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Abstract

:

The use of tumor markers aids in the early detection of cancer recurrence and prognosis. There is a hope that they might also be useful in screening tests for the early detection of cancer. Here, the question of finding ideal tumor markers, which should be sensitive, specific, and reliable, is an acute issue. Human plasma is one of the most popular samples as it is commonly collected in the clinic and provides noninvasive, rapid analysis for any type of disease including cancer. Many efforts have been applied in searching for “ideal” tumor markers, digging very deep into plasma proteomes. The situation in this area can be improved in two ways—by attempting to find an ideal single tumor marker or by generating panels of different markers. In both cases, proteomics certainly plays a major role. There is a line of evidence that the most abundant, so-called “classical plasma proteins”, may be used to generate a tumor biomarker profile. To be comprehensive these profiles should have information not only about protein levels but also proteoform distribution for each protein. Initially, the profile of these proteins in norm should be generated. In our work, we collected bibliographic information about the connection of cancers with levels of “classical plasma proteins”. Additionally, we presented the proteoform profiles (2DE patterns) of these proteins in norm generated by two-dimensional electrophoresis with mass spectrometry and immunodetection. As a next step, similar profiles representing protein perturbations in plasma produced in the case of different cancers will be generated. Additionally, based on this information, different test systems can be developed.
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1. Introduction


In a broad sense, tumor biomarkers are components that are either produced directly or indirectly because of a tumor. Moreover, these biomarkers can be common cellular products that are overproduced by cancer cells or the products of genes that are expressed only during malignant transformation. Thus, a tumor marker that is present in significant quantities indicates the presence of cancer. The marker can be present inside the tumor or enter the bloodstream [1,2]. This point is fundamentally important, as it allows the noninvasive examination and treatment of patients with various malignant neoplasms. The list of biochemical tumor markers known today is large [2]. Although some of these biomarkers have been successfully used in treatment, none of them fully satisfy the so-called “ideal marker”, which should be highly sensitive, specific, reliable with high predictive value, and correlate with the stages of tumor development [3].



Therefore, the search for new markers continues. Here, multi-omics technologies such as genomics, transcriptomics, and metabolomics are very important, but proteomics plays a central role since tumor biomarkers are mostly proteins. From a proteomic point of view, the search is based on a comparative analysis of proteomes. These proteomes are from body fluids (blood plasma, cerebrospinal fluid, saliva, urine, etc.) or tissues. Here, human plasma is one of the most popular clinical samples as it provides noninvasive, rapid analysis for any type of disease. A special human plasma proteome project (HPPP) project was initiated in 2002 (https://www.hupo.org/plasma-proteome-project accessed on 10 September 2022). Now, this initiative has achieved great success in plasma protein analysis (http://plasmaproteomedatabase.org/index.html accessed on 10 September 2022) [4,5]. One of the main advantages of using plasma samples is that only a minimally invasive assay such as a routine blood test analysis is required. To the greatest extent, this certainly concerns the hematopoietic organs (for instance, the major human plasma proteins are synthesized mostly in the liver), but also applies to other tissues, and even the brain, which is separated by the blood–brain barrier. It is expected that the blood plasma proteome should reflect, to varying degrees, changes in cellular proteomes caused by diseases. In recent years, biomarker selection guidelines have been developed [6,7,8,9,10]. Here, the classical proteomic approaches are used: two-dimensional electrophoresis (2DE), immunodetection, and mass spectrometry (MS), which have many methodological options that allow highly productive analysis individually or together in different combinations. Electrophoretic separation of plasma proteins offers a valuable diagnostic tool, as well as a way to monitor clinical progress [11]. MS measures, with high accuracy, the masses of peptides obtained by specific hydrolysis of proteins and is very specific. This approach was applied for detecting ovarian cancer (OC) based on just MS-spectra [12]. In addition, MS-based proteomics can detect and quantify protein variants—proteoforms [13]. Ideally, MS-based proteomics can analyze a whole proteome [14,15,16]. A rapid, robust, and reproducible shotgun plasma proteomics workflow was developed to produce “plasma proteome profiles” [14,17].



Accordingly, there are several directions for proteomics to develop ideal oncomarkers. First, we can go deep—find highly specific proteoforms/oncomarkers secreted by a tumor in low abundancy. Second, go wide—select, and analyze a panel of multiple proteins/oncomarkers. Third, combine these approaches. There are already some examples of generation from such panels [18]. This strategy can be applied to solid or liquid biopsies depending on the real situation. Here, the question arises about how to select these oncomarkers, as the concentration range of putative oncomarkers in plasma is very wide. The plasma proteome is the most complete version of the whole human proteome. In addition to the “classical plasma proteins”, it contains tissue proteins plus numerous individual immunoglobulins [19,20]. In clinics, a lot of information about the health state is obtained by analysis of blood proteins. Accordingly, in diagnosis and therapeutic monitoring, human plasma proteome analysis is a promising solution. The major protein, albumin, accounts for ~50% of the mass of all proteins. Nine proteins (IgG, apolipoprotein A1, apolipoprotein A2, transferrin, fibrinogen, haptoglobin, alpha1-antitrypsin, transthyretin) make up 40%, another 12 make up the next 9%, and the rest only 1%. Accordingly, it is common practice to remove the most abundant proteins (deplete) before deep proteomics analysis of plasma [21].



Two-dimensional electrophoresis analysis of human plasma proteins has a long history, where, possibly, the input of L. Anderson and N.G. Anderson is most impressive [22,23,24]. There are many publications where the 2DE image of plasma proteins was used as a specific profile for testing the cancer-related changes in the human body [25,26,27,28,29]. However, if we are going to decipher the whole panel of plasma proteins as a combined tumor biomarker, we need to obtain reliable data about every protein in connection to its response during the malignancy process. Previously, we started to collect information about the proteoform profiles of different cellular proteins into a database “2DE pattern” using our original approaches [30]. These approaches are time consuming and labor intensive but allow the presentation of panoramic data about different proteoforms and could be very useful in biomarker studies. Here, as a next step in searching for specific oncomarkers, we produced 2DE profiles for the human plasma proteins. The most abundant, “classical plasma proteins” were selected as they are detected reliably by common proteomics methods.




2. Results


In our study, using classical 2DE, sectional 2DE, and semi-virtual 2DE in combination with liquid chromatography–electrospray ionization tandem mass spectrometry (LC ESI-MS/MS), we generated 2DE patterns for the most abundant plasma proteins. In Figure 1, these 2DE images of plasma proteins are presented. The 2DE patterns of more than 100 reliable and confidently detected sets (Supplementary Tables S1 and S2) are presented in Supplementary Figure S1. We also collected data from the literature about the possibilities of using these plasma proteins as cancer biomarkers (Table 1) [20,31]. The detailed information about these proteins and the 2DE patterns of plasma proteins in norm generated in our experiments are described below and in the Supplementary File.



2.1. ALPHA-1-ACID GLYCOPROTEIN 1 (A1AG1_HUMAN)


The two-dimensional electrophoresis pattern of AGP-1 represents a chain of spots in the pI-range from 3 to 5 (Supplementary Figure S1). This pattern is well-represented in the SWISS-2DPAGE (pI/Mw: 4.11–4.29/43–46,000) [22]. Such a pattern is a result of heavy glycosylation (82 N-linked glycans at 6 sites), phosphorylation (2 sites), acetylation (2 sites), ubiquitylation (1 site) (https://www.uniprot.org/uniprot/P02763 accessed on 10 September 2022).




2.2. ALPHA-1-ACID GLYCOPROTEIN 2 (A1AG2_HUMAN)


The two-dimensional electrophoresis pattern of AGP-2 is very similar to AGP-1 (Supplementary Figure S1) and in SWISS-2DPAGE is overlapped with AGP-1 pattern [22]. AGP-2 can be glycosylated (99 N-linked glycans at 7 sites) and acetylated (1 site). (https://www.uniprot.org/uniprot/P19652 accessed on 10 September 2022).




2.3. ALPHA-1-ANTITRYPSIN (A1AT_HUMAN)


The two-dimensional electrophoresis pattern of Serpin A1 represents a chain of spots in the pI-range 4.5–5.1 (Supplementary Figure S1) [265] that is a result of multiple N-linked glycosylations (112 N-linked glycans at 5 sites, 5 O-linked glycans at 6 sites), phosphorylation (13 sites), and acetylation (17 sites) (https://www.phosphosite.org/ accessed on 10 September 2022) [266]. Accordingly, in SWISS-2DPAGE, 22 spots of serpin A1 are present (pI/Mw: 4.87–5.10/48–108,000) [22].




2.4. ALPHA-1B GLYCOPROTEIN (A1BG_HUMAN)


The two-dimensional electrophoresis pattern of alpha-1-B glycoprotein represents a long chain of spots in the pI-range 4–6 and Mw ~ 54,000 (Supplementary Figure S1) that is a result of heavy glycosylation (24 N-linked glycans at 4 sites, 2 O-linked glycans at 1 site) and phosphorylation (1 site) (https://glyconnect.expasy.org/browser/proteins/780 accessed on 10 September 2022). In SWISS-2DPAGE, alpha-1-B glycoprotein is represented as a chain of six spots (pI/Mw: 4.99–5.25/73–76,000) [22].




2.5. ALPHA-2-MACROGLOBULIN (A2MG_HUMAN)


The two-dimensional electrophoresis pattern of alpha-2-M represents a chain of heavy Mw spots (mostly in the pI-range 5.8–6.3) (Supplementary Figure S1). This pattern is also well-represented in the SWISS-2DPAGE https://world-2dpage.expasy.org/ accessed on 10 September 2022 [22]. Alpha-2-M has eight sites of O-GalNAc and eight sites of N-GlcNAc (https://glygen.org/protein/P01023#glycosylation accessed on 10 September 2022).




2.6. ALPHA-2-ANTIPLASMIN (A2AP_HUMAN)


The two-dimensional electrophoresis pattern of α2AP represents a chain of spots in the pI-range 4–6 with Mw ~ 50,000 (Supplementary Figure S1) that is a result of glycosylation (4 N-linked glycans at 1 site, 3 O-linked glycans at 4 sites), phosphorylation (7 sites), and ubiquitylation (2 sites) (https://glygen.org/protein/P08697#glycosylation accessed on 10 September 2022). In SWISS-2DPAGE, alpha-2-antiplasmin is represented as a chain of seven spots (pI/Mw: 4.87–5.17/66–74,000).




2.7. LEUCINE-RICH ALPHA-2-GLYCOPROTEIN (A2GL_HUMAN)


The two-dimensional electrophoresis pattern of LRG1 represents a chain of spots in the pI-range 3.5–5.0 with Mw ~ 40,000–50,000 (Supplementary Figure S1). This pattern is well-represented in the SWISS-2DPAGE https://world-2dpage.expasy.org/ accessed on 10 September 2022 and has a characteristic for multiple glycosylation profiles, where acidic spots have higher Mw [22]. LRG1 has at least six sites of glycosylation: one is O-GalNAc and five are N-GlcNAc (https://www.uniprot.org/uniprot/P02750 accessed on 10 September 2022).




