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Abstract: Programmed death ligand 1 (PD-L1) strongly inhibits T cell activation, thereby aiding tu-
mors in escaping the immune response. PD-L1 inhibitors have proven to be effective in the treatment
of different types of cancer, including non-small cell lung cancer (NSCLC). Yet, the knowledge regard-
ing the biological function of tumor-intrinsic PD-L1 in lung cancer remains obscure. In our study,
we set the goal of determining the function of PD-L1 using overexpression and knockdown strate-
gies. PD-L1 silencing resulted in decreased migratory and invasive ability of tumor cells, together
with attenuated colony-forming capacity. Ectopic expression of PD-L1 showed the opposite effects,
along with increased activities of MAPK and Wnt/β-catenin pathways, and the upregulation of
Wnt/β-catenin target genes. Additionally, overexpression of PD-L1 was associated with dysregulated
cellular and exosomal miRNAs involved in tumor progression and metastasis. In primary lung tu-
mors, immunohistochemistry revealed that both PD1 and PD-L1 were highly expressed in squamous
cell carcinoma (SCC) compared to adenocarcinoma (p = 0.045 and p = 0.036, respectively). In SCC,
PD1 expression was significantly associated with tumor grading (p = 0.016). Taken together, our data
suggest that PD-L1 may exert an oncogenic function in NSCLC through activating Wnt/β-catenin
signaling, and may act as a potential diagnostic marker for lung SCC.

Keywords: NSCLC; PD-L1; Wnt/β-catenin pathway; exosomal miRNA

1. Introduction

Lung cancer is among the most frequently diagnosed types of cancer, and it remains the
leading cause of cancer-related death in both men and women across the globe, contributing
to about 1.8 million deaths in 2020 [1].

Histologically, lung cancer is divided into two main types: small cell lung cancer
(SCLC) and non-small cell lung cancer (NSCLCs), which include adenocarcinoma (ADC),
squamous cell carcinoma (SCC), and large cell lung cancer (LCLC), together accounting for
about 85% of all lung cancers. Lung cancer is usually detected in advanced stages of the
disease, with limited treatment options and an unfavorable clinical outcome. At the time of
diagnosis, most patients already exhibit local and/or distant metastasis [2]. The application
of biomarker and low-dose computed tomography screening for high-risk individuals, and
refinements in treatment, have led to progress in lung cancer management over the past
10 years. However, the 5-year survival rate continues to be low, at around 25% in NSCLC
and 7% in SCLC, for all stages combined after diagnosis (https://www.cancer.org/cancer/
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lung-cancer/detection-diagnosis-staging/survival-rates.html, accessed data 12 September
2022). Thus, a comprehensive understanding of tumor biology is urgently needed in order
to achieve an improvement in lung cancer diagnosis and therapy.

Based on intensive research in oncology, the role of the PD1/PD-L1 axis in maintaining
a balance between immune tolerance and immunopathology has emerged in recent years.
PD1, an immune checkpoint molecule, is expressed constitutively on T and B lymphocytes,
natural killer cells, and dendritic cells [3]. In addition, PD1 expression has also been found
in tumor cells [4]. PD-L1 (known as B7-H1 or CD274), acts as a main ligand of the PD1
receptor. Structural analysis has revealed that PD-L1 is a type I transmembrane protein
with two extracellular domains (IgV- and IgC-like) and a short cytoplasmic tail involved in
the transduction of signals [5]. PD-L1 expression can be induced by a variety of factors,
including oncogenic mutations and IFNγ via Jak/STAT or PI3K/Akt signaling [5]. Recent
studies indicate that PD-L1 is expressed in 30–60% of NSCLC cases, although these numbers
vary across publications [6,7].

A growing body of evidence shows that lung cancer cells exploit several mechanisms
for immune evasion, mainly by the production of immunosuppressive cytokines and
the expression of T cell-activation-inhibiting molecules, most notably CTLA-4 (cytotoxic
T lymphocyte-associated 4) and PD1/PD-L1 [8]. The anti-PD1/PD-L1 treatment blocks the
interaction of PD1 and its ligands, restores the vitality of the T cells, and thereby exerts
the anti-tumor immune effect [9]. Clinically, immunotherapy with monoclonal antibodies
against PD1/PD-L1 has improved clinical outcomes of metastatic NSCLC patients whose
tumor cells display certain biological characteristics, such as PD-L1 expression, high tumor
mutational burden, or mismatch repair deficiency/microsatellite instability [10–12].

The majority of studies on PD-L1 have thus far focused on its role in immunity and
immunotherapy, while less attention has been paid to its tumor-intrinsic function in human
cancer. In the present study, we used “gain-of-function” and “loss-of-function” strategies,
as well as exosomal microRNA analysis, with the aim of shedding more light on the
functional role of PD-L1 in NSCLC.

2. Results
2.1. PD1 and PD-L1 Expression in Lung Cancer

The expression of PD1 and PD-L1 was analyzed in 13 lung cancer cell lines by quan-
titative real-time RT-PCR and Western blotting (WB). Compared to the normal bronchial
epithelial cells (HBEC), the expression of PD1 mRNA was upregulated in six lung cancer
cell lines, including H1299, H23, COLO677, H1975, H82, and H2228, with the expression
level being more than 326-fold higher in COLO677 (Figure 1(ai) ). In contrast to PD1, the
expression of PD-L1 mRNA was widely downregulated in 12 cell lines, except for H2228
(Figure 1(aii)). At the protein level, PD1 was upregulated in H2030, A549, H322, H1650,
H1975, and H2228 (Figure 1(bi)), while PD-L1 was obviously upregulated in H157, H1650,
H1975, and H2228, compared to HBEC (Figure 1(bii)). The discordant expression between
mRNA and protein levels indicate post-transcriptional regulation of PD1 and PD-L1 in
lung cancer cells.

