3

134,598,948 CG2

134,598,952 CG1

R2 NKX6-2 10

134,599,807 CG5

cg01384488 134,599,809 CG4

134,599,823 CG3

134,599,836 CG2

134,599,841 CG1
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Table 1. Cont.

Pyroassay Gene Chromosom TCGA/KIRC
Candidate Genomic Position AssayCG

R1 NKX6-2 10

cg19701540 134,600,915 CG1

134,600,919 CG2

134,600,922 CG3

134,600,932 CG4

134,600,934 CG5

134,600,938 CG6

134,600,949 CG7

Figure 3. NKX6-2 methylation in regions R3-R1 in cell models. Pyrosequencing analysis provided
relative methylation in the NKX6-2 R3-R1 regions in % of control DNA (Controls), normal primary
cells (Prim), and tumor cells representing renal cell cancer (RCC), prostate cancer (CaP), mammary
cancer (MCa), urothelial cancer (UTC), and miscellaneous (msc.) models.

Comparative analysis of primary TU and paired adN samples demonstrated significant
tumor-specific hypermethylation (all p < 1.25 × 10−14) for all three regions (Figure 4a,
Table 2). M+ tumors also demonstrated hypermethylation (all p≤ 0.008) compared with the
M0 tumors (Figure 4b, Table 2). Eventually, the comparison of M0 and Mtx tissues revealed
significant hypermethylation (all p≤ 1.04× 10−5) for the metastases in each NKX6-2 region
R3-R1 (Figure 4c, Table 2).
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Figure 4. Tumor-specific, state of distant metastasis-specific, and metastatic tissue-specific hyper-
methylation in NKX6-2 regions R3-R1. (a) Strip chart presentation of hypermethylation analysis
of regional methylation in NKX6-2 R1-R3 in paired adjacent normal tissue (adN) and renal tumor
(TU) tissues. Corresponding statistical analysis showed significant tumor-specific hypermethylation
for the R1, R2, and R3 regions (all p < 1.25 × 10−14, for statistical results see Table 2). (b) Box plot
of average methylation in regions R3-R1 in NKX6-2 in tumors without (M0) and with metastatic
disease (M+). Medians, notches showing the estimated confidence interval, 25% and 75% quartiles,
whiskers indicating the 99.3% interval (two-sided 1.5-fold of interquartile range), and outliers (black
squares) of the relative methylation distributions are shown. All p ≤ 0.008 (for statistical results see
Table 2). (c) Box plot of methylation in NKX6-2 regions R1–R3 comparing localized primary tumor
tissue (M0) and metastatic tissue samples (Mtx). All regions demonstrate metastatic tissue-specific
hypermethylation (all p ≤ 1.04 × 10−5, for statistical results see Table 2). Box plot presentation as
described in (b).
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Table 2. Hypermethylation of NKX6-2 regions R1-R3 in renal tissues.

Assay

Tumor Specific
Hypermethylation Metastatic Primary Cancer Hypermethylation Metastatic Tissue Specific Hypermethylation

p-Value 1
Mean Meth. (%) OR

(95% CI) p-Value 2
Mean Meth. (%) OR

(95% CI) p-Value 2

M0 M+ M0 Mtx

R3 6.60 × 10−17 14.70 23.08 1.06
(1.03–1.10) 3.37 × 10−4 14.14 23.05 1.08

(1.05–1.11) 1.14 × 10−7

R2 1.25 × 10−14 11.19 17.23 1.04
(1.01–1.07) 0.008 10.46 19.81 1.09

(1.06–1.12) 7.20 × 10−8

R1 1.16 × 10−14 16.31 23.35 1.04
(1.01–1.07) 0.006 15.82 24.81 1.05

(1.03–1.07) 1.04 × 10−5

OR odds ratio; 95% CI 95% confidence interval; M0 primary tumours without metastasis; M+ primary tumours
with presence of distant metastases; Mtx metastatic tissue; meth., methylation. 1 two-sided paired t-test; 2 bivariate
logistic regression with the covariate age.