2.8. ALPHA-1-ANTICHYMOTRYPSIN (AACT_HUMAN)


The two-dimensional electrophoresis pattern of ACT represents a chain of spots in the pI-range 4.0–5.0 and Mw 50–60,000 (Supplementary Figure S1). This pattern is also well-represented in the SWISS-2DPAGE, where two chains (20 spots) of both ACT forms are presented [22]. ACT has seven sites of N-GlcNAc and four sites of O-GalNAc (https://glygen.org/protein/P01011#glycosylation accessed on 10 September 2022).




2.9. ADIPONECTIN (ADIPO_HUMAN)


The two-dimensional electrophoresis pattern of adiponectin represents a chain of spots in the pI-range 5.0–5.5 and Mw 26,000 (Supplementary Figure S1). There are six sites of O-linked glycosylation and two sites of phosphorylation in adiponectin (https://glygen.org/protein/Q15848#glycosylation accessed on 10 September 2022).




2.10. AFAMIN (AFAM_HUMAN)


The two-dimensional electrophoresis pattern of adiponectin represents a chain of spots in the pI-range 4.5–6.0 and Mw ~ 70,000 (Supplementary Figure S1). There are six sites of N-linked glycosylation in afamin, and more than 90% of the glycans are sialylated (https://glygen.org/protein/P43652#glycosylation accessed on 10 September 2022).




2.11. ALBUMIN (ALBU_HUMAN)


The two-dimensional electrophoresis pattern of albumin represents a chain of spots in the pI-range 5.5–6.5 and Mw ~ 70,000 (Supplementary Figure S1). Its pattern is also well-represented in the SWISS-2DPAGE [22]. Albumin can be modified by N-linked glycans at one site, 7 O-linked glycans at 11 sites, phosphorylated at multiple sites (at least 15), and acetylated (1 site) (https://glygen.org/protein/P02768#glycosylation accessed on 10 September 2022).




2.12. PROTEIN AMBP (AMBP_HUMAN)


The two-dimensional electrophoresis pattern of AMBP represents two groups of spots in the pI-range 4.0–6.5: alpha-1-microglobulin with Mw ~ 26,000 and inter-alpha-trypsin inhibitor light chain/bikunin that is assembled in a high Mw complex by a chondroitin-like glycosaminoglycan (GAG) cross-linking with Mw 120,000 (Supplementary Figure S1). In the SWISS-2DPAGE, AMBP is represented only by the chain of three alpha-1-microglobulin spots. AMBP can be glycosylated (31 N-Linked glycans at 2 sites, 7 O-Linked glycans at 3 sites), phosphorylated (3 sites), and acetylated (1 site) (https://www.phosphosite.org/ accessed on 10 September 2022).




2.13. ANGIOTENSINOGEN (ANGT_HUMAN)


The two-dimensional electrophoresis pattern of angiotensinogen represents a chain of spots in the pI-range 4.0–6.4 and Mw ~ 50,000 (Supplementary Figure S1). In the SWISS-2DPAGE, angiotensinogen is represented by one spot (pI/Mw: 5.07/58,973). It was reported that there were 20 N-linked glycans at 3 sites and 1 O-linked glycan (1 site) (https://glygen.org/protein/P01019#glycosylation accessed on 10 September 2022).




2.14. ANTITHROMBIN-III (ANT3_HUMAN)


The two-dimensional electrophoresis pattern of ATIII represents a chain of eight spots in the pI-range 4.5–6.0 and Mw ~ 50,000 (Supplementary Figure S1). In the SWISS-2DPAGE, only two spots are presented (pI/Mw: 5.20/58,973 and 5.27/58,653) for ATIII [22]. The protein can be glycosylated (24 N-linked glycans at 4 sites, 2 O-linked glycans at 1 site), phosphorylated (9 sites), and ubiquitinated (1 site) (https://www.phosphosite.org/ accessed on 10 September 2022).




2.15. APOLIPOPROTEIN A-I (APOA1_HUMAN)


The two-dimensional electrophoresis pattern of apoA-I represents a chain of spots in the pI-range 4.5–6.5 and Mw ~ 26,000 (Supplementary Figure S1). In the SWISS-2DPAGE, nine spots are presented (chain of five spots pI/Mw: 4.99–5.48/~23,000 and four spots with Mw ~ 8000–9000) [22]. The protein can be heavily phosphorylated (13 sites), acetylated (13 sites), ubiquitinated (7 sites), succinylated (3 sites), or glycosylated (2 sites) (https://www.phosphosite.org/ accessed on 10 September 2022).




2.16. APOLIPOPROTEIN A-II (APOA2_HUMAN)


The two-dimensional electrophoresis pattern of apoA-II represents a chain of spots in the pI-range 4.5–6.0 and Mw ~ 9000 (Supplementary Figure S1). In the SWISS-2DPAGE, two spots are presented (pI/Mw: 4.74/12,520 and 4.71/7250) [22]. ApoA-II can be glycosylated (3 O-linked glycans at 3 sites), phosphorylated (7 sites), acetylated (1 site), or succinylated (1 site).




2.17. APOLIPOPROTEIN A-IV (APOA4_HUMAN)


The two-dimensional electrophoresis pattern of apoA-IV represents a chain of spots in the pI-range 4.5–6.0 and Mw ~ 40,000 (Supplementary Figure S1). In the SWISS-2DPAGE, six spots are presented (pI/Mw: 5.05–5.10/~43,000 (3 spots), 5.11/21,945, and 4.87–4.97/9–10,000 (3 spots)). ApoA-IV can be glycosylated (1 O-linked glycan at 1 site), phosphorylated (7 sites), acetylated (9 site), or ubiquitinated (1 site) (https://www.phosphosite.org/ accessed on 10 September 2022).




2.18. APOLIPOPROTEIN B-100 (APOB_HUMAN)


The two-dimensional electrophoresis pattern of apo B-100 represents a long chain of spots in the pI-range 3.5–7.5 and heavy Mw > 120,000 (Supplementary Figure S1). Apo B-100 can be glycosylated (28 sites, 82 N-linked glycans at 16 sites, 1 O-linked glycan at 7 sites), phosphorylated (43 sites), acetylated (4 sites), or ubiquitinated (8 sites) (https://www.phosphosite.org/ accessed on 10 September 2022).




2.19. APOLIPOPROTEIN C-I (APOC1_HUMAN)


The two-dimensional electrophoresis pattern of apo-CI represents a chain of spots in the pI-range 7.8–8.5 and Mw ~ 6000 (Supplementary Figure S1). This protein can be acetylated (3 sites) and ubiquitinated (4 sites) (https://www.phosphosite.org/ accessed on 10 September 2022).




2.20. APOLIPOPROTEIN C-II (APOC2_HUMAN)


The two-dimensional electrophoresis pattern of apo-CII represents a chain of spots in the pI-range 4.8–5.2 and Mw ~ 8000 (Supplementary Figure S1). In the SWISS-2DPAGE, two spots for apo-CII are presented (pI/Mw: 4.51/9976 and 4.58/9248). This protein can be acetylated (5 sites), ubiquitinated (2 sites) (https://www.phosphosite.org/ accessed on 10 September 2022), and glycosylated (3 O-linked glycans at 4 sites) (https://www.glygen.org/protein/P02655 accessed on 10 September 2022).




2.21. APOLIPOPROTEIN C-III (APOC3_HUMAN)


The two-dimensional electrophoresis pattern of apoC-III represents a chain of spots in the pI-range 3.8–6.1 and Mw ~ 9000 (Supplementary Figure S1). In the SWISS-2DPAGE, only one spot for apoC-III is presented (pI/Mw: 4.63/8528). This protein can be phosphorylated (7 sites) acetylated (1 site), ubiquitinated (1 site) (https://www.phosphosite.org/ accessed on 10 September 2022), and glycosylated (4 O-linked glycans at 1 site) (https://www.glygen.org/protein/P02655 accessed on 10 September 2022).




2.22. APOLIPOPROTEIN D (APOD_HUMAN)


The two-dimensional electrophoresis pattern of apoD represents an unusual set of spots in the pI-range 3.5–6.5 and Mw from ~15,000 to ~26,000 and 80,000 (Supplementary Figure S1). In the SWISS-2DPAGE, a cluster of 12 spots for apoD is presented (pI/Mw: 4.44–4.78/27–32,000). ApoD can be heavily glycosylated (115 N-linked glycans at 2 sites, 1 O-linked glycan at 1 site) and phosphorylated (1 site) (https://www.uniprot.org/uniprotkb/P05090/entry accessed on 10 September 2022).




2.23. APOLIPOPROTEIN E (APOE_HUMAN)


The two-dimensional electrophoresis pattern of apoE represents a chain of spots in the pI-range 4.5–6.5 and Mw ~ 35,000 (Supplementary Figure S1). In the SWISS-2DPAGE, there is a chain of three spots (pI/Mw: 5.24–5.49/34–35,320). ApoE can be glycosylated (6 O-linked glycans at 6 sites), phosphorylated (9 sites), acetylated (1 site), and ubiquitinated (5 sites) (https://www.phosphosite.org/ accessed on 10 September 2022).




2.24. APOLIPOPROTEIN F (APOF_HUMAN)


The two-dimensional electrophoresis pattern of apo-F represents a set of spots in the pI-range 3.5–4.2 and Mw from ~15,000 to ~32,000 (Supplementary Figure S1). ApoF can be glycosylated (16 N-linked glycans at 3 sites, 6 O-linked glycans at 5 sites), phosphorylated (1 site), and ubiquitinated (2 sites) (https://www.phosphosite.org/ accessed on 10 September 2022).




2.25. BETA-2-GLYCOPROTEIN 1 (APOH_HUMAN)


The two-dimensional electrophoresis pattern of apo-H represents a chain of spots in the pI-range 6.2–8.4 and Mw ~ 52,000 (Supplementary Figure S1), which is much higher than the theoretical one because of heavy glycosylation (85 N-linked annotations at 4 sites and 3 O-linked annotations at 3 sites) (https://glygen.org/protein/P02749#glycosylation accessed on 10 September 2022).




2.26. APOLIPOPROTEIN M (APOM_HUMAN)


The two-dimensional electrophoresis pattern of apoM represents a chain of spots in the pI-range 4.5–6.5 and Mw ~ 22,000 (Supplementary Figure S1). There are 13 N-linked annotations at 1 site (N135) in apoM (https://glygen.org/protein/O95445#glycosylation accessed on 10 September 2022).




2.27. Complement System


The results of several studies suggest that changes in the complement system can not only promote an antitumor response but can also influence tumor development through proliferation, survival, angiogenesis, and invasiveness [267,268]. The presence of many complement components with different functions makes the study of this system very difficult [269]. In any case, it is becoming clear that complement activation stimulates carcinogenesis and protects against immune destruction, although it has long been believed that the complement system helps the body identify and eliminate transformed cells. Moreover, the complement is activated by different mechanisms in the case of different types of cancer, and the results of activation may be different for different types of cancer or over time for the same tumor [270,271,272].