To determine whether PD1 and PD-L1 are epigenetically regulated, 11 out of 13 lung
cancer cell lines were treated with a DNA methyltransferase inhibitor, 5-aza-2′-deoxycytidine
(5-Aza), and a histone deacetylase inhibitor, Trichostatin A (TSA), respectively. After
treatment with 5-Aza, the PD1 expression was significantly increased in eight lung cancer
cell lines (H2170, H1299, H226, H157, H23, A549, H1650, and H1975), and PD-L1 expression
was significantly enhanced in nine lung cancer cell lines (H2170, H1299, H226, H157, H2030,
COLO677, A549, H1650, and H1975) (Supplementary Figure S1). Similarly, TSA treatment
led to the significant upregulation of PD1 and PD-L1 in nine and seven lung cancer cell
lines, respectively (Supplementary Figure S2).

https://www.cancer.org/cancer/lung-cancer/detection-diagnosis-staging/survival-rates.html
https://www.cancer.org/cancer/lung-cancer/detection-diagnosis-staging/survival-rates.html
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Figure 1. PD1 and PD-L1 expression in human lung cancer cell lines and primary lung tumors. PD1 
(ai) and PD-L1 (aii) mRNA expression analyzed by quantitative real-time RT-PCR. The PD1 and 
PD-L1 mRNA expression was normalized to the expression level of GAPDH as an internal control, 
which in normal human bronchial epithelial cells (HBEC) was defined as 1.0; * p < 0.05, ** p < 0.01, 
*** p < 0.001 when analyzed using Student’s t-test. PD1 (bi) and PD-L1 (bii) protein expression ana-
lyzed by Western blotting. β-actin was used as a loading control. Representative images from im-
munohistochemical staining of PD1 (c) and PD-L1 (d) in primary lung tumor samples. TPS, tumor 
proportion score. Magnification, 400×. 

  

Figure 1. PD1 and PD-L1 expression in human lung cancer cell lines and primary lung tumors. PD1
(ai) and PD-L1 (aii) mRNA expression analyzed by quantitative real-time RT-PCR. The PD1 and
PD-L1 mRNA expression was normalized to the expression level of GAPDH as an internal control,
which in normal human bronchial epithelial cells (HBEC) was defined as 1.0; * p < 0.05, ** p < 0.01,
*** p < 0.001 when analyzed using Student’s t-test. PD1 (bi) and PD-L1 (bii) protein expression
analyzed by Western blotting. β-actin was used as a loading control. Representative images from
immunohistochemical staining of PD1 (c) and PD-L1 (d) in primary lung tumor samples. TPS, tumor
proportion score. Magnification, 400×.
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The results indicate that epigenetic mechanisms may be involved in the dysregulation
of PD1 and PD-L1 in lung cancer cells. To further clarify the role of DNA methylation,
we performed bisulfite sequencing. However, neither PD1 nor PD-L1 was found to be
methylated in the promoter region in lung cancer cell lines.

The protein expression of PD1 and PD-L1 was analyzed by immunohistochemistry
on TMAs. In total, 24 out of 131 samples (18.3%) exhibited PD1 expression (Table 1). The
expression levels did not differ from gender or TNM stages, but they were significantly
associated with tumor subtypes and differentiation status. PD1 expression was signifi-
cantly higher in SCC than in ADC (p = 0.045), and in SCC, higher expression of PD1 was
significantly related to lower tumor grading (p = 0.016, Table 2). In view of the PD-L1
expression (Table 3), 30 (two ADC and 28 SCC) out of 119 samples (ADC + SCC) showed
positive staining in the membranes of tumor cells. This difference regarding PD-L1-positive
staining between ADC and SCC reached statistical significance (p = 0.036). Additionally,
the positive staining of PD-L1 was correlated with tumor size; however, this was not
statistically significant (p =0.055). Furthermore, PD1 and PD-L1 expression was signifi-
cantly correlated (p = 0.000, Table 4). Representative images of PD1 and PD-L1 staining
are shown in Figure 1c,d. Survival analysis using Kaplan–Meier curves indicated that
neither PD1 nor PD-L1 expression was related to the clinical outcome of NSCLC patients
(Supplementary Figure S3).

Table 1. Correlation between PD1 expression and clinicopathological parameters in primary lung tumor.

PD1 p-Value
0–1 2–3

Type SCC 75 22
0.0446 Fisher’sADC 22 1

Gender
Male 93 22

0.735 Fisher’sFemale 14 2

pT 1–2 88 19
0.7723–4 19 5

pN 0 56 12
0.8361–3 51 12

Grade
1–2 71 13

0.2613–4 36 11

Survival time
<60 93 21

1.00 Fisher’s≥60 14 3
Fisher’s: Fisher’s exact tests.

Table 2. Correlation between PD1 protein expression and tumor grading in lung SCC.

Type PD1 p-Value
0–1 2–3

SCC Grade
1–2 60 12

0.0163–4 12 10
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Table 3. Correlation between PD-L1 expression and clinicopathological parameters in primary
lung tumor.

PD-L1_TPS p-Value
<1% ≥1%

Type SCC 67 28
0.036 Fisher’sADC 22 2

Gender
Male 83 31

0.56 Fisher’sFemale 13 3

pT 1–2 82 24
0.0553–4 14 10

pN 0 51 17
0.7541–3 45 17

Grade
1–2 60 22

0.8193–4 36 12

Survival time
<60 83 30

1.00 Fisher’s≥60 13 4
TPS: Tumor Proportion Score; Fisher’s: Fisher’s exact tests.

Table 4. Pearson correlation coefficients between PD-L1 and PD1 protein expression in primary
lung tumor.

PD-L1 vs. PD1
NCSLC SCC

Sample number 109 79
Correlation coefficient (r value) 0.400 0.465

Sig. (2-tailed) p 0.000 0.000

2.2. PD-L1 Overexpression Influences Colony Formation, Cell Cycle Proliferation, Migration,
and Invasion

To analyze the function of PD-L1 in NSCLC cells, stable transfection was performed
using the expression vector of PD-L1 in H2170 (SCC) and H1299 (ADC), which exhibit no
endogenous expression of the PD-L1 protein (Figure 1(bii)). After transfection, overexpres-
sion of PD-L1 was confirmed for both mRNA (Figure 2a) and protein levels (Figure 2b).
We selected three positive clones, respectively, from the SCC and ADC cell lines (PD-L1-3,
PD-L1-6, and PD-L1-7 from H2170; PD-L1-16, PD-L1-17, and PD-L1-22 from H1299) for the
colony formation, migration, and invasion assays.