2.3. Similar CpG-Specific Methylation in Metastatic Primary Tumor Tissues and
Metastatic Tissues

Whether and to what extent DNA-methylation is similar in metastatic primary can-
cers and distant metastatic tissue samples is an important question for both the basic
understanding of changes in cells escaping the primary cancer and translational diagnostic
approaches aimed at predicting or detecting metastatic alterations in RCC. In addition to
the NKX6-2 findings above and recently published analogous results identifying gene-wise
averaged methylation in INA, NHLH2, and THBS4 that are associated with the metastatic
potential of tissues, we analyzed whether a similarity in the methylation in these four genes
is observed when evaluating CpG-specific alterations [20]. First, CpG-specific methylation
was analyzed in bivariate logistic regression comparing M0 and Mtx tissues. The forest
plot of odds ratios (ORs) showed that all loci of the four candidate genes appeared to be
associated with increased methylation and increased risk of metastatic tissue classification,
providing potential information for molecular detection of the metastatic state (Figure S1).
Moreover, CpG-site specific comparisons of methylation in M0 and M+ tissues revealed
significant differences in 9 of 16 CpG sites (56%), but no effect of the covariate age (Table S3).

To investigate whether the combined methylation information from all measured loci
allows discrimination of tissue samples with different metastatic potential, we performed
unsupervised clustering analysis of all primary tumors and metastatic tissue samples,
revealing two stable clusters. Cluster 2 included samples of low to medium average
methylation over all CpG sites (Figure 5a), whereas cluster 1 exhibited medium to high
average methylation, and a large part comprised metastases (Figure 5a, orange boxes) or
metastasized primary tumor tissues (Figure 5a, red boxes). In contrast, cluster 2 presented
a mixture of localized primary tumors (Figure 5a, blue boxes) and M+ or Mtx tissues
(Figure 5a, orange and red boxes). Moreover, it seems obvious that some cases had few
differences in individual CpG methylation of M+ and Mtx tissue samples. This obser-
vation is supported by statistical multidimensional analysis (MDA, Figure 5b) and PCA
(Figure 5c). Both methods indicate that a large portion of M+ and Mtx samples fell into
widely overlapping areas, with the exception of two outlier Mtx samples.



Int. J. Mol. Sci. 2022, 23, 11190 8 of 16

Figure 5. Similarity of INA, NHLH2, NKX6-2, and THBS4 CpG methylation patterns in metastasized
primary tumors and metastatic renal tissues. (a) Heat map of unsupervised partitioning of CpG site-
specific methylation in localized tumor, metastasized primary tumor, and metastatic tissue samples.
Rows show patient/sample-specific relative methylation data with the specified color-coding. The
two patient clusters (1,2) shown were obtained by k-means partitioning and consensus clustering
with 100-fold bootstrapped resampling. Columns present CpG site-specific methylation data for
the indicated genes. The type of analyzed tissue is indicated in the middle heatmap, including
localized primary tumors (M0, blue), primary metastatic tumors (M+, orange), and metastatic tissue
(Mtx, red), and the right heatmap shows the per sample (row-wise) average methylation (mean M).
(b) Multi-dimensional scaling analysis of metastatic primary cancer (blue solid circles) and metastatic
tissue samples (red solid triangles). (c) Principal component analysis of metastatic primary cancer
(blue solid circles) and metastatic tissue samples (red solid triangles).

2.4. Development and Evaluation of a RMAMS

Considering that statistical analysis of the similarities in M+ and Mtx tissues demon-
strated considerable congruence in the methylation of the INA, NKX6-2, NHLH2, and
THBS4 loci, we asked whether this could be exploited for molecular identification of the
metastatic state of tissue samples. Statistical learning using a random forest classification
model demonstrated that, following training of the model and test cohort, a statistically
untrained independent subset of M0 and Mtx tissues could be diagnosed with high average
diagnostic efficiency, as indicated by ROC-AUC analysis.