2.27.1. C1R (C1R_HUMAN)


The two-dimensional electrophoresis pattern represents only a chain of spots of the complement C1r subcomponent in the pI-range 4.5–6.2 and Mw ~ 80,000 (Supplementary Figure S1) that corresponds to only a complement C1r subcomponent. The cleaved heavy and light chains were not detected. There are 25 N-linked glycosylation annotations at four sites and one phosphorylation site in the complement C1r subcomponent (https://glygen.org/protein/P00736#glycosylation accessed on 10 September 2022).




2.27.2. C1S (C1S_HUMAN)


The two-dimensional electrophoresis-pattern represents a chain of five spots of C1s in the pI-range from 4.0 to 4.9 and Mw ~ 80,000 (Supplementary Figure S1). The cleaved heavy and light chains were not detected. There are seven N-linked glycans at two sites (https://glygen.org/protein/P09871#glycosylation accessed on 10 September 2022).




2.27.3. COMPLEMENT C1qC (C1QC_HUMAN)


The two-dimensional electrophoresis pattern of C1q represents a long horizontal chain of spots in the pI-range 3.0–9.5 with Mw ~ 23,000 and a vertical chain of heavy complexes (Mw 23,000 and up) with pI ~ 9.0 (Supplementary Figure S1). It was reported there was only one O-linked glycosylation of C1q (https://glygen.org/protein/P02747#glycosylation accessed on 10 September 2022).




2.27.4. COMPLEMENT FACTOR I (CFAI_HUMAN)


The two-dimensional electrophoresis pattern of the complement factor I represents the chains of many spots in the pI-range 4.5–6.8 from Mw ~ 64,000 (complement factor I) to Mw ~ 30,000 (the complement factor I heavy and light chains) (Supplementary Figure S1). In the SWISS-2DPAGE, the complement factor I is represented only by one spot (pI/Mw: 5.03/37,900). There are 57 N-linked glycosylation annotations at 6 sites for the complement factor I (https://glygen.org/protein/P05156#glycosylation accessed on 10 September 2022).




2.27.5. COMPLEMENT FACTOR B (CFAB_HUMAN)


The two-dimensional electrophoresis pattern of the complement factor B represents the chains of spots in the pI-range 4.5–6.8 with Mw ~ 90,000 (Supplementary Figure S1). The cleaved heavy and light chains were not detected. In the SWISS-2DPAGE, the complement factor B is represented by a chain of six spots (pI 5.88–6.28, Mw ~ 100,000). There are 19 N-linked glycans (4 sites), and 3 O-linked glycans (3 sites) in the complement factor B (https://glygen.org/protein/P00751#glycosylation accessed on 10 September 2022).




2.27.6. COMPLEMENT FACTOR D (CFAD_HUMAN)


The two-dimensional electrophoresis pattern of the complement factor D represents two spots (pI ~8.0, Mw 25,000) (Supplementary Figure S1). The protein can be phosphorylated (2 sites), glycosylated (2 sites), ubiquitinated (2 sites), and methylated (1 site) (https://www.phosphosite.org accessed on 10 September 2022).




2.27.7. COMPLEMENT FACTOR H (CFAH_HUMAN)


The two-dimensional electrophoresis pattern of the complement factor D represents a long chain of spots in the pI-range 5.5–7 with Mw ~ 140,000 (Supplementary Figure S1). It was reported there were 62 N-linked glycans in 9 sites in the complement factor D (https://glygen.org/protein/P08603#glycosylation accessed on 10 September 2022).




2.27.8. COMPLEMENT C2 (CO2_HUMAN)


The two-dimensional electrophoresis pattern of the complement C2 represents a chain of spots in the pI-range 6–7 with Mw ~ 80,000 (Supplementary Figure S1). It was reported there were 33 N-linked glycosylations at 9 sites and one phosphorylation (S266) of the complement C2 (https://glygen.org/protein/P06681#glycosylation accessed on 10 September 2022).




2.27.9. COMPLEMENT C3 (CO3_HUMAN)


The two-dimensional electrophoresis pattern of the complement C3 represents a cluster of spots in the pI-range 3.5–7.5 and Mw from ~30,000 to 180,000 (Supplementary Figure S1). In the SWISS-2DPAGE, there are the complement C3 beta chain (5 spots with pI 6.81–6.98, Mw ~ 71,000) and the complement C3dg fragment (a spot with pI 4.84 and Mw 40,915). There are 50 N-linked glycans at 4 sites, 2 O-linked glycans at 2 sites, and 12 phosphorylation sites (https://glygen.org/protein/P01024#glycosylation accessed on 10 September 2022).




2.27.10. COMPLEMENT C4-A (CO4A_HUMAN)


The two-dimensional electrophoresis pattern of the complement C4-A represents a wide cluster of spots in the pI-range 3.0–10.0 and Mw from ~25,000 to 190,000 (Supplementary Figure S1). There are 35 N-linked glycans (4 sites), 6 O-linked glycans (4 sites), and 3 phosphoserine sites (https://glygen.org/protein/P0C0L4#glycosylation accessed on 10 September 2022).




2.27.11. COMPLEMENT C4-B (C4B) (CO4B_HUMAN)


The two-dimensional electrophoresis pattern of the complement C4-B represents a wide cluster of spots in the pI-range 3.0–10.0 and Mw from ~35,000 to 19,0000 (Supplementary Figure S1). In the SWISS-2DPAGE, only a complement C4 gamma chain (2 spots with pI/Mw: 6.41/31,942 and 6.54/31,735) was detected. It was reported there were 34 N-linked glycans (4 sites) and 1 O-linked glycan (1 site) in the complement C4-B (https://glygen.org/protein/P0C0L5#glycosylation accessed on 10 September 2022).




2.27.12. COMPLEMENT C5 (CO5_HUMAN)


The two-dimensional electrophoresis pattern of the complement C4-B represents a wide cluster of spots in the pI-range 5.0–6.8 and Mw ~ 70,000–190,000 (Supplementary Figure S1). It was reported there were eight N-linked glycans at three sites (https://glygen.org/protein/P01031#glycosylation accessed on 10 September 2022).




2.27.13. COMPLEMENT C6 (CO6_HUMAN)


The two-dimensional electrophoresis pattern of the complement C6 represents a chain of spots in the pI-range 4.0–6.5 and Mw ~ 100,000 (Supplementary Figure S1). It was reported there were 6 C-linked annotations at 6 sites, 12 N-linked annotations at 4 sites, 2 O-linked annotations at 2 sites (https://glygen.org/protein/P13671#glycosylation accessed on 10 September 2022), and 5 sites of phosphorylation (https://www.phosphosite.org/ accessed on 10 September 2022).




2.27.14. COMPLEMENT C7 (CO7_HUMAN)


The two-dimensional electrophoresis pattern of the complement C7 represents a chain of spots in the pI-range 4.5–6.5 and Mw ~ 100,000 (Supplementary Figure S1). It was reported there were three N-linked glycans at two sites and two O-linked glycans at one site (https://glygen.org/protein/P10643#glycosylation accessed on 10 September 2022).




2.27.15. COMPLEMENT C9 (CO9_HUMAN)


The two-dimensional electrophoresis pattern of the complement C9 represents a chain of spots in the pI-range 4.5–5.5 and Mw ~ 60,000 (Supplementary Figure S1). The protein can be glycosylated (10 N-linked glycans at 2 sites, 4 O-linked glycans at 5 sites), phosphorylated (10 sites), acetylated (1 site), and ubiquitinated (3 sites) (https://www.phosphosite.org/ accessed on 10 September 2022).





2.28. CARBONIC ANHYDRASE I (CAH1_HUMAN)


The two-dimensional electrophoresis pattern of CAB represents a chain of spots in the pI-range 5–7 and Mw ~ 28,000 (Supplementary Figure S1). It was reported there was glycosylation (2 O-linked at 2 sites) (https://glygen.org/protein/P00915#glycosylation accessed on 10 September 2022), phosphorylation (11 sites), acetylation (5 sites), and ubiquitylation (2 sites) (https://www.phosphosite.org/ accessed on 10 September 2022).




2.29. CORTICOSTEROID-BINDING GLOBULIN (CBG_HUMAN)


The two-dimensional electrophoresis pattern of CBG represents a chain of spots in the pI-range 3.7–5.1 and Mw ~ 50,000 (Supplementary Figure S1). It was reported there were 48 N-linked glycosylations at 6 sites and 2 O-linked glycosylations at 1 site (https://glygen.org/protein/P08185#glycosylation accessed on 10 September 2022).




2.30. CARBOXYPEPTIDASE N CATALYTIC CHAIN (CBPN_HUMAN)


The two-dimensional electrophoresis pattern of CBPN represents a chain of spots in the pI-range 4.5–7 and Mw ~ 50,000 (Supplementary Figure S1). It was reported there were 32 N-linked glycans at 5 sites and 2 O-linked glycans at 1 site https://glygen.org/protein/P08185#glycosylation accessed on 10 September 2022.




2.31. MONOCYTE DIFFERENTIATION ANTIGEN CD14 (CD14_HUMAN)


The two-dimensional electrophoresis pattern of CD14 represents a chain of spots in the pI-range 4.5–5.8 and Mw ~ 40,000 (Supplementary Figure S1). It was reported there were 26 N-linked glycans at 2 sites and 4 O-linked glycans at 3 sites (https://glygen.org/protein/P08571#glycosylation accessed on 10 September 2022).




2.32. CERULOPLASMIN (CERU_HUMAN)


The two-dimensional electrophoresis pattern of ceruloplasmin represents a chain of spots in the pI-range 4.0–6.2 and Mw ~ 120,000 (Supplementary Figure S1). In the SWISS-2DPAGE, 3 chains of 27 spots with pI 4.96–5.24 and Mw ~ 120–16,0000 are present. There are 237 N-linked annotations at 8 sites, 10 O-linked annotations at 7 sites of glycosylation, and 3 sites of phosphorylation for ceruloplasmin (https://glygen.org/protein/P00450#glycosylation accessed on 10 September 2022).




2.33. CHOLINESTERASE (CHLE_HUMAN)


The two-dimensional electrophoresis pattern of cholinesterase represents a chain of five spots in the pI-range 4.5–5.2 and Mw ~ 65,000 (Supplementary Figure S1). There are 34 N-linked annotations at 12 sites, one O-linked annotation for glycosylation, and phosphorylation at S226 for cholinesterase (https://glygen.org/protein/P06276#glycosylation accessed on 10 September 2022).




2.34. CLUSTERIN (CLUS_HUMAN)


The two-dimensional electrophoresis pattern of ceruloplasmin represents a chain of 18 spots in the pI-range 4.5–6.5 and Mw ~ 35,000 (Supplementary Figure S1). In the SWISS-2DPAGE, 17 spots with pI 4.73–5.07 and Mw ~ 35–39,000 are shown. Clusterin is heavily glycosylated (149 N-linked glycans at 6 sites, O-linked glycan at 1 site) and phosphorylated (4 sites) (https://glygen.org/protein/P10909#glycosylation accessed on 10 September 2022).