As shown in Figure 2c, ectopic expression of PD-L1 led to significantly increased
colony-forming ability in both cell lines compared to controls. Cell cycle analysis revealed
that the distribution of cells throughout the three main phases (G1, S, and G2/M) had
changed significantly. As evident in Figure 2d, ectopic expression of PD-L1 led to noticeably
reduced cell numbers in the G1 phase (both H2170 and H1299), whereas it increased the
number of cells in the S phase (H2170) and G2/M phase (both H2170 and H1299). The data
from the colony formation assay and cell cycle analysis suggest that PD-L1 may enhance
cell proliferation in NSCLC cells.

Additionally, a significantly greater number of PD-L1-overexpressing cells revealed
an augmented migratory ability (Figure 3a,b) in comparison to mock cells. Similarly, the
number of cells that migrated through the Matrigel (Figure 3a,b) was significantly increased
in H2170 and H1299 cells stably transfected with PD-L1, which reveals an enhanced tumor
invasive property induced by PD-L1 overexpression. Thus, the results collectively outline
an oncogenic role of PD-L1 in NSCLC cells.
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Figure 2. Influence of PD-L1 on colony formation and cell cycle progression in NSCLC cells. Over-
expression of (a) PD-L1 mRNA and (b) PD-L1 protein in H2170 and H1299 cells after stable trans-
fection, determined by real-time RT-PCR and Western blotting (WB), respectively. β-actin was used 
as a loading control for WB. PD-L1-3 (3), PD-L1-6 (6), and PD-L1-7 (7) are positive clones from 
H2170; PD-L1-16 (16), PD-L1-17 (17), and PD-L1-22 (22) are positive clones from H1299. Control 
cells were transfected with an empty vector. (c) PD-L1 overexpression increased H2170 and H1299 
proliferation, as revealed by colony formation assay. Representative images of colony formation (ci; 
magnification 50 ×) and quantification of the number of colonies (cii). (d) Cell cycle analysis by flow 
cytometry showing that ectopic PD-L1 expression resulted in a significantly increased H2170 cell 
population in S and G2/M phases and increased H1299 cell numbers in the G2/M phase. * p < 0.05, 
** p < 0.01, *** p < 0.001 when analyzed using Student’s t-test. 

Figure 2. Influence of PD-L1 on colony formation and cell cycle progression in NSCLC cells. Overex-
pression of (a) PD-L1 mRNA and (b) PD-L1 protein in H2170 and H1299 cells after stable transfection,
determined by real-time RT-PCR and Western blotting (WB), respectively. β-actin was used as a
loading control for WB. PD-L1-3 (3), PD-L1-6 (6), and PD-L1-7 (7) are positive clones from H2170;
PD-L1-16 (16), PD-L1-17 (17), and PD-L1-22 (22) are positive clones from H1299. Control cells were
transfected with an empty vector. (c) PD-L1 overexpression increased H2170 and H1299 proliferation,
as revealed by colony formation assay. Representative images of colony formation (ci; magnifica-
tion 50 ×) and quantification of the number of colonies (cii). (d) Cell cycle analysis by flow cytometry
showing that ectopic PD-L1 expression resulted in a significantly increased H2170 cell population
in S and G2/M phases and increased H1299 cell numbers in the G2/M phase. * p < 0.05, ** p < 0.01,
*** p < 0.001 when analyzed using Student’s t-test.
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Figure 3. Effects of PD-L1 on NSCLC migration and invasion. Overexpression of PD-L1 enhanced 
the migratory and invasive ability of H2170 (a) and H1299 (b) cells. Representative images of the 
migration and invasion assays (ai,bi); magnification 50 ×); quantification of the number of migrated 
and invaded cells of H2170 (aii) and H1299 (bii). Reduced PD-L1 mRNA expression (c) and protein 
expression (d) in H157 cells after siRNA knockdown (KD). β-actin was used as a loading control for 
Western blotting (WB). (e) Knockdown of PD-L1 led to decreased migratory ability, revealed by 
migration assay. Representative images of the migration assay (ei, magnification 50 ×); quantifica-
tion of the number of invaded cells (eii). * p < 0.05, *** p < 0.001 when analyzed using Student’s t-
test. 

2.3. Knockdown of PD-L1 by siRNA Decreases the Migration and Invasion Ability of  
NSCLC Cells 

To further confirm the role of PD-L1 as an oncogene, we performed “loss-of-func-
tion” analysis to knock down PD-L1 using siRNA in H157 cells endogenously expressing 
the PD-L1 protein. PD-L1 siRNA transfection led to considerably decreased gene expres-
sion at both mRNA (Figure 3c) and protein (Figure 3d) levels, indicating successful gene 
silencing by siRNA knockdown. The reduction in PD-L1 expression at the protein level is 
more obvious than that at the mRNA level, reflecting the post-transcriptional regulation 
of PD-L1. 

As mentioned above, migration assays were performed. It was found that PD-L1 
gene silencing resulted in reduced migratory ability in H157 compared to mock cells (Fig-
ure 3(ei),(eii)). The findings confirm the oncogenic activity of PD-L1 in NSCLC cells, par-
ticularly concerning tumor cell migration, an initial step in metastasis. 

Figure 3. Effects of PD-L1 on NSCLC migration and invasion. Overexpression of PD-L1 enhanced
the migratory and invasive ability of H2170 (a) and H1299 (b) cells. Representative images of the
migration and invasion assays (ai,bi); magnification 50 ×); quantification of the number of migrated
and invaded cells of H2170 (aii) and H1299 (bii). Reduced PD-L1 mRNA expression (c) and protein
expression (d) in H157 cells after siRNA knockdown (KD). β-actin was used as a loading control
for Western blotting (WB). (e) Knockdown of PD-L1 led to decreased migratory ability, revealed by
migration assay. Representative images of the migration assay (ei, magnification 50×); quantification
of the number of invaded cells (eii). * p < 0.05, *** p < 0.001 when analyzed using Student’s t-test.

2.3. Knockdown of PD-L1 by siRNA Decreases the Migration and Invasion Ability of
NSCLC Cells

To further confirm the role of PD-L1 as an oncogene, we performed “loss-of-function”
analysis to knock down PD-L1 using siRNA in H157 cells endogenously expressing the
PD-L1 protein. PD-L1 siRNA transfection led to considerably decreased gene expression at
both mRNA (Figure 3c) and protein (Figure 3d) levels, indicating successful gene silencing
by siRNA knockdown. The reduction in PD-L1 expression at the protein level is more
obvious than that at the mRNA level, reflecting the post-transcriptional regulation of PD-L1.