A 1000-fold repetition using random subsets for training and test cohorts demonstrated
a distribution of the resulting ROC-AUC values as shown in the box plot in Figure 6a. The
median AUC was 0.86 for the comparison of M0 vs. Mtx. Notably, both the distribution and
median AUC showed no significant changes when increasing the number of repetitions to a
maximum value of 5000 (data not shown). An exemplary ROC curve analysis showing the
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results of a single random data split matching the median AUC value of 0.86 for detection
of Mtx tissues in all random runs for an unknown test cohort is presented in Figure 6b.
In this particular permutation, 46 cases were classified, showing 20 true positives, 27 true
negatives, 5 false positives, and 4 false negatives (sensitivity = 0.83, specificity = 0.77).
These values corresponded to a positive likelihood ratio (PLR) of 3.67, a negative likelihood
ratio (NLR) of 0.22, and a diagnostic odds ratio of 17, indicating good diagnostic efficiency
of the random forest classifier, overall. Evaluation of the complete random data set for a
surrogate confidence interval demonstrated that 95% of ROC-AUC values fell within the
interval of 0.73–0.94, corresponding to p-values of 1.7 × 10−8–7.5 × 10−3.

Figure 6. Renal metastasis associated methylation signature (RMAMS) and detection of metastatic
primary cancer. (a) Box plot analysis of the distributions of ROC-AUC values following 1000 random
splits of training and test cohorts and random forest classification analysis for detection of metastatic
tissues. (b) Exemplary ROC analysis for RMAMS detection of metastatic tissues exhibiting median
ROC-AUC of random runs shown in (a). (c) Bar plot of variables of importance analyses of the
random forest classification for the detection of metastatic tissues following 1000 random splits into
training and test cohorts. Data are presented as mean and standard deviation (error bars). The vertical
line shows the median importance.

The analysis of variable importance was also carried out for the complete random data
set of 1000 permutations and showed that the methylation information for at least one of
the CpG sites of each analyzed gene contributed above median importance to the random
forest classification model, also pointing to a possible prominent role of NKX6-2 R2 CpG
sites in classification (Figure 6c). Interestingly, additional evaluation of the random forest
classifier by predicting tissue classes in another independent test cohort consisting of M0
and M+ tissues also demonstrated diagnostic informativity in the ROC-AUC analysis, with
a median AUC of 0.71 (95% of ROC-AUC = 0.69–0.73, p = 3.410−4–2.7 × 10−3). Notably,
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application of the classifier for the discrimination of M0 and M+ samples (i.e., a classification
task the classifier was not trained for) revealed a stable and narrow distribution of AUC
values (Figure 6a, M0/M+).

3. Discussion

The understanding and prediction of metastasis of primary cancers, such as RCC, is
of great interest considering the potential implications for the development of molecular
therapeutic options, molecular diagnostics and prognostics, as well as the stratification
of patients for individualized and/or adjuvant treatments. Therefore, molecular-based
improvement of classical clinicopathological selection of patients for modern therapies
could both increase the proportion of those who would likely benefit from neoadjuvant
or adjuvant strategies, and reduce therapy-associated toxicity by avoiding medication in
unselected patients.

To identify candidate loci for metastasis-specific DNA hypermethylation, we used
in silico analysis of the KIRC data published by the TCGA consortium and subsequent
validation using primary RCC and RCC metastases tissue cohorts. Analogous to previous
results revealing an association of methylation in INA, NHLH2, and THBS4 with the
metastatic state of tissues [20], we analyzed the relevance of methylation in NKX6-2 to RCC
metastasis and whether combined application of CpG-based methylation information for
the four genes provides information that improves the detection of metastatic tissues or
metastasized primary cancers.

DNA methylation of NKX6-2 has been reported to be associated with aggressive RCC
as part of a methylation signature for the detection of bladder cancer and to be a target of
hypermethylation in other tumor entities [33–36].

Thus, both our biometrical analysis identifying candidate CpG loci in three regions of
NKX6-2 as being among the top 30 candidates for association with RCC metastasis, and the
detection of frequent hypermethylation in tumor cell models representing frequent human
tumor entities, are in line with previously published data and point to a broader relevance
of alterations in NKX6-2 methylation.