2.35. BETA-ALA-HIS DIPEPTIDASE (CNDP1_HUMAN)


The two-dimensional electrophoresis pattern of beta-Ala-His dipeptidase represents two spots around pI 5.0 and Mw ~ 54,000 (Supplementary Figure S1). It was reported there were 18 N-linked glycans at 1 site, 1 O-linked glycan at 2 sites, and phosphorylation at S219 (https://glygen.org/protein/Q96KN2#glycosylation accessed on 10 September 2022).




2.36. CARBOXYPEPTIDASE N SUBUNIT 2 (CPN2_HUMAN)


The two-dimensional electrophoresis pattern of carboxypeptidase N subunit 2 represents nine spots with pI 3.5–5.5 and Mw ~ 65,000 (Supplementary Figure S1). It is known there were 10 N-linked glycans at 3 sites in carboxypeptidase N subunit 2 (https://www.glygen.org/protein/P22792 accessed on 10 September 2022).




2.37. C-REACTIVE PROTEIN (CRP_HUMAN)


The two-dimensional electrophoresis pattern of CRP represents a single spot (pI/Mw: 5.2/24,000) (Supplementary Figure S1). In the SWISS-2DPAGE, a similar situation exists—a single spot (pI/Mw: 5.12/23,760). Thus far, it was reported there was only one PTM (a pyroglutamic acid, Q19) for CRP (https://www.uniprot.org/uniprotkb/P02741/entry accessed on 10 September 2022).




2.38. EXTRACELLULAR MATRIX PROTEIN I (ECM1_HUMAN)


The two-dimensional electrophoresis pattern of ECM1 represents a spot (pI/Mw: 6.0/60,000) (Supplementary Figure S1). It was reported there were 21 N-linked glycans at 4 sites, and 3 O-linked glycans at 6 sites (https://www.glygen.org/protein/Q16610 accessed on 10 September 2022).




2.39. FIBULIN-1 (FBLN1_HUMAN)


The two-dimensional electrophoresis pattern of FIBL-1 represents a chain of four spots (pI/Mw: 4.5–5.2/75,000) (Supplementary Figure S1). It was reported there were 10 N-linked glycans at two sites, one O-linked glycan, and one phosphorylation at S147 (https://www.glygen.org/protein/P23142 accessed on 10 September 2022).




2.40. FICOLIN-3 (FCN3_HUMAN)


The two-dimensional electrophoresis-pattern of ficolin-3 represents a chain of five spots (pI/Mw: 5.8–6.5/30,000) (Supplementary Figure S1). It was reported there were five N-linked annotation(s) at one site (https://www.glygen.org/protein/O75636 accessed on 10 September 2022).




2.41. ALPHA-2-HS-GLYCOPROTEIN (FETUA_HUMAN)


The two-dimensional electrophoresis-pattern of fetuin-A represents a set of proteoforms (pI/Mw: 3.7–6.3/~40,000-up) (Supplementary Figure S1). In the SWISS-2DPAGE, 15 spots (pI/Mw: 4.56–4.77/52–58,000) are shown. The protein is heavily glycosylated (126 N-linked annotations at 2 sites, 43 O-linked annotations at 14 sites) and phosphorylated (https://www.glygen.org/protein/P02765 accessed on 10 September 2022).




2.42. FETUIN-B (FETUB_HUMAN)


The two-dimensional electrophoresis pattern of fetuin-B represents a chain of proteoforms (pI/Mw: 5.0–6.3/50,000-up) (Supplementary Figure S1). The protein is heavily glycosylated (26 N-linked annotations at 3 sites, 8 O-linked annotation(s) at 6 sites) and phosphorylated (https://www.glygen.org/protein/Q9UGM5 accessed on 10 September 2022).




2.43. FIBRINOGEN ALPHA CHAIN (FIBA_HUMAN)


The two-dimensional electrophoresis pattern of FBA represents several sets of chains with pI 5.0–7.5 (Mw ~ 30–35,000, Mw ~ 64–83,000, Mw ~ 110,000 and up) (Supplementary Figure S1). In the SWISS-2DPAGE, a double chain of 19 spots (pI/Mw: 6.65–7.78/63–67,000) is presented [22]. The protein can be heavily glycosylated (12 N-linked annotations at 3 sites, 43 O-linked annotations at 34 sites) and phosphorylated (https://www.glygen.org/protein/P02671 accessed on 10 September 2022).




2.44. FIBRINOGEN BETA CHAIN (FIBB_HUMAN)


The two-dimensional electrophoresis-pattern of FBB represents a chain of spots (pI/Mw: 5.5–8.5/~52,000) (Supplementary Figure S1). In the SWISS-2DPAGE, a chain of four spots (pI/Mw: 6.1–6.55/55–56,000) is presented [22]. The protein can be glycosylated (52 N-linked annotations at 4 sites and 5 O-linked annotations at 3 sites) (https://www.glygen.org/protein/P02675 accessed on 10 September 2022).




2.45. FIBRINOGEN GAMMA CHAIN (FIBG_HUMAN)


The two-dimensional electrophoresis-pattern of FGG represents a chain of spots with pI 4.5–7 (Mw ~ 50,000) (Supplementary Figure S1). In the SWISS-2DPAGE, 3 chains of 13 spots (pI/Mw: 5.07–5.65/44–51,000) are presented [22]. The protein is glycosylated (39 N-linked annotations at 4 sites, 1 O-linked annotation at 1 site) and phosphorylated at S68 (https://www.glygen.org/protein/P02679 accessed on 10 September 2022).




2.46. FIBRONECTIN (FINC_HUMAN)


The two-dimensional electrophoresis pattern of fibronectin represents a chain of spots with pI 4.5–6.7 (Mw ~ 112,000 up) (Supplementary Figure S1). The protein is heavily glycosylated (265 N-linked annotations at 13 sites, 37 O-linked annotations at 25 sites) and phosphorylated (https://www.glygen.org/protein/P02751 accessed on 10 September 2022).




2.47. PLASMA GELSOLIN (GELS_HUMAN)


The two-dimensional electrophoresis pattern of gelsolin represents a chain of spots with pI 4.5–6.5 (Mw ~ 83,000) (Supplementary Figure S1). The protein can be heavily phosphorylated (25 sites), acetylated (12 sites), and ubiquitinated (10 sites) (https://www.phosphosite.org accessed on 10 September 2022).




2.48. GLUTATHION PEROXIDASE 3 (GPX3_HUMAN)


The two-dimensional electrophoresis pattern of this protein represents a chain of spots with pI 4.9–6.9 (Mw ~ 25,000) (Supplementary Figure S1). It is phosphorylated (4 sites) and acetylated (3 sites) (https://www.phosphosite.org/ accessed on 10 September 2022).




2.49. HEMOGLOBIN SUBUNIT ALPHA (HBA_HUMAN)


The two-dimensional electrophoresis pattern of this protein represents a chain of spots with pI 7.5–9 (Mw ~ 15,000) (Supplementary Figure S1). In the SWISS-2DPAGE, two spots (pI/Mw: 9.2/11,000, 8.9/11,000) are presented. The protein is glycosylated (3 O-linked annotations at 3 sites), glycated (6 sites) (https://www.glygen.org/protein/P69905 accessed on 10 September 2022), phosphorylated (17 sites), acetylated (4 sites), and ubiquitinated (8 sites) (https://www.phosphosite.org/ accessed on 10 September 2022).




2.50. HEMOGLOBIN SUBUNIT BETA (HBB_HUMAN)


The two-dimensional electrophoresis-pattern of this protein represents a chain of spots with pI 6.5–6.9 (Mw ~ 15,000) (Supplementary Figure S1). In the SWISS-2DPAGE, two spots (pI/Mw: 7/15,000, 6.9/15,000) are presented. The protein is glycosylated (4 O-linked annotations at 4 sites), glycated (6 sites), and phosphorylated (14 sites) (https://www.glygen.org/protein/P68871 accessed on 10 September 2022).




2.51. HEMOPEXIN (HEMO_HUMAN)


The two-dimensional electrophoresis pattern of this protein represents a chain of spots with pI 5–6.9 (Mw ~ 50,000) (Supplementary Figure S1). In the SWISS-2DPAGE, chains of five spots (pI 5.25–5.59/Mw ~ 72–77,000) and two spots (4.48/19,274, 4.56/18,289) are presented. The protein is glycosylated (184 N-linked annotations at 6 sites, 21 O-linked annotations at 6 sites (https://www.glygen.org/protein/P02790 accessed on 10 September 2022)).




2.52. HEPARIN COFACTOR 2 (HEP2_HUMAN)


The two-dimensional electrophoresis-pattern of this protein represents a chain of spots with pI 4.9–6.5 (Mw ~ 55,000) (Supplementary Figure S1). The protein is glycosylated (39 N-linked annotations at 3 sites, 13 O-linked annotations at 9 sites) and phosphorylated at S37 (https://www.glygen.org/protein/P05546 accessed on 10 September 2022).




2.53. HAPTOGLOBIN (HPT_HUMAN)


The two-dimensional electrophoresis pattern of Hp represents ~16 spots of beta chains with pI 4.8–6.0 (Mw ~ 40,000) and 3 spots of alpha 2 chain (Figure 2). In the SWISS-2DPAGE, a chain of 19 spots (pI 4.88–5.86/Mw ~ 40,000, beta chain), 3 spots (pI 5.68–6.37/Mw ~ 17,000, alpha 2 chain), and 2 spots (pI 5.13–5.37/Mw ~ 12,000, alpha 1 chain) are presented. Hp is heavily glycosylated (351 N-linked annotations at 4 sites, 1 O-linked annotations at 1 site) (https://www.glygen.org/protein/P00738 accessed on 10 September 2022).




2.54. HAPTOGLOBIN-RELATED PROTEIN (HPTR_HUMAN)


The two-dimensional electrophoresis pattern of this protein represents a chain of spots with pI 4.6–6.5 (Mw ~ 40,000) (Supplementary Figure S1). The protein is N-linked glycosylated (5 sites), acetylated (1 site), and ubiquitinated (2 sites) (https://www.phosphosite.org/ accessed on 10 September 2022).




2.55. HISTIDINE-RICH GLYCOPROTEIN (HRG_HUMAN)


The two-dimensional electrophoresis-pattern of this protein represents a chain of spots with pI 4.5–7.8 (Mw ~ 64,000) and spots around pI/Mw: 5.5/53,000 (Supplementary Figure S1). In the SWISS-2DPAGE, only a single spot (pI/Mw: 5.3/53,000) is present. The protein is glycosylated (44 N-linked glycans at 4 sites, 4 O-linked glycans at 3 sites) (https://www.glygen.org/protein/P04196 accessed on 10 September 2022).