As mentioned above, migration assays were performed. It was found that PD-L1
gene silencing resulted in reduced migratory ability in H157 compared to mock cells
(Figure 3(ei,eii)). The findings confirm the oncogenic activity of PD-L1 in NSCLC cells,
particularly concerning tumor cell migration, an initial step in metastasis.
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2.4. PD-L1 affects MAPK and Wnt/β-Catenin Tumorigenic Pathways and
Cell-Cycle-Associated Genes

To explore the signaling pathways involved in the PD-L1-mediated enhancement
of tumor cell proliferation, migration, and invasion, we analyzed the influence of PD-L1
overexpression on tumorigenic pathways, including mitogen-activated protein kinase
(MAPK), Akt/mTOR, and Wnt/β-catenin pathways.

As illustrated in Figure 4a, ectopic expression of PD-L1 led to increased phosphory-
lated levels of ERK1/2 in the three positive transfectants of H2170 and H1299, respectively,
compared to mock cells, indicating a regulatory role of PD-L1 in the MAPK pathway.
Additionally, active β-catenin expression levels were found to be upregulated by PD-L1
in all three positive clones from H2170 (Figure 4b), but not from H1299. Knockdown of
PD-L1 resulted in a reduced level of phosphorylated Akt in H157 cells, while changes in
phosphorylated mTOR and ERK were not obvious, compared to control cells (Figure 4c,
Supplementary Figure S4).

To further elucidate the effects of PD-L1 on Wnt/β-catenin signaling, we performed
luciferase reporter assays using a Dual-Luciferase Reporter Gene System. Significantly
enhanced luciferase activity was found in the three PD-L1-positive clones from H2170
(Figure 4d) and one PD-L1-positive clone from H1299 (Supplementary Figure S5), compared
to control cells. Upon treatment with SKL2001, an agonist of the Wnt/β-catenin pathway,
the luciferase activity increased dramatically in both PD-L1-transfected cells and mock cells;
however, compared to mock cells, the PD-L1-transfected cells still exhibited significantly
higher activity. We also observed that positive clone 6 showed the highest luciferase
activity after SKL2001 stimulation, in line with it exhibiting the highest expression level of
active β-catenin.

We then analyzed the mRNA expression of downstream target genes of the
Wnt/β-catenin pathway in PD-L1-transfected cells. In the PD-L1-transfected H2170 cells,
significantly increased expression of the Wnt/β-catenin target genes, including Axin2,
Snail1, and fibronectin, was found in all the three positive clones, and at least two positive
clones showed significant upregulation of MMP14, LEF1, SP5, and CX43, compared to mock
cells (Figure 4e). In the PD-L1-transfected H1299 cells, MMP14, Axin2, and fibronectin were
upregulated (Supplementary Figure S6). The discrepancy between H2170 and H1299 cells
regarding the expression of active β-catenin and the Wnt/β-catenin target gene upon
PD-L1 overexpression may reflect cell-type specificity.

To determine the molecular alterations during cell cycle progression, we analyzed the
mRNA expression of cell-cycle-associated genes. As shown in Figure 4(fi,fii), Cell cycle
regulators and apoptosis-related genes, such as cyclin D1 and BCL2L1, were upregulated,
while p21 and CCNG2 were downregulated in PD-L1-overexpressing H2170 cells, compared
to control cells. In the PD-L1-transfected H1299 cells, p27 and BCL2L1 were overexpressed,
while p21, cyclin D1, and CCNG2 expression was reduced. Again, this difference may be
related to cell-type-dependent regulation.

Taken together, our data indicate that certain oncogenic pathways are involved in the
PD-L1-mediated tumor-promoting effects of NSCLC. Among them, the Wnt/β-catenin
signaling pathway may be particularly important for facilitating PD-L1-mediated NSCLC
cell proliferation, migration, and invasion.
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Figure 4. Impact of PD-L1 on oncogenic signaling pathways and cell cycle regulatory genes. (a) 
Ectopic PD-L1 expression led to increased phosphorylated levels of ERK in both H2170 and H1299 
cells, as revealed by Western blotting (WB). β-actin was used as a loading control. PD-L1-positive 
transfectants 3, 6, and 7 were from H2170; PD-L1-positive transfectants 16, 17, and 22 were from 

Figure 4. Impact of PD-L1 on oncogenic signaling pathways and cell cycle regulatory genes.
(a) Ectopic PD-L1 expression led to increased phosphorylated levels of ERK in both H2170 and
H1299 cells, as revealed by Western blotting (WB). β-actin was used as a loading control. PD-L1-
positive transfectants 3, 6, and 7 were from H2170; PD-L1-positive transfectants 16, 17, and 22 were
from H1299. (b) H2170 PD-L1-positive transfectants 3, 6, and 7 showed higher protein expres-
sion levels of active β-catenin compared to control cells. (c) Knockdown of PD-L1 in H157 cells
resulted in decreased phosphorylated Akt. (d) Significantly enhanced Wnt/β-catenin activity in
PD-L1-overexpressing H2170 cells, as determined by TCF/LEF reporter gene assays. The activity
of mock-transfected H2170 cells treated with DMSO was set to 1. SKL2001 is an agonist of the
Wnt/β-catenin pathway. (e) Increased expression levels of Wnt/β-catenin pathway downstream
target genes in H2170 after PD-L1 transfection, revealed by real-time RT-PCR analysis. Alteration
of cell cycle regulatory gene expression in PD-L1-transfected H2170 (fi) and H1299 (fii), compared
to control cells, using real-time RT-PCR analysis. * p < 0.05, ** p < 0.01, *** p < 0.001 when analyzed
using Student’s t-test.
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2.5. PD-L1 Regulates Cellular and Exosomal miRNAs Involved in Tumor Migration, Invasion,
and Metastasis

Recent studies have demonstrated that both cellular and exosomal microRNAs regu-
late the expression of genes that play essential roles in cancer cell migration, invasion, and
metastasis [13,14].