Analyses of primary RCC not only confirmed tumor-specific hypermethylation, but
demonstrated hypermethylation in a comparison of localized and metastasized primary
RCC, confirming the results of the in silico analysis of the KIRC data and providing an
explanation for previous findings of an association with aggressive cancers. These results
were obtained uniformly for each of the three investigated gene regions spanning a genomic
region including putative regulation of gene transcription and gene body sequences.

Our comparison of metastatic and localized primary RCC tissues revealed significant
hypermethylation of all three NKX6-2 regions, independently supporting the relevance
of NKX6-2 methylation in RCC metastasis. Therefore, the association of methylation and
metastatic disease progression suggests NKX6-2 as a promising candidate for subsequent
targeted functional analysis of RCC metastases.

Considering that the distributions of methylation values obtained for metastasized
primary tissues (M+) and metastatic tissue (Mtx) samples appeared to be similar, the
question was raised as to whether this characteristic would also be found when CpG-site-
specific methylation data are evaluated, and corresponding data for INA, NHLH2, and
THBS4, which were previously identified to be statistically associated with RCC metastasis,
are included.

Firstly, unsupervised clustering of CpG-specific methylation data for INA, NHLH2,
NKX6-2, and THBS4 (INNT) revealed the most stable outcome for k-means clustering using
two centroids. Visual inspection of clustering on the heatmap presentation of all tissue
samples revealed, on average, a highly methylated cluster with significant enrichment
of M+ and Mtx tissues. In contrast, the other, low-methylation cluster was made up of a
mixture of M0, M+, and Mtx tissues. However, roughly half of the analyzed tissues of this
cluster exhibited very low or missing signal for most of the measured CpG sites, indicating
that CpG-site methylation in INNT was not informative for approximately 20% of cases.
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Moreover, in both clusters, M+ and Mtx tissues were observed in direct neighborhood,
indicating a similarity in the methylation profiles of both types of tissue. This hypothesis
was supported by statistical MDS and PCA equally demonstrating a broad overlap of both
tissue types and underlining the similarity of M+ and Mtx samples with respect to the CpG
methylation profiles in INNT.

Therefore, we questioned whether the similarity in INNT methylation could be ex-
ploited for the definition of an RMAMS permitting detection of tissues with metastatic
behavior. Interestingly, statistical learning using the random forest algorithm of a random
training cohort of M0 and Mtx tissues allowed classification of the untrained test cohort
with a high and robust median diagnostic ROC-AUC value of 0.86 in 1000 random splits of
training and test data. Thus, information on the methylation of INNT can be statistically
learned and is sufficient for successful classification of a substantial portion of unknown
samples. Though random forest classification, as in many other modern statistical learning
methods, does not provide exact insight into the final model used for diagnostic decisions,
the minimum importance analyses of variables provided information about the most rele-
vant input variables for classification. Using the averaged importance data from all random
runs, it appeared that at least one CpG site in each of the analyzed genes belonged to the
“high informative” group of predictors, whereas superior informativity was likely obtained
from CpG sites in region 2 of NKX6-2 and all of the NHLH2 candidate sites in the statistical
decision model.

The second, independent evaluation of the classification model based on the prediction
of primary tissues for the state of distant metastasis assessed whether molecular similarity
between metastatic tissues and metastasized primary tumors allows differentiation in a
diagnostic set-up for which the statistical learner was not trained. This evaluation revealed
a significant discrimination between tissues with different metastatic potential, showing
a low variance of ROC-AUC values in the random runs. Thus, all of our unsupervised
and supervised statistical analyses provided strong evidence that M+ and Mtx tissues
have a similar pattern of methylation of CpG sites in INNT, allowing RMAMS-based
discrimination of samples with different metastatic potential.