2.56. PLASMA PROTEASE C1 INHIBITOR (IC1_HUMAN)


The two-dimensional electrophoresis pattern of this protein represents a long chain of spots with pI 3.2–5.2 (Mw ~ 64,000). The protein is heavily glycosylated (107 N-linked annotations at 8 sites, 33 O-linked annotations at 21 sites) (https://www.glygen.org/protein/P05155 accessed on 10 September 2022).




2.57. INTER-ALPHA-TRYPSIN INHIBITOR HEAVY CHAINS (ITIH1, ITIH2, ITIH3, ITIH4, ITIH5)


In our experiments, 2DE patterns of these proteins are presented by the chains of the precursor proteoforms and the mature ITIH1 (Supplementary Figure S1). The proteins are heavily glycosylated, phosphorylated, acetylated, and ubiquitinated (https://www.phosphosite.org/ accessed on 10 September 2022).




2.58. KALLISTATIN (KAIN_HUMAN)


In our experiments, the 2DE pattern of this protein is presented as a cluster of proteoforms around pI/Mw: 6–7/40–120,000 (Supplementary Figure S1). The protein is glycosylated (31 N-linked annotations at 4 sites) and phosphorylated (https://www.glygen.org/protein/P29622 accessed on 10 September 2022, https://www.phosphosite.org/ accessed on 10 September 2022.




2.59. KININOGEN 1 (KNG1_HUMAN)


The two-dimensional electrophoresis pattern of this protein represents multiple spots (pI 3.5–8.5, Mw ~ 35–64,000) (Supplementary Figure S1). In the SWISS-2DPAGE, only a single spot (pI/Mw: 6.48/7490) is present. The protein can be heavily glycosylated (159 N-linked annotations at 6 sites, 65 O-linked annotations at 26 sites) (https://www.glygen.org/protein/P01042 accessed on 10 September 2022), phosphorylated, acetylated, and ubiquitinated (https://www.phosphosite.org/ accessed on 10 September 2022).




2.60. PHOSPHATIDYLCHOLINE-STEROL ACYLTRANSFERASE (LCAT_HUMAN)


The two-dimensional electrophoresis pattern of this protein represents three spots (pI 4.0–4.8, Mw ~ 50,000) (Supplementary Figure S1). The protein is glycosylated (22 N-linked annotations at 5 sites, 3 O-linked annotations at 3 sites) (https://www.glygen.org/protein/P04180 accessed on 10 September 2022), phosphorylated, and ubiquitinated (https://www.phosphosite.org/ accessed on 10 September 2022).




2.61. LUMICAN (LUM_HUMAN)


The two-dimensional electrophoresis pattern of this protein represents chains of spots (pI 4.5–6.5, Mw ~ 52–83,000) (Supplementary Figure S1). The protein has multiple PTMs: (97 N-linked glycans at 4 sites, 2 O-linked glycans at 3 sites, phosphorylation (11 sites), and acetylation (8 sites) (https://www.uniprot.org/uniprotkb/P51884/entry accessed on 10 September 2022).




2.62. MANNOSE-BINDING PROTEIN C (MBL2_HUMAN)


The two-dimensional electrophoresis pattern of this protein represents just a single spot (pI/Mw: 5.3/26,000) (Supplementary Figure S1).




2.63. PIGMENT EPITHELIUM-DERIVED FACTOR (PEDF_HUMAN)


The two-dimensional electrophoresis-pattern of this protein represents a chain of spots (pI 4.5–6.5, Mw ~ 40–52,000) (Supplementary Figure S1). The protein is glycosylated (10 N-linked glycans at 1 site, 2 O-linked glycans at 5 sites), phosphorylated (10 sites), acetylated, and methylated (https://www.uniprot.org/uniprotkb/P36955/entry accessed on 10 September 2022).




2.64. N-ACETYLMURAMOYL-L-ALANINE AMIDASE (PGRP2_HUMAN)


The two-dimensional electrophoresis pattern of this protein represents a chain of spots (pI 5.5–6.8, Mw ~ 52–64,000) (Supplementary Figure S1). The protein is glycosylated (12 N-linked glycans at 3 sites, 4 O-linked glycans at 7 sites) and phosphorylated (4 sites) (https://www.uniprot.org/uniprotkb/Q96PD5/entry accessed on 10 September 2022).




2.65. PHOSPHATIDYLINOSITOL-GLYCAN-SPECIFIC PHOSPHOLIPASE D (PHLD_HUMAN)


The two-dimensional electrophoresis pattern of this protein represents a chain of spots (pI 4.2–5.6, Mw ~ 83–116,000) (Supplementary Figure S1). The protein is glycosylated (10 sites, 22 N-linked glycans at 4 sites), phosphorylated (5 sites), and acetylated (https://www.phosphosite.org/ accessed on 10 September 2022).




2.66. PLASMINOGEN (PLMN_HUMAN)


The two-dimensional electrophoresis pattern of this protein represents two chains of multiple spots (pI 3.3–4.1, Mw ~ 83–116,000) and (pI 6.7–8.5, Mw ~ 83–116,000) (Supplementary Figure S1). In the SWISS-2DPAGE, a single chain (7 spots) is present (pI 6.32–6.49, Mw ~ 112–116,000). The protein is glycosylated (54 N-linked glycans at 4 sites, 12 O-linked glycans at 12 sites) and phosphorylated (15 sites) (https://www.uniprot.org/uniprotkb/P00747/entry accessed on 10 September 2022).




2.67. PARAOXONASE (PON1_HUMAN)


The two-dimensional electrophoresis pattern of this protein represents a cluster of spots (pI 4.0–5.5, Mw ~ 35–52,000) (Supplementary Figure S1). In the SWISS-2DPAGE, two spots are presented (pI/Mw: 4.84/45,937 and 4.93/43,391). The protein is glycosylated (30 N-linked glycans at 3 sites), phosphorylated (3 sites), and acetylated (1 site) (https://www.uniprot.org/uniprotkb/P27169/entry accessed on 10 September 2022).




2.68. PROPERDIN (PROP_HUMAN)


The two-dimensional electrophoresis pattern of this protein represents two spots (pI/Mw: 8.5/52,000 and 8.7/52,000) (Supplementary Figure S1). The protein is glycosylated (15 C-linked annotations at 15 sites, 2 N-linked annotations at 1 site, 4 O-linked annotations at 4 sites).




2.69. VITAMIN K-DEPENDENT PROTEIN S (PROS_HUMAN)


The two-dimensional electrophoresis pattern of this protein represents a chain of spots (pI 3.5–4.5, Mw ~ 64–83,000) (Supplementary Figure S1). The protein is glycosylated (5 N-linked annotations at 3 sites, 4 O-linked annotations at 4 sites) and phosphorylated (8 sites) (https://www.uniprot.org/uniprotkb/P07225/entry accessed on 10 September 2022).




2.70. PLASMA RETINOL-BINDING PROTEIN (RET4_HUMAN)


The two-dimensional electrophoresis pattern of this protein represents a cluster of spots (pI 5.0–6.0, Mw ~ 18–26,000) (Supplementary Figure S1). In the SWISS-2DPAGE, three spots are presented (pI ~ 5.0, Mw ~ 20,000). The protein can be phosphorylated and methylated (https://www.phosphosite.org/ accessed on 10 September 2022).




2.71. SERUM AMYLOID A (SAA1_HUMAN)


The two-dimensional electrophoresis pattern of this protein represents two spots (pI/Mw: ~5.6/12,000 and ~5.8/12,000) (Supplementary Figure S1). This protein is phosphorylated (5 sites) (https://www.phosphosite.org/ accessed on 10 September 2022).




2.72. SERUM AMYLOID P (SAMP_HUMAN)


The two-dimensional electrophoresis pattern of this protein represents a cluster of spots (pI/Mw: ~4.5–6.1/21–35,000) (Supplementary Figure S1). This protein is phosphorylated (7 sites), acetylated (3 sites), ubiquitinated (2 sites) (https://www.phosphosite.org/ accessed on 10 September 2022), and glycosylated (14 N-linked glycans at 1 site, 1 O-linked glycan) (https://www.glygen.org/protein/P02743 accessed on 10 September 2022).




2.73. SEX HORMONE-BINDING GLOBULIN (SHBG_HUMAN)


The two-dimensional electrophoresis pattern of this protein represents a chain of spots (pI/Mw: ~5.0–6.0/35–52,000) (Supplementary Figure S1). This protein is phosphorylated (4 sites) (https://www.phosphosite.org/ accessed on 10 September 2022) and glycosylated (12 N-linked glycans at 3 sites, 6 O-linked glycans at 1 site).




2.74. S100A8 (CALPOTECTIN) (S10A8_HUMAN)


The two-dimensional electrophoresis pattern of this protein represents one spot (pI/Mw: ~6.8/10,000) (Supplementary Figure S1). However, this protein can be heavily phosphorylated (9 sites), acetylated (https://www.phosphosite.org/ accessed on 10 September 2022), and glycosylated (1 O-linked glycan) (https://www.uniprot.org/ accessed on 10 September 2022).




2.75. S100A9 (CALPOTECTIN) (S10A9_HUMAN)


The two-dimensional electrophoresis pattern of S100-A9 represents one spot (pI/Mw: ~6.0/10,000) (Supplementary Figure S1). This protein can be phosphorylated (5 sites), acetylated (3 sites), methylated (https://www.phosphosite.org/ accessed on 10 September 2022), and glycosylated (1 O-linked glycan) (https://www.uniprot.org/ accessed on 10 September 2022).




2.76. TETRANECTIN (TETN_HUMAN)


The two-dimensional electrophoresis pattern of this protein represents a chain of spots (pI/Mw: ~5–6.5/21–26,000) (Supplementary Figure S1). This protein can be glycosylated (1 O-linked annotation(s) at 1 site) (https://www.uniprot.org/uniprotkb/P05452/entry accessed on 10 September 2022).




2.77. THYROXINE-BINDING GLOBULIN (THBG_HUMAN)


The two-dimensional electrophoresis pattern of this protein represents a chain of spots (pI/Mw: ~5–5.5/52–64,000) (Supplementary Figure S1). This protein can be glycosylated (17 N-linked glycans at 3 sites, 1 O-linked glycan) and phosphorylated (https://www.phosphosite.org/ accessed on 10 September 2022).




2.78. PROTHROMBIN (THRB_HUMAN)


The two-dimensional electrophoresis pattern of this protein represents a chain of spots (pI/Mw: 5–6.5/64–83,000) (Supplementary Figure S1). In the SWISS-2DPAGE, there is a chain of five spots (pI/Mw: 4.95–5.05/80,000). This protein can be glycosylated (2 N-linked glycans at 5 sites, 1 O-linked glycan at 6 sites), phosphorylated (9 sites), acetylated (1 site), and ubiquitinated (4 sites) (https://www.uniprot.org/uniprotkb/P00734/entry accessed on 10 September 2022).