To investigate whether PD-L1-mediated tumor cell growth is accompanied by dysregu-
lated miRNAs, we selected nine miRNAs (miR-29a-3p, miR-29b-3p, miR-21-5p, miR-125b-5p,
miR-19a-3p, miR-155-5p, miR-199a-5p, miR-200b-3p, and miR-9-3p) that participate in
tumor invasion and metastasis. Ectopic PD-L1 expression led to markedly elevated ex-
pression levels of cellular miR-29a-3p, miR-29b-3p, miR-21-5p, miR-125b-5p, miR-19a-3p,
miR-155-5p, miR-200b-3p, and miR-9-3p in H2170 transfectants (Figure 5(ai)). Similarly,
in H1299 cells transfected with PD-L1, the cellular levels of miR-29a-3p, miR-29b-3p, miR-
21-5p, miR-125b-5p, miR-155-5p, miR-200b-3p, and miR-9-3p were notably upregulated
(Figure 5(bi)).

Int. J. Mol. Sci. 2022, 23, 11031 11 of 19 
 

 

 
Figure 5. Analysis of cellular miRNAs and exosomal miRNAs revealed by real-time RT-PCR in PD-
L1 transfected cells. Ectopic expression of PD-L1 significantly changed the expression levels of miR-
NAs participating in tumor cell progression and metastasis. Altered expression levels of cellular 
miRNAs in H2170 (ai) and H1299 (bi). Altered expression levels of exosomal miRNAs in H2170 (aii) 
and H1299 (bii). For cellular miRNA analysis, U6 was used as an internal control; for exosomal 
miRNA analysis, spike-in protein Sp6 was used as an internal control. 

3. Discussion 
The application of immune checkpoint inhibitors is associated with improved overall 

survival, a mild safety profile, and superiority over conventional therapies for metastatic 
melanoma, colorectal carcinoma, non-small cell lung carcinoma (NSCLC), bladder carci-
noma, renal cell carcinoma, and Hodgkin lymphoma [15,16]. Additional to the role of PD-
L1 in immune regulation, tumor-intrinsic PD-L1 exerts non-immunological functions in 
regulating mesenchymal transition, glucose and lipid metabolism, stemness, and autoph-
agy [17]. In this study, we explored the function of tumor-intrinsic PD-L1 in human 
NSCLC. 

The expression analysis revealed that PD-L1 mRNA was widely downregulated in a 
panel of lung cancer cell lines, except H2228, compared to normal HBEC. At the protein 
level, the SCC cell line H157 showed the highest expression of PD-L1. In line with the 
observation that tumor-intrinsic PD1 is widespread in certain cancer types, including mel-
anoma, hepatic cell carcinoma, and NSCLC [18], we found that the protein expression 
levels of PD1 were significantly increased in six lung cancer cell lines. The different ex-
pression patterns of PD1/PD-L1 imply their different functions in NSCLC. Increasing ev-
idence shows that NSCLC in patients with PD-L1 overexpression (TPS > 50%) is signifi-
cantly related to tobacco smoking, and these patients experience better responses to 

Figure 5. Analysis of cellular miRNAs and exosomal miRNAs revealed by real-time RT-PCR in PD-L1
transfected cells. Ectopic expression of PD-L1 significantly changed the expression levels of miRNAs
participating in tumor cell progression and metastasis. Altered expression levels of cellular miRNAs
in H2170 (ai) and H1299 (bi). Altered expression levels of exosomal miRNAs in H2170 (aii) and
H1299 (bii). For cellular miRNA analysis, U6 was used as an internal control; for exosomal miRNA
analysis, spike-in protein Sp6 was used as an internal control. * p < 0.05, ** p < 0.01, *** p < 0.001.

Before expression analysis of exosomal miRNAs, exosomes were characterized by
Western blotting using antibodies against CD9 and CD63, two widely recognized markers
for exosomes (Supplementary Figure S7). For the exosomal miRNA analysis, we excluded
miR-200b-3p and miR-9-3p due to their very low expression levels in the exosomes. In
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H2170 cells, overexpression of PD-L1 resulted in significantly enhanced expression levels of
exosomal miR-19a-3p and miR-155-5p, but a decreased level of miR-125b-5p, compared to
mock control cells (Figure 5(aii)). In PD-L1-overexpressing H1299 cells, exosomal miR-29b-3p,
miR-21-5p, and miR-125b-5p were upregulated (Figure 5(bii)). The expression pattern of
exosomal miRNAs differed from that of cellular miRNAs.

3. Discussion

The application of immune checkpoint inhibitors is associated with improved overall
survival, a mild safety profile, and superiority over conventional therapies for metastatic
melanoma, colorectal carcinoma, non-small cell lung carcinoma (NSCLC), bladder carci-
noma, renal cell carcinoma, and Hodgkin lymphoma [15,16]. Additional to the role of PD-L1
in immune regulation, tumor-intrinsic PD-L1 exerts non-immunological functions in regu-
lating mesenchymal transition, glucose and lipid metabolism, stemness, and autophagy [17].
In this study, we explored the function of tumor-intrinsic PD-L1 in human NSCLC.

The expression analysis revealed that PD-L1 mRNA was widely downregulated in a
panel of lung cancer cell lines, except H2228, compared to normal HBEC. At the protein
level, the SCC cell line H157 showed the highest expression of PD-L1. In line with the obser-
vation that tumor-intrinsic PD1 is widespread in certain cancer types, including melanoma,
hepatic cell carcinoma, and NSCLC [18], we found that the protein expression levels of PD1
were significantly increased in six lung cancer cell lines. The different expression patterns
of PD1/PD-L1 imply their different functions in NSCLC. Increasing evidence shows that
NSCLC in patients with PD-L1 overexpression (TPS > 50%) is significantly related to to-
bacco smoking, and these patients experience better responses to immunotherapy with
PD-L1 inhibitors [19,20]. However, we could not analyze the relationship between PD-L1
expression and smoking, since the smoking history of the NSCLC patients included in the
study was not available.

Methylation of the PD-L1 gene promoter represents a potential diagnostic and prog-
nostic marker in gastrointestinal carcinoma [21,22]. In NSCLC, PD-L1 expression was found
to be regulated by both DNA methylation and NF-kB during epithelial–mesenchymal tran-
sitions [23]. In head and neck cancer, PD1 DNA methylation is associated with human
papillomavirus prognosis, mutational load, and immune infiltrates [24]. These findings
imply an epigenetic regulation of PD1/PD-L1 in cancer cells. In our study, despite the
upregulation of PD1/PD-L1 upon treatment with a DNA methyltransferase inhibitor and a
histone deacetylase inhibitor, bisulfite sequencing did not reveal any promoter methylation.
This might be explained by the fact that neither cis-regulatory element in the PD1 nor PD-L1
promoter is methylated, but promoters of their upstream regulatory genes are methylated,
leading to an increased gene expression after demethylation. Anyhow, to address the epi-
genetic mechanism accurately, more CpG islands of PD1/PD-L1 DNA should be included
in future investigations.