Moreover, inspection of diagnostic parameters of RMAMS indicated that inclusion of
information on NKX6-2 CpG-based methylation improved the PLR and NLR achieved by
the INA, NHLH2, and THBS4 annotated CpG sites, further shifting diagnostic parameters
towards values that are characteristic of medical applications [37]. Although significant
discrimination of tissues with metastatic characteristics was achieved in both evaluation
experiments, ROC-AUC values showed that false positive or negative classifications occur.
On the one hand, false negative decisions have to be expected when inspecting the results
of an unsupervised cluster analysis showing that a subset of Mtx and M+ samples exhibited
very low or absent methylation for INNT CpG sites. However, under the assumption
that inclusion of further metastasis-associated candidate CpG sites should allow further
minimization of the proportion of yet undetectable (i.e., false negative) tissues, improved
diagnostic efficiency, such as observed after combining NKX6-2 data with our initial methy-
lation signature, should be achievable. On the other hand, assessment of the relevance of
false positive classifications revealed a current limitation of our study design.

As no clinical information about late onset of metastasis (metachronous metastasis)
in patients was available for the cohort under analysis, whether the false positive tissues
were candidates for an undetected or metachronous metastasis or represent a diagnostic
flaw, remains unclear. The first aspect would be of substantial clinical interest considering
that stratified patients could be subjected to (neo)adjuvant therapy using recent immune
checkpoint treatments with manageable side effects. Therefore, although our results likely
provide a basis for such molecular stratification, it is evident that appropriate study cohorts
are required to experimentally answer this unmet clinical need.

Methylation signatures for the detection of aggressive or high-risk RCC have been
suggested in pursuing different clinical endpoints. Wei et al. identified a five-CpG-site
methylation-based signature showing an association with overall patient survival inde-
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pendent of clinical parameters, whereas Joosten et al. concluded in her meta-analysis that
methylation in five genes can be combined with a clinical scoring system to predict cancer-
specific survival of patients [30,38]. Both studies concluded that methylation markers can
add prognostic information to routine clinicopathological parameters. Interestingly, three
genes of the five-gene-methylation signature, GATA5, LAD1, and NEFH, have been mutu-
ally confirmed despite variation in clinical endpoints, measurement of independent cohorts,
and application of different methods for the detection of methylation by different research
groups [26–28,38,39]. Thus, we assume that current development of methylation signatures
as a whole is still in the discovery phase as a result of more or less pronounced limitations
in discovery and evaluation cohort size and available clinical information. Nonetheless,
all of the signature data consistently indicate that the objective of methylation-based risk
assessment in RCC patients for personalized treatment can be achieved in principle, even if
the way there involves considerable effort to evaluate known and new information in a
uniform test cohort.

In conclusion, we demonstrated that CpG-based methylation information from INA,
NHLH2, NKX6-2, and THBS4 has similarities in renal metastatic and primary tissues based
on the clinical state of distant metastasis and can be used for statistical prediction of the
metastatic potential of renal tissues. Therefore, CpG-based methylation is a candidate for
molecular stratification of high-risk patients who will likely benefit from (neo)adjuvant
therapy options.

4. Material and Methods
4.1. Study Design

To identify metastasis-associated candidate loci, we used an in silico analysis of
level 3 data from the TCGA KIRC HM450k methylation dataset using statistical software
R version 3.6.1 as described previously [9,20,40] (Figure 1A). First, gene-wise averaged
CpG site-relative methylation values were used to analyze NKX6-2 methylation in vari-
ous human cell line models and tumor-specific hypermethylation, metastasis-associated
hypermethylation in primary cancers, and metastatic tissue-specific hypermethylation
(Figure 1B). To investigate the similarities in DNA methylation in metastasized primary
tumor (M+) and metastatic tissue (Mtx) samples, we compared CpG-specific methyla-
tion of NKX6-2 and previously published candidate loci of INA, NHLH2, and THBS4
exhibiting gene-wise averaged methylation values associated with metastatic potential
(Figure 1C) [20]. Randomly selected subsets of primary tumor tissues without distant
metastasis (M0) and M+, as well as Mtx, samples were used for statistical learning of a renal
metastasis associated methylation signature (RMAMS) and evaluated in two independent
test cohorts (Figure 1D).