2.79. SEROTRANSFERRIN (TRFE_HUMAN)


The two-dimensional electrophoresis pattern of this protein represents a cluster of spots (pI/Mw: ~5.7–7.0/64–83,000) (Supplementary Figure S1). In the SWISS-2DPAGE, there are 3 chains of 22 spots (pI/Mw: 6.14–6.64/76–87,000) for serotransferrin. This protein can be glycosylated (145 N-linked glycans at 6 sites, 6 O-linked glycans at 2 sites), phosphorylated (21 sites), acetylated (10 sites), and ubiquitinated (7 sites) (https://www.phosphosite.org/ accessed on 10 September 2022).




2.80. TRANSTHYRETIN (TTHY_HUMAN)


The two-dimensional electrophoresis pattern of this protein represents a chain of spots (pI/Mw: 4.8–5.7/15–18,000) (Supplementary Figure S1). In the SWISS-2DPAGE, there are a chain of three spots (pI/Mw: 5.02–5.52/13,800), and a spot (pI/Mw: 5.52/35,391) for transthyretin. This protein can be glycosylated (1 N-linked annotation), phosphorylated (6 sites), acetylated (2 sites), or ubiquitinated (4 sites) (https://www.phosphosite.org/ accessed on 10 September 2022).




2.81. VITAMIN D-BINDING PROTEIN (VTDB_HUMAN)


The two-dimensional electrophoresis pattern of this protein represents a cluster of spots (pI/Mw: 4.5–5.7/40–52,000) (Supplementary Figure S1). In the SWISS-2DPAGE, there are two spots (pI/Mw: 5.16/53,772 and 5.24/53,918) for vitamin D-binding protein. This protein can be glycosylated (1 N-Linked glycan at 1 site, 1 O-Linked glycan), phosphorylated (12 sites), acetylated (1 site), or ubiquitinated (1 site) (https://www.phosphosite.org/ accessed on 10 September 2022).




2.82. VITRONECTIN (VTNC_HUMAN)


The two-dimensional electrophoresis pattern of this protein represents a cluster of spots (pI/Mw: 3.7–6.6/52–116,000) (Supplementary Figure S1). In the SWISS-2DPAGE, there is only one spot (pI/Mw: 4.58/9248) for vitronectin. VN can be glycosylated (1 N-linked annotation), phosphorylated (20 sites), acetylated (1 site), and ubiquitinated (1 site) (https://www.phosphosite.org/ accessed on 10 September 2022).




2.83. ZINC-ALPHA-2-GLYCOPROTEIN (ZA2G_HUMAN)


The two-dimensional electrophoresis pattern of this protein represents a cluster of spots (pI/Mw: 4.2–5.0/35–40,000) (Supplementary Figure S1). In the SWISS-2DPAGE, there is a chain of four spots (pI/Mw: 4.8–4.97/40–42,000) for zinc-alpha-2-glycoprotein. This protein can be glycosylated (108 N-Linked glycans at 3 sites, 1 O-Linked glycan at 1 site), phosphorylated (1 site), and ubiquitinated (5 sites) (https://www.phosphosite.org/ accessed on 10 September 2022).





3. Discussion


Tumorigenesis leads to multiple variations in the human plasma proteome that can be dynamic and alterable during the progress of the disease. Practically all major, so-called “classical”, plasma proteins change abundances or PTMs. The majority of these proteins are secreted by the liver, so it could be anticipated to see these changes only in the case of liver cancer. However, they can be observed with other tumors as well as cancer induces disturbances in the blood homeostasis that is supported by “classical plasma proteins”. It follows that it is possible to search the specific/unspecific ways of tumor prediction not only through the detection of products of the tumor but also by analyzing the changes in “classic plasma proteins”. It is relevant to mention that plasma analysis by a very different approach, differential scanning calorimetry (DSC), can give us a hint. Typically, DSC is used to determine the partial heat capacity of macromolecules as a function of temperature, from which their structural stability during thermal denaturation can be assessed. The method is very sensitive and allows precise determination of thermally-induced conformational transitions of proteins present in plasma. There are already quite a few publications showing that DSC can be used to distinguish between normal and cancerous plasma samples [273,274]. Moreover, the data obtained by this method can be reproduced using major plasma proteins.



It follows that there is a possibility of building test systems based on these major (“classical”) proteins. What is important is that many examples of such systems have been introduced already. For example, the relationship between inflammation and clinical outcome is described using the Modified Glasgow Prognostic Scale (mGPS), which includes levels of C-reactive protein (CRP) and albumin [275]. The combination of elevated CRP (>10 mg/L) and decreased albumin (<35 g/L) corresponds to higher mGPS, which correlates with systemic inflammation and poor outcome of cancer therapy [276]. The OVA1 test uses the other major plasma proteins. OVA1 is an FDA-approved blood test that measures the levels of five proteins (CA125, transferrin, transthyretin, apolipoprotein A1, and beta-2 microglobulin) to detect ovarian cancer risk in women. Here, a sophisticated mathematical formula (multivariate index assay) is used to evaluate and combine the levels of these proteins in plasma, producing an ovarian cancer risk score. Using this approach, OVA1 can detect early-stage ovarian cancer with 98% specificity. The OVERA (second-generation or OVA2) assesses a woman’s malignancy risk using combined results from the following five proteins: apolipoprotein A1, human epididymis protein 4 (HE4), CA-125 II, follicle-stimulating hormone (FSH), and transferrin (Vermillion Inc. OVA1 Products. Updated 2020. Available at: https://vermillion.com/ova-products accessed on 10 September 2022). The observation of enhanced levels of clusterin, ITIH4, antithrombin-III, and C1RL in sera of endometrial cancer patients allowed a mathematical model to be built to detect cancer samples [29]. Accordingly, by the selection of the appropriate panels (proteomics signatures) of the plasma oncomarkers, it is possible to detect/monitor different types of cancers. The main point is to select the correct set of oncomarkers and develop an algorithm that will take into account all possible changes in these oncomarkers (level, PTMs etc.) that are related to cancer. This selection should be meticulously performed based on oncomarker behavior in plasma, not in tissue. We performed a search for publications with information (level, PTMs) about “classical” plasma proteins in the case of malignant processes in the human body (Table 1). As levels of some oncomarkers behave differently in different cancers (rise or fall), the test could specifically detect the type of cancer. Apolipoproteins are a good example here. SAA1 and CRP are APPs that are routinely measured in the clinic. The level of apoA-1 is reduced in many cancers but increased in some [80]. The decreased level of apoA-I in plasma is observed in the case of de novo myelodysplastic syndromes [83], NSCLC [84], nasopharyngeal carcinoma (NPC) [85], esophageal squamous cell carcinoma [86], and BC [75], but it is increased in SCLC, HCC, and bladder cancer [80]. The level of apoA-II is dramatically reduced in the serum of patients with gastric cancer and multiple myeloma [70,87] but increased in HCC and prostate cancer [88,89]. A similar situation can be observed for other apolipoproteins [80].



Another aspect that should be considered is the appearance of proteoforms produced by genetic polymorphisms, alternative splicing, PTMs, etc. These events change the charge (pI) and the weight (Mw) of the protein. Because of that, the experimental pI/Mw of the proteins can be different from the theoretical ones. This leads to the production of sets of proteoforms that in our case are detected as 2DE patterns. There is a belief that some 2DE patterns can be different between norm and cancer and could be used as specific biomarkers. Thus far, there are not many such examples, but progress in proteomics methods should improve the situation [277,278]. Proteomics is generating and analyzing a large volume of data and these data exactly fit the situation with multiple variations in plasma proteomes during cancer development and progression. Here, high-throughput, quantitative mass spectrometry is the best choice. There is already a good example of the possibility of using it in the clinic [14]. Geyer et al. introduced a rapid and robust “plasma proteome profiling” LC-MS/MS pipeline. Their single-run shotgun proteomics workflow enables quantitative analysis of hundreds of plasma proteins from just 1 µL of plasma [14].



Our aim is to build a comprehensive proteoform database containing norm and cancer samples http://2de-pattern.pnpi.nrcki.ru/ accessed on 10 September 2022 [30]. Glioblastoma and hepatocellular carcinoma are the cancers in our study so far. The database contains only the cellular samples, but we are in the process of incorporating tissue and plasma samples.




4. Materials and Methods


4.1. Plasma


The pooled human plasma was from healthy male donors (age 20–47 years) [278,279]. Depletion of serum albumin and immunoglobulins IgG was carried out according to Agilent Multiple Affinity Removal System (MARS) protocol (“Agilent Technologies”, Santa Clara, CA, USA) [280,281].




4.2. Two-Dimensional Electrophoresis


The detailed process was described previously [280]. In short, 10 μL of plasma (0.5 mg of protein) was mixed with 20 μL of lysis buffer (7 M urea, 2 M thiourea, 4% CHAPS, 1% DTT, 2% (v/v) ampholytes, pH 3–10, protease inhibitor cocktail) and then with 100 μL of rehydrating buffer (7 M urea, 2 M thiourea, 2% CHAPS, 0.3% DTT, 0.5% IPG (v/v) buffer, pH 3–11 NL, 0.001% bromophenol blue). Immobiline DryStrip 3–11 NL (7 cm) was passively rehydrated by this solution for 4 h at 4 °C. IEF was run on Hoefer™ IEF100 (“Thermo Fisher Scientific”, Waltham, MA, USA). After IEF, strips were incubated 10 min in the equilibration solution (50 mM Tris, pH 8.8, 6 M urea, 2% SDS, 30% (v/v) glycerol, 1% DTT), following in the same solution with 5% IAM instead of DTT. The strips were sealed with a hot solution of 0.5% agarose prepared in electrode buffer (25 mM Tris, pH 8.3, 200 mM glycine, and 0.1% SDS) on top of the polyacrylamide gel (14%), and run in the second direction [280]. Gels stained by Coomassie Blue R350 were scanned by ImageScanner III and analyzed using Image Master 2D Platinum 7.0. For the sectional 2DE analysis, this gel was cut into 96 sections with determined coordinates. Each section (~0.7 cm2) was shredded and treated with trypsin. Tryptic peptides were eluted from the gel by extraction solution (5% (v/v) ACN, 5% (v/v) formic acid) and dried in Speed Vac. In the case of a semi-virtual 2DE, the 18-cm Immobiline DryStrip 3–11 NL was cut into 36 equal sections after IEF. For complete reduction, 300 μL of 3 mM DTT and 100 mM ammonium bicarbonate were added to each section and incubated at 50 °C for 15 min. For alkylation, 20 μL of 100 mM IAM were added and samples were incubated in the dark at r.t. for 15 min. The peptides were eluted with 60% acetonitrile and 0.1% TFA and dried in Speed Vac.




4.3. ESI LC-MS/MS Analysis


A detailed procedure was described previously [279,280]. Peptides were dissolved in 5% (v/v) formic acid. Tandem mass spectrometry analysis was conducted in duplicate on an Orbitrap Q-Exactive mass spectrometer (“Thermo Fisher Scientific”, Waltham, MA, USA). The data were analyzed by Mascot “2.4.1” (“Matrix Sciences”, Mount Prospect, IL, USA) or SearchGui [282] using the following parameters: enzyme—trypsin; maximum of missed cleavage sites—2; fixed modifications—carbamidomethylation of cysteine; variable modifications—oxidation of methionine, phosphorylation of serine, threonine, tryptophan, acetylation of lysine; the precursor mass error—10 ppm; the product mass error—0.01 Da. As a protein sequence database, UniProt (October 2014) was used.