A compelling body of research indicates an immune-independent tumor cell prolifera-
tion and oncogenic signals triggered by intrinsic PD-L1 in melanoma, ovarian cancer, and
head and neck cancer [25–27]. In line with these findings, our data show that overexpres-
sion of PD-L1 was associated with enhanced colony formation, migration/invasion, and
cell cycle progression, while knockdown of PD-L1 led to opposite behaviors of the NSCLC
cells, suggesting that PD-L1 may act as an oncogene to regulate immune-independent
tumor growth in NSCLC.

In the exploration of PD-L1-dependent signaling pathways, we found that several
oncogenic pathways were markedly affected by PD-L1. Ectopic expression of PD-L1 caused
increased phosphorylation of ERK, a key player of the MAPK pathway, and activation of
Wnt/β-catenin pathway, evident with an enhanced level of active β-catenin, increased
Wnt/β-catenin activity, and upregulation of downstream target genes. The PD-L1 gene
silencing, however, resulted in a decreased AKT activity. In breast cancer cells, overexpres-
sion of PD-L1 was reported to contribute to chemoresistance and stemness-like properties
via activating PI3K/AKT and MAPK/ERK pathways [28]. In line with our findings, the
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regulatory role of PD-L1 on Wnt/β-catenin signaling was depicted in colorectal carcinoma
(CRC) and NSCLC. In CRC, PD-L1 interacting with Frizzled 6, activated β-catenin to
promote cancer stem cell expansion [29]. In NSCLC, PD-L1 was able to stabilize β-catenin
through the activation of PI3K/AKT and MAPK/ERK signaling pathways [30]. Wnt/β-
catenin and MAPK signaling can be allies or enemies in different battlefields [31]. The
crosstalk between Wnt/β-catenin and MAPK pathway or other oncogenic pathways may
affect their target gene expression. On the other hand, activation of β-catenin was found to
induce PD-L1 transcription and promote tumor cell immune evasion [32]. These data imply
a bidirectional positive feedback loop between PD-L1 and β-catenin, and provide hints
for therapeutic implications. Indeed, blocking Wnt/β-catenin signaling amplified anti-
PD-1 therapeutic efficacy by inhibiting tumor growth, migration, and promoting immune
infiltration in glioblastomas [33].

A vast number of studies demonstrate that microRNAs may regulate PD-L1 in two
different ways: directly targeting the 3′-UTR of PD-L1 mRNA or indirectly via signaling
molecules [34]. Yet, knowledge on the regulatory role of PD-L1 on miRNAs appears to be
sparse. In our study, we analyzed the expression of several miRNAs involved in lung cancer
migration, invasion, and metastasis in the context of PD-L1 overexpression. MiR-29b atten-
uates NSCLC metastasis by targeting matrix metalloproteinase 2 and PTEN [35]. MiR-21
promotes NSCLC cell progression by downregulating SOCS1, SOCS6, and PTEN, associ-
ated with poor prognosis of primary NSCLC [36]. MiR-125b promotes tumor metastasis
through targeting tumor protein 53-induced nuclear protein 1 in NSCLC [37]. Overexpres-
sion of miR-19a/b is related to the poor prognosis and metastasis of pulmonary cancer
cells [38]. MiR-155-5p suppresses the migration and invasion of lung adenocarcinoma
cells by targeting Smad2 [39]. MiR-199a-5p suppresses NSCLC progression [40], while
miR-200b-3p and miR-9 promote NSCLC metastasis by targeting ABCA1 and TGFBR2,
respectively [41,42]. In the study, most of the selected miRNAs were upregulated in the
PD-L1-transfected cells. By comparison with the cellular miRNA expression between
H2170 and H1299 cells, we found that the miRNA expression patterns are similar but not
exactly identical, which might be related to the context of cell-type specificity. In addition
to cellular miRNAs, exosomal miRNAs were included in our analyses, since they are one
of the important molecular cargos transmitted by exosomes to facilitate cell-cell communi-
cation. It was found that the expression patterns between lysate miRNAs and exosomal
miRNAs were not the same, however, they shared some similarities. For example, in H2170
cells transfected with PD-L1, a remarkable upregulation of miR-19a-39p and miR-155-5p
was found in both cell lysates and exosomes, but other miRNAs showed diverse expression
levels between lysates and exosomes, compared to the mock-transfected control cells. It
is not surprising to see this discrepancy. Exosome motifs and the 3′-end sequences of
miRNA determine the process of miRNA loading into exosomes, which may result in
altered miRNA enrichment within exosomes, compared to their original cells [43]. This
diversity has also been observed in clinical samples derived from laryngeal squamous cell
carcinoma, in which microRNA expression profiles differed significantly from parental cells
to exosomes [44]. Overall, in the translational context, these tumor-associated miRNAs
could be potential therapeutic targets for NSCLC.

Clinically, PD-L1 expression has been considered as a predictive biomarker to stratify
NSCLC patients for immunotherapy, albeit with limitations and challenges [45,46]. In line
with previous reports [47,48], our data show that PD-L1 might be a potential diagnostic
marker for lung SCC, since SCC samples exhibited significantly more positive staining of
PD-L1, compared to lung ADC. The correlation between PD1 and PD-L1 in vivo turned
out to be significantly positive (Table 4), in line with the in vitro findings that PD-L1
overexpression led to significantly increased levels of the PD1 protein (Supplementary
Figure S8). For example, a blockade of tumor-expressed PD1 promotes lung cancer growth,
while inhibits melanoma and hepatocellular cancer cell growth [18]. The influence of the
multifaceted functions of PD1 beyond immune checkpoint signaling on the anti-PD1/PD-L1
therapeutic efficiency is worth to be studied further.
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In summary, PD-L1 exerts a tumor-promoting function in NSCLC through the activa-
tion of oncogenic pathways. The PD-L1-induced changes in intracellular signaling beyond
immunity may define new mechanisms through which the PD1/PD-L1 axis facilitates tu-
mor cell progression and development and indicate new therapeutic strategies for patients
with lung cancer.

