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Abstract: High-risk human papillomaviruses (HPV) are important agents, responsible for a large 

percentage of the 745,000 cases of head and neck squamous cell carcinomas (HNSCC), which were 

identified worldwide in 2020. In addition to being virally induced, tobacco and heavy alcohol 

consumption are believed to cause DNA damage contributing to the high number of HNSCC cases. 

Gene expression and DNA methylation differ between HNSCC based on HPV status. We used 

publicly available gene expression and DNA methylation profiles from the Cancer Genome Atlas 

and compared HPV