Only 100% confident results of protein identification were selected. Two unique peptides per protein were required for all protein identifications. Exponentially modified PAI (emPAI), the exponential form of protein abundance index (PAI) defined as the number of identified peptides divided by the number of theoretically observable tryptic peptides for each protein, was used to estimate protein abundance [283].




4.4. Immunostaining (Western Blotting)


Plasma proteins (0.5 mg) were run by 2DE (cm 2DE, using 13-cm strip pH 4–7). Proteins were transferred (2 h, 28 V) from the gel onto PVDF membrane (Hybond P, 0.2 μm) using two sheets of thick paper (Bio-Rad, Hercules, CA, USA), saturated with 48 mM Tris, 39 mM glycine, 0.037% SDS, 20% ethanol. The membrane was treated following a protocol of Blue Dry Western [36] and treated with antibodies [21]. Primary antibodies were mouse monoclonal anti-Hp (C8, sc-376893, or F8, sc-390962, from “Santa Cruz Biotechnology”, Santa Cruz, CA, USA) in dilution 1/25 (80 ng/mL in TBS (25 mM), Tris (pH 7.5) and 150 mM NaCl containing 3% (w/v) BSA) or rabbit polyclonal anti-Hp (MBS177476, MyBioSource, San Diego, CA, USA). Secondary goat anti-mouse immunoglobulins G labeled by horseradish peroxidase (NA931V, “GE Healthcare”, Chicago, IL, USA ) were used in TBS containing 3% (w/v) nonfat dry milk (1/5000 dilution). The reaction was developed using ECL (Western Lightning Ultra, “PerkinElmer”, Waltham, MA, USA) and X-ray film (Amersham Hyper film ECL).





5. Conclusions


For now, proteomics is collecting big data about the human plasma proteome http://plasmaproteomedatabase.org/index.html accessed on 10 September 2022 [284]. These data include many proteome parameters: their dynamics, different protein presence, abundance, modifications, variations, etc. In the case of cancer, a proteome performs multiple perturbations, where all its components are involved through changes in their levels and modifications. Here, the plasma proteome works as a united entity that executes and reflects the processes in the human body. Accordingly, the profiling of plasma proteomes is a promising and powerful approach to follow these processes. This profiling could combine hundreds of already known plasma biomarkers and has a very promising future in biomedicine as it could disclose information about any abnormal situation in the human body including cancer. There is a big chance that MS-based proteomics will become a part of the routine medical technique [14,285]. In addition to the usual MS analysis of proteins/proteoforms, this technique should include special processing programs allowing conclusions to be made about the human body’s state based on these variations in protein/proteoform signatures/profiles (level, PTMs, etc.). In our work, we collected information about the connection of cancers with levels of “classical plasma proteins” and generated their proteoform profiles (Table 1, Supplementary Figure S1). As a next step, similar profiles representing protein perturbations in plasma produced in the case of different cancers should be generated. Moreover, based on this information, different test systems can be developed.
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Figure 1. Two-dimensional electrophoresis image of depleted plasma proteins taken for the sectional analysis. (a) A classical annotated 2DE image of plasma proteins; (b) a sectional analysis of the gel presented in (a). The stained gel was divided into the sections with the predetermined coordinates, and each section was treated and analyzed by LC ESI-MS/MS (see Materials and Methods, Section 4.2, 2DE); (c) a semi-virtual 2DE of the major plasma proteins. The plasma proteins were separated by isoelectrophocusing (IEF), using the 18-cm Immobiline DryStrip 3–11 NL. The strip was cut to 36 equal sections, and each section was treated and analyzed by LC ESI-MS/MS (see Materials and Methods, Section 4.2, 2DE). According to the abundance (emPAI) of each protein in the sections, the graph was plotted. The ball size is proportional to the protein emPAI in each section. 
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Figure 2. Two-dimensional electrophoresis patterns of haptoglobin alpha and beta chains. (a) A sectional analysis of alpha and beta chains. The stained gel was divided into the sections with the predetermined coordinates. Then each section was treated and analyzed by LC ESI-MS/MS (see Materials and Methods, Section 4.2, 2DE). According to the abundance (emPAI) of Hpt in each section, the graph was plotted. (b) A semi-virtual 2DE of alpha and beta chains (see Materials and Methods, Section 4.2, 2DE). According to the emPAI of alpha chain (theoretical Mw: 15,946) or beta chain (theoretical Mw: 27,265) in the sections, the graph was plotted. The ball size is proportional to emPAI in each section. (c) Two-dimensional electrophoresis–Western of beta chain. (d) Two-dimensional electrophoresis–Western of alpha2 chain. 
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Table 1. The most abundant plasma proteins related to cancer. Concentration (µg/mL) is presented according to [16] if otherwise not shown. Abundance (emPAI) was calculated according to data from the semi-virtual 2DE (Supplementary Table S1). In the column “Cancer”, the references for cancer-related data are shown (the details are in the Supplementary File).
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	N.
	UniProt
	ID (UniProt)
	UniProt Name (Gene)
	pI/Mw
	Leve µg/mL µg/mL
	EmPAI
	Cancer





	1
	P02763
	A1AG1_HUMAN
	Alpha-1-acid glycoprotein 1 (ORM1)
	5.11/21,588
	220
	116.0
	[32,33,34,35,36,37,38,39,40]



	2
	P19652
	A1AG2_HUMAN
	Alpha-1-acid glycoprotein 2 (ORM2)
	5.12/21,651
	220
	75.0
	[33,41,42]



	3
	P01009
	A1AT_HUMAN
	Alpha-1-antitrypsin (SERPINA1)
	5.37/44,325
	350
	38.0
	[34,43,44,45,46,47,48,49,50]



	4
	P04217
	A1BG_HUMAN
	Alpha-1B glycoprotein (A1BG)
	5.63/51,922
	50
	44.0
	[32,51,52,53]



	5
	P01023
	A2MG_HUMAN
	Alpha-2-Macroglobulin (A2M)
	5.98/160,810
	220
	112.0
	[27,54,55,56]



	6
	P08697
	A2AP_HUMAN
	Alpha-2-antiplasmin

(SERPINF2)
	5.87/50,451
	12
	36.0
	[57,58]



	7
	P02750
	A2GL_HUMAN
	Leucine-rich alpha-2-glycoprotein (LRG1)
	5.66/34,346
	2.7
	17.0
	[59,60,61]



	8
	P01011
	AACT_HUMAN
	Alpha 1-antichymotrypsin

(SERPINA3)
	5.32/45,266
	110
	151.0
	[62,63,64]



	9
	Q15848
	ADIPO_HUMAN
	Adiponectin (ADIPOQ)
	5.46/24,544
	0.12
	2.4
	[65]



	10
	P43652
	AFAM_HUMAN
	Afamin (AFM)
	5.58/66,577
	320
	39.0
	[66,67,68,69,70]



	11
	P02768
	ALBU_HUMAN
	Albumin (ALBU)
	5.67/66,472
	1600
	1207.0
	[71,72,73,74,75]



	12
	P02760
	AMBP_HUMAN
	Protein AMBP (AMBP)

Alpha-1-microglobulin

Bikunin
	5.76/37,115

6.13/20,847

4.89/15,974
	48
	28.0
	[56,76,77]