4.2. Study Cohort

Characteristics of the patients subjected to methylation analysis of NKX6-2 are given
in Table S1. Methylation analyses for all CpG sites in the four candidate genes were
carried out in a maximum of 189 RCC tumor tissues, 154 paired tumor adjacent normal
tissues (adNs), and 194 metastases from 95 patients with metastatic RCC disease. Patient
characteristics in regard to the INA, NHLH2, and THBS4 genes, description of the common
metastatic tissue cohort and tissue sampling, TNM classification, grading, and tissue
treatment were described previously [20]. Ethical approval was obtained from the ethical
boards of Eberhard Karls University Tübingen and Hanover Medical School (no. 128/2003V
and 1213-2011; approved 14 October 2011). Written informed consent was obtained from
all patients. The study was performed in accordance with the Helsinki Declaration.

4.3. Nucleic Acid Extraction, DNA Bisulfite Conversion, and DNA Methylation Analysis

Histological estimation of tumor cell content, DNA isolation from frozen sections
and formalin-fixed paraffin-embedded tissue sample punches, and bisulfite conversion
of DNA were achieved as reported elsewhere [15,24]. DNA methylation analyses were
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carried out by pyrosequencing. PCR reactions and pyrosequencing template preparation
were performed as described previously [15,23]. NKX6-2 pyrosequencing assays were
designed by PyroMark Assay Design 2.0 software (Qiagen, Hilden, Germany) and the
hg19 genome assembly as provided by the UCSC table browser. Primer sequences, an-
nealing temperatures, and genomic regions are presented in Table S2. Detailed CpG-site
information for biometrical candidate sites and loci covered by pyrosequencing analysis
and used for subsequent statistical evaluation are summarized in Table 1. The genomic
context of NKX6-2, annotated HM450K CpG sites, candidate loci, and sites covered by the
pyrosequencing assay are presented in Figure 2.

4.4. Statistical Analysis

All statistical analyses were performed in R version 3.6.1 software, R-Studio®, and
program libraries as specified below [40,41]. Statistical tissue group comparisons were
carried out using either gene-wise aggregated methylation values obtained by calculating
the corresponding means of CpG-site-specific methylation values or loci-specific methy-
lation values, as summarized in Figure 1. Tumor-specific hypermethylation of paired
samples was evaluated by the two-sided paired t-test, whereas independent group compar-
isons to demonstrate the association of methylation and metastatic state were performed
by bivariate logistic regression models with age as the covariate. Multiple metastatic
tissues were evaluated following patient-wise aggregation and the calculation of mean
methylation values.

Unsupervised statistical classification analyses of primary tumor and metastatic tissue
samples was carried out by use of loci-specific methylation, including 34 CpG sites anno-
tated to the six candidate regions of INA (7 sites), NHLH2 (4 sites), NKX6-2 (16 sites), and
THBS4 (7 sites). Missing data for unsupervised clustering analysis were imputed using
the mice package for R [42]. K-means clustering with two clusters was identified as the
most stable clustering method using Jaccard indices [43]. Heatmap analyses showed con-
sensus clusters after 100 runs using bootstrapped resampling [44]. Similarities in the DNA
methylation observed in primary tumors showing distant metastasis and independent
metastatic tissue samples were analyzed by multi-dimensional scaling (MDS) and principal
component analysis (PCA).

Supervised classification analysis was performed by applying the tidymodels frame-
work for random forest classification without optimizing model parameters and applying
analysis of variable importance [45,46]. A total of 1000 runs for random splits of training
and test cohorts were carried out. To assess the diagnostic efficiency of the random forest
model, receiver operator characteristic (ROC) curve analysis of the two independent test
cohort classifications was performed for each random run. The distribution of the results
of the receiver operator characteristics and area under curve (ROC-AUC) analyses was
summarized as a box plot, and one representative ROC-AUC plot is presented. Mann–
Whitney U statistics were used to estimate the significance of the area under the curve
being different from the null hypothesis.
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