4. Materials and Methods
4.1. Cell Culture

Thirteen NSCLC cell lines, including eight ADC (H1299, H2030, H23, A549, H322,
H1650, H1975, and H2228) and three SCC (H2170, H226, and H157) lines, together with
two SCLC cell lines (COLO677 and H82), were purchased from the American Type Culture
Collection (ATCC, Rockville, MD, USA) and the German Collection of Microorganisms
and Cell Culture (DSMZ, Braunschweig, Germany). The cell lines were grown in RPMI
1640 medium supplemented with 10% (v/v) fetal bovine serum (FBS) (Thermo Fisher,
Hamburg, Germany). For the transfected cells, 400 ng/µL of Geneticin (G418) (Santa
Cruz Biotechnology, Dallas, TX, USA) was added into the cell culture medium. Normal
human bronchial epithelial cells (HBEC) were obtained from Lonza (Cologne, Germany)
and grown in BEG media (Cologne, Germany). Cells were maintained in a humidified
incubator with 5% CO2 at 37 ◦C.

For drug treatment, 11 lung cancer cell lines were seeded in six-well plates. When the
cells reached 50% confluence, they were treated with a DNA methyltransferase inhibitor,
5-aza-2′-deoxycytidine (5-Aza) and a histone deacetylase inhibitor, Trichostatin A (TSA)
(Santa Cruz Biotechnology, Dallas, TX, USA), respectively, as previously described [49].

4.2. RNA Extraction and Real-Time RT-PCR

RNA extraction from cell lines and exosomes was performed using Trizol reagent
(Ambion, Carlsbad CA, USA) and reversely transcribed to cDNA using a QuantiTect®

Reverse Transcription Kit (Qiagen, Hilden, Germany) and a miRCURY lNA RT Kit (Qiagen,
Hilden, Germany), according to the manufacturer’s protocols.

Real-time RT-PCR was conducted on the Rotor-Gene Q (Qiagen, Hilden, Germany)
using a FastStart Universal SYBR Green Master (Merck, Munich, Germany) for gene expres-
sion analysis and a miRCURY LNA SYBR Green PCR Kit for miRNA analysis, following the
manufacturer’s guidance. Glyceraldehyde-3-phosphate dehydrogenase (GAPDH) or U6
was used as an internal control for gene expression (mRNA) or miRNA expression analysis.
For exosomal miRNA analysis, the Sp6 spike-in protein (Qiagen, Hilden, Germany) was
used as an internal control. Real-time RT-PCR results were quantified using the 2-∆∆CT
method [50]. The data presented were derived from three independent experiments. The
primer sequences are available in Supplementary Table S1.

4.3. Genomic DNA Isolation, Bisulfite Treatment, and Bisulfite Sequencing

Genomic DNA isolation, bisulfite treatment, and bisulfite sequencing (BS) were con-
ducted as described previously [51]. The primers used for bisulfite sequencing are included
in Supplementary Table S1.

4.4. Protein Extraction and Western Blot Analysis

Proteins from the cells were extracted using RIPA buffer (Merck, Munich, Germany).
The concentrations of the proteins were determined using a BCATM Protein Assay Kit
(Thermo Scientific, Rockford, IL, USA). Western blot analysis was carried out as described
previously [52]. In total, 30 µg of proteins were electrophoresed on 8%, 12%, or 15%
SDS-PAGE gels according to the size of the proteins, and transferred on nitrocellulose mem-
branes. Antibodies applied for the Western blot analysis are listed in Supplementary Table
S2. An enhanced chemiluminescence detection system (Santa Cruz Biotechnology, Dallas,
TX, USA) was used to detect signals according to the manufacturer’s recommendations.
β-actin served as a loading control.
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4.5. Immunohistochemistry on Tissue Microarrays (TMAs)

TMAs containing 131 primary lung tumor samples obtained from Hospital Bad Berka
from 1999 to 2002 were constructed using a manual tissue arrayer (Beecher Instruments,
Woodland, WI, USA) as previously described [53]. Neither adjuvant radiotherapy nor
chemotherapy was performed before surgical operations. This study was approved by the
local ethical committee of University Hospital Jena (Nr.: 3815-07/13).

Protein expression of PD1 and PD-L1 was analyzed by immunohistochemistry (IHC)
on the lung tumor TMA. Briefly, after deparaffinization with xylene and gradual hydration,
antigen retrieval was carried out by treatment of the tissue sections in a pressure cooker for
6 min. The working concentrations of the antibodies are presented in Supplementary Table S2.
Signal detection was conducted according to the manufacturer’s protocol (LSABTM 2-kits,
DAKO, Hamburg, Germany). For the expression of PD1, immunohistochemistry was
scored semiquantitatively, with less than 5 % positively stained cells classed as negative
staining (score 0), 5–25% positively stained cells as weak staining (score 1), 26–50% posi-
tively stained cells as moderate staining (score 2), and more than 50 % positively stained
cells as strong staining (score 3). For the statistical analysis, scores 0 and 1 together were
considered negative, while scores 2 and 3 were grouped together as positive. Regarding
the expression of PD-L1, a tumor proportion score (TPS) less than 1% (TPS1) was consid-
ered negative expression, TPS2 (1–49% positive staining) was considered low or moderate
expression, and TPS3 (≥50% positive staining) was viewed as high expression. For the
statistical evaluation, TPS1 was defined as negative, while TPS2 and TPS3 were grouped
together as positive.

4.6. Stable Transfection

An expression vector containing the full-length cDNA of the human PD-L1 gene was
obtained from GenScript (Piscataway, NJ, USA). It was transfected into a lung SCC cell line
H2170 and an ADC cell line H1299 using lipofectamine® 2000 DNA Transfection Reagent
(Thermo Fisher, Hamburg, Germany). Both cell lines exhibit no endogenous expression of
PD-L1. An empty vector pcDNA3.1 (GenScript, Piscataway, NJ, USA) was used as a mock
control. Stable transfection was carried out by adding G418 (400 µg/mL) (Santa Cruz, Santa
Cruz, Dallas, TX, USA) for the selection of positive clones, as previously described [54].

4.7. Colony Formation Assay, Cell Migration and Invasion Assays

In order to determine whether PD-L1 plays a role in cell proliferative ability, PD-
L1-transfected cells and mock cells from H2170 and H1299 were subjected to a colony
formation assay. Cells were seeded in six-well plates at a density of 3000 cells/well and
incubated for 10–11 days in a 37 ◦C incubator with 5% CO2 to allow colony formation,
followed by fixation and staining with 0.5% crystal violet. The number of colonies was
counted under microscope. A cluster containing around 50 cells represents one colony.

To assess the migratory potential of the transfected cells, 3 × 104 cells/well) were
resuspended in 500 µL FBS-free cell culture medium and seeded in the upper transwell
chamber (8 µm pore size, Corning®, Discovery Labware, Corning, NY, USA). Medium that
contained 20% (v/v) FBS was placed in the lower chamber and acted as a chemoattractant.
The upper chambers were then placed in a 24-well culture dish with 700 µL of cell culture
medium, and the cells were incubated at 37 ◦C for 24 h. Afterwards, the non-migratory cells
were removed using a cotton swab. The migratory cells were fixed, stained with crystal
violet at 37 ◦C for 10 min, and counted.

In parallel to the migration assay, an invasion assay using Corning® BioCoat™ Matrigel®

Invasion Chambers (Discovery Labware, Inc.) was performed. Cells (3 × 104 cells/well) were
cultured in FBS-free medium for 24 h and seeded in Matrigel-coated transwell chambers
(BD Biosciences, Franklin Lakes, NJ, USA). After incubation at 37 ◦C for 24 h, uninvaded
cells were removed, and invaded cells were stained and counted.

For cell cycle analysis, cells (1 × 105 cells/well) were seeded in six-well plates and
incubated at 37 ◦C for 72 h. Cells were centrifuged at 1100 rpm for 5 min at room tem-
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perature and fixed with pre-cold 70% ethanol. Following fixation, cells were transferred
into 5 mL polystyrene round-bottom test tubes (Discovery Labware, Inc.) and centrifuged
at 1800 rpm at 4 ◦C for 5 min. After washing, the cell pellets were resuspended in PBS
containing 50 µg/mL RNase A, 1% (w/v) glucose, and 50 µg/mL propidium iodide, and
incubated at 4 ◦C for 45 min in darkness. Cell cycle analysis was carried out using a BD
FACSCanto™ II flow cytometer (BD Biosciences, Heidelberg, Germany). Data were gated
to exclude debris, and the different cell cycle phases were quantified using FACSDiva
(BD Biosciences) software.

All the assays were performed in triplicate in two independent experiments.

4.8. RNA Interference (siRNA)

H157 cells exhibiting endogenous expression of PD-L1 were selected for the “loss-
of-function” analysis by siRNA knockdown. The cells were seeded in a six-well plate
(3.5 × 105 cells/well) and incubated for 24 h. After that, the cells were transiently trans-
fected with PD-L1 siRNA (sc-39699, Santa Cruz Biotechnology, Dallas, TX, USA) or control
siRNA (sc-37007, Santa Cruz Biotechnology, Dallas, TX, USA) using Lipofectamine 2000
(Thermo Fisher, Hamburg, Germany). After incubation for 48 h, cells were harvested for
RNA and protein extraction.

4.9. TCF/LEF Activity—Luciferase Reporter Assay

TCF/LEF luciferase reporter vector, known as a Wnt pathway responsive reporter,
was used to investigate Wnt signaling. Briefly, H2170 and H1299 cells, including both the
mock and PDL1 transfectants, were transiently co-transfected with pGL4.49[luc2P/TCF-
LEF-RE/Hygro] (Promega; E6921) and pGL4.74 [hRluc/TK] (Promega; E4611) (ratio 10:1)
using Lipofectamine®2000 transfection reagent (Invitrogen) following the manufacturer’s
instructions. Subsequently, 24 h after transfection, cells were treated with the Wnt agonist
SKL2001 (CAYMAN CHEMICAL COMPANY, catalog number 26334) or DMSO control for
24 h. Luciferase activity was assessed using the Dual-Luciferase Reporter Assay System
(Promega; E1910), and luminescence was measured using the Infinite® 200 Pro (Tecan)
reader. Firefly luciferase activity was normalized to Renilla reniformis luciferase activity and
to the DMSO control.

4.10. Exosome Isolation

Exosome isolation was performed as previously described [55]. Briefly, cells were
washed with PBS three times and starved in serum-free medium for 24 h. The cell debris
was removed from the cell culture media by centrifugation at 2000× g for 30 min. Then, cell
media were centrifuged at 19,000× g for 30 min. After filtration of the supernatants using
a filter of 0.2–0.8 µm pore size, the supernatant was centrifuged at 100,000× g for 70 min.
Pellets were dissolved in PBS and centrifuged again at 100,000× g for 70 min. The isolated
exosomes were subjected to Western blot analysis using antibodies against CD9 and CD63.

4.11. Statistical Analysis

Statistical analysis was carried out using the software package SPSS21 (SPSS, Chicago,
IL, USA). Two-tailed chi-squared (χ2) and Fisher’s exact tests were conducted for evaluation
of the association between protein expression and clinicopathological data. Student’s t-test
was applied to analyze the differences between PD-L1 transfectants and mock control cells.
Pearson correlation analysis was performed to evaluate the correlation between PD1 and
PD-L1 protein expression in primary tumor samples. The p-values presented are two-sided.
A p-value below 0.05 was defined as statistically significant.

Supplementary Materials: The supporting information can be downloaded at: https://www.mdpi.
com/article/10.3390/ijms231911031/s1.
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NSCLC Non-small cell lung cancer
SCLC Small cell lung cancer
ADC Adenocarcinoma
SCC Squamous cell carcinoma
PD1 Programmed cell death protein 1
PD-L1 Programmed cell death 1 ligand 1
5-Aza 5-aza-2′-deoxycytidine
TSA Trichostatin A
HBEC Human bronchial epithelial cells
miRNA microRNA
TMA Tissue microarray
TPS Tumor proportion score (TPS)
siRNA RNA interference
MAPK Mitogen-activated protein kinase
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Sp5 Sp5 transcription factor
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