	13
	P01019
	ANGT_HUMAN
	Angiotensinogen (AGT)
	5.60/49,761
	11
	46.0
	[37]



	14
	P01008
	ANT3_HUMAN
	Antithrombin-III (SERPINC1)
	5.95/49,039
	60
	155.0
	[48,78,79]



	15
	P02647
	APOA1_HUMAN
	Apolipoprotein A-I (APOAI)
	5.27/28,079
	310
	354.0
	[32,80,81,82,83,84,85,86]



	16
	P02652
	APOA2_HUMAN
	Apolipoprotein A-II (APOA2)
	5.05/8708
	750
	285.0
	[70,80,87,88,89,90,91]



	17
	P06727
	APOA4_HUMAN
	Apolipoprotein A-IV (APOA4)
	5.18/43,376
	32
	78.5
	[68,82,92,93]



	18
	P04114
	APOB_HUMAN
	Apolipoprotein B-100 (APOB)
	6.57/512,858
	33
	21.0
	[52,69,94]



	19
	P02654
	APOC1_HUMAN
	Apolipoprotein C1 (APOC1)
	7.93/6631
	77
	8.3
	[95,96]



	20
	P02655
	APOC2_HUMAN
	Apolipoprotein C-II (APOC2)
	4.58/8204
	240
	6.1
	[20,32]



	21
	P02656
	APOC3_HUMAN
	Apolipoprotein C-III (APOC3)
	4.72/8765
	170
	6.1
	[32,69,91,95]



	22
	P05090
	APOD_HUMAN
	Apolipoprotein D (APOD)
	5.20/19,303
	82
	16.8
	[32,97]



	23
	P02649
	APOE_HUMAN
	Apolipoprotein E (APOE)
	5.52/34,237
	14
	52.2
	[69,97,98,99,100,101]



	24
	Q13790
	APOF_HUMAN
	Apolipoprotein F (APOF)
	4.40/17,425
	4.1
	2.0
	[102]



	25
	P02749
	APOH_HUMAN
	Beta-2-glycoprotein 1 (APOH)
	8.37/36,255
	78
	0.1
	[103,104,105,106,107]



	26
	O95445
	APOM_HUMAN
	Apolipoprotein M (APOM)
	5.66/21,253
	1.5
	7.9
	[108]



	27
	P02747
	C1QC_HUMAN
	Complement C1q subcomponent subunit C (C1QC)
	8.33/22,813
	0.91
	1.8
	[109]



	28
	P00736
	C1R_HUMAN
	Complement C1r subcomponent (C1R)
	5.76/78,213
	4.3
	9.7
	[110,111]



	29
	P09871
	C1S_HUMAN
	Complement C1s subcomponent (C1S)
	4.85/74,887
	5.2
	5.6
	[112,113]



	30
	P05156
	CFAI_HUMAN
	Complement factor I (CFI)
	7.38/63,487
	0.006
	11.9
	[49,114]



	31
	P00751
	CFAB_HUMAN
	Complement factor B (CFB)
	6.66/83,001
	95 [115]
	1.14
	[58,69,116,117]



	32
	P00746
	CFAD_HUMAN
	Complement factor D (CFD)
	6.85/24,405
	2.9
	7.1
	[118]



	33
	P08603
	CFAH_HUMAN
	Complement factor H (CFH)
	6.12/137,053
	57
	0.24
	[32,119,120,121]



	34
	P06681
	CO2_HUMAN
	Complement C2 (C2)
	7.57/81,085
	35
	20.5
	[32]



	35
	P01024
	CO3_HUMAN
	Complement C3 (C3)
	6.00/184,951
	260
	31.1
	[58,93,116,122,123,124,125]



	36
	P0C0L4
	CO4A_HUMAN
	Complement C4-A (C4A)
	6.60/190,534
	63 [115]
	36.3
	[52,124,125]



	37
	P0C0L5
	CO4B_HUMAN
	Complement C4-B (C4B)
	6.83/190,500
	90
	37.8
	[124,125]



	38
	P01031
	CO5_HUMAN
	Complement C5 (C5)
	6.07/186,341
	95
	35.7
	[69,126]



	39
	P13671
	CO6_HUMAN
	Complement C6 (C6)
	6.17/102,412
	3.7
	15.7
	[32,52]



	40
	P10643
	CO7_HUMAN
	Complement C7 (C7)
	6.09/91,115
	2.6
	17
	[69,127]



	41
	P02748
	CO9_HUMAN
	Complement component C9 (C9)
	5.42/60,979
	5.2
	11.8
	[128,129,130]



	42
	P00915
	CAH1_HUMAN
	Carbonic anhydrase (CA1)
	6.63/28,739
	0.59
	2.5
	[131,132]



	43
	P08185
	CBG_HUMAN
	Corticosteroid-binding globulin (SERPINA6)
	5.64/42,639
	1.2
	27.9
	[133]



	44
	P15169
	CBPN_HUMAN
	Carboxypeptidase N catalytic chain (CPN1)
	6.88/50,034
	0.72
	6.4
	[134]



	45
	P08571
	CD14_HUMAN
	Monocyte differentiation antigen CD14 (CD14) urinary form
	5.58/37,215
	0.42
	4.5
	[135,136]



	46
	P00450
	CERU_HUMAN
	Ceruloplasmin (CP)
	5.41/120,085
	86
	86.7
	[34,54,137,138,139,140,141,142]



	47
	P06276
	CHLE_HUMAN
	Cholinesterase (BCHE)
	6.33/65,084
	0.17
	2.97
	[143]



	48
	P10909
	CLUS_HUMAN
	Clusterin (CLU)
	5.89/50,063
	25
	29.9
	[32,52,58,69,144,145,146,147,148,149]



	49
	Q96KN2
	CNDP1_HUMAN
	Beta-Ala-His dipeptidase (CNDP1)
	5.08/53,864
	0.23
	2.7
	[150,151,152,153]



	50
	P22792
	CPN2_HUMAN
	Carboxypeptidase N subunit 2 (CPN2)
	5.54/58,227
	2
	6.1
	[32]



	51
	P02741
	CRP_HUMAN
	C-reactive protein (CRP)

C-reactive protein (1-205)
	5.28/23,047

5.28/22,950
	0.26
	1.0
	[154,155]



	52
	Q16610
	ECM1_HUMAN
	Extracellular matrix protein 1 (ECM1)
	6.19/58,812
	0.77
	9.6
	[156,157,158]



	53
	P23142
	FBLN1_HUMAN
	Fibulin-1 (FBLN1)
	5.03/74,291
	0.62
	11.8
	[159,160,161,162,163]



	54
	O75636
	FCN3_HUMAN
	Ficolin-3 (FCN3)
	6.22/30,354
	1
	11.8
	[164,165,166,167,168]



	55
	P02765
	FETUA_HUMAN
	Alpha-2-HS-glycoprotein (AHSG)
	4.53/30,238
	82
	30.6
	[169,170]



	56
	Q9UGM5
	FETUB_HUMAN
	Fetuin-B (FETUB)
	6.52/40,488
	0.27
	1.8
	[171]



	57
	P02671
	FIBA_HUMAN
	Fibrinogen alpha chain (FGA)
	5.79/91,359
	0.13
	10.9
	[32,69,172,173]



	58
	P02675
	FIBB_HUMAN
	Fibrinogen beta chain (FGB)
	7.95/50,763
	130
	62.5
	[32,173,174]



	59
	P02679
	FIBG_HUMAN
	Fibrinogen gamma chain (FGG)
	5.24/48,483
	98
	39.2
	[32,69,175,176,177,178]



	60
	P02751
	FINC_HUMAN
	Fibronectin (FN1)
	5.25/269,259
	20
	14.1
	[48,94,179,180,181,182]



	61
	P06396
	GELS_HUMAN
	Plasma gelsolin (GSN)
	5.72/82,959
	16
	23.4
	[166,183,184]



	62
	P22352
	GPX3_HUMAN
	Glutathione peroxidase 3 (GPX3)
	7.85/23,464
	10
	11.7
	[185]



	63
	P69905
	HBA_HUMAN
	Hemoglobin subunit alpha (HBA1)
	8.73/15,126
	41
	1129
	[54]



	64
	P68871
	HBB_HUMAN
	Hemoglobin subunit beta (HBB)
	6.81/15,867
	30
	847.0
	[54,186]



	65
	P02790
	HEMO_HUMAN
	Hemopexin (HPX)
	6.43/49,295
	180
	165.0
	[177,187,188,189]



	66
	P05546
	HEP2_HUMAN
	Heparin Cofactor 2 (SERPIND1)
	6.26/54,960
	4.3
	43.0
	[58,189,190,191,192]



	67
	P00738
	HPT_HUMAN
	Haptoglobin (Zonulin) (HP)

haptoglobin alpha 1 chain

haptoglobin alpha 2 chain

haptoglobin beta chain
	6.13/43,349

5.23/93,55

5.57/15,946

6.32/27,265
	210
	323.0
	[166,193,194,195,196,197,198,199]



	68
	P00739
	HPTR_HUMAN
	Haptoglobin-related protein (HPR)
	6.63/39,030
	41 [200]
	105.0
	[201]



	69
	P04196
	HRG_HUMAN
	Histidine-rich glycoprotein (HRG)
	7.03/57,660
	35
	24.0
	[202,203]



	70
	P05155
	IC1_HUMAN
	Plasma protease C1 inhibitor (SERPING1)
	5.97/52,843
	12
	9.4
	[204,205]



	71
	P19827
	ITIH1_HUMAN
	Inter-alpha-trypsin inhibitor heavy chain H1 (ITIH1)
	6.33/71,415
	24
	25.0
	[29,206,207,208,209,210]



	72
	Q06033
	ITIH3_HUMAN
	Inter-alpha-trypsin inhibitor heavy chain H3 (ITIH3)
	5.01/69,360
	2
	7.7
	[207]



	73
	Q14624
	ITIH4_HUMAN
	Inter-alpha-trypsin inhibitor heavy chain H4 (ITIH4)
	5.92/70,586
	42
	41.6
	[29,207]



	74
	P29622
	KAIN_HUMAN
	Kallistatin (SERPINA4)
	7.88/46,355
	1.1
	81.8
	[211]



	75
	P01042
	KNG1_HUMAN
	Kininogen 1 (KNG1)
	6.23/69,897
	28
	7.7
	[212,213,214]



	76
	P04180
	LCAT_HUMAN
	Phosphatidylcholine-sterol acyltransferase (LCAT)
	5.71/47,084
	0.22
	1.8
	[171]



	77
	P51884
	LUM_HUMAN
	Lumican (LUM)
	6.17/36,661
	4
	6.4
	[166,215,216,217]



	78
	P11226
	MBL2_HUMAN
	Mannose-binding protein C (MBL2)
	5.40/24,021
	0.07
	6.4
	[171,218,219]



	79
	P36955
	PEDF_HUMAN
	Pigment epithelium-derived factor (SERPINF1)
	5.90/44,388
	7.2
	14.5
	[220]



	80
	Q96PD5
	PGRP2_HUMAN
	N-acetylmuramoyl-L-alanine amidase (PGLYRP2)
	7.64/59,980
	14
	4.0
	[171,221,222]



	81
	P80108
	PHLD_HUMAN
	Phosphatidylinositol-glycan-specific phospholipase D (GPLD1)
	5.78/89,811
	4
	3.7
	[32,223,224]



	82
	P00747
	PLMN_HUMAN
	Plasminogen (PLG)

Plasmin heavy chain A

Angiostatin

Plasmin heavy chain A, short form

Plasmin light chain
	7.08/88,432

6.79/63,245

8.30/44,053

7.44/54,341

7.67/25,205
	25
	81.0
	[225,226]



	83
	P27169
	PON1_HUMAN
	Serum paraoxonase/arylesterase 1 (PON1)
	5.08/39,600
	7.7
	43.4
	[79,227,228,229,230,231,232]



	84
	P27918
	PROP_HUMAN
	Properdin (CFP)
	8.33/48,494
	0.33
	1.7
	[233]



	85
	P07225
	PROS_HUMAN
	Vitamin K-dependent protein S (PROS1)
	5.17/70,645
	1.7
	7.7
	[234]



	86
	P02753
	RET4_HUMAN
	Plasma retinol-binding protein 4 (PRBP)
	5.27/21,072
	580
	39.3
	[235,236,237]



	87
	P0DJI8
	SAA1_HUMAN
	Serum amyloid A-1 (SAA1)
	5.89/11,683
	7.4
	4.3
	[32,34,238,239,240]



	88
	P02743
	SAMP_HUMAN
	Serum amyloid P-component (APCS)
	6.12/23,259
	8.7
	39.5
	[241]



	89
	P04278
	SHBG_HUMAN
	Sex hormone-binding globulin (SHBG)
	5.83/40,468
	0.26
	5.8
	[242,243]



	90
	P05109
	S10A8_HUMAN
	Protein S100-A8 (S100A8)
	6.50/10,835
	0.27
	0.9
	[244,245,246]



	91
	P06702
	S10A9_HUMAN
	Protein S100-A9 (S100A9)
	5.71/13,242
	1.9
	2.6
	[244,247]



	93
	P05452
	TETN_HUMAN
	Tetranectin (CLEC3B)
	5.80/20,139
	58
	31.5
	[32,248,249]



	94
	P05543
	THBG_HUMAN
	Thyroxine-binding globulin (SERPINA7)
	5.76/44,102
	1.3
	12.5
	[250,251]



	95
	P00734
	THRB_HUMAN
	Prothrombin (F2)
	5.23/65,308
	27
	24.8
	[252,253]



	96
	P02787
	TRFE_HUMAN
	Serotransferrin (TF)
	6.70/75,195
	360
	41.8
	[25,254]



	97
	P02766
	TTHY_HUMAN
	Transthyretin (TTR)
	5.31/13,761
	770
	23.9
	[32,95,177,255,256,257]



	98
	P02774
	VTDB_HUMAN
	Vitamin D-binding protein (GC)
	5.16/51,197
	57
	181.4
	[32,258,259]



	99
	P04004
	VTNC_HUMAN
	Vitronectin (VTN)
	5.47/52,278
	35
	22.7
	[25,32,52,260]



	100
	P25311
	ZA2G_HUMAN
	Zinc-alpha2-glycoprotein (AZGP1)
	5.58/32,145
	31
	31.5
	[261,262,263,264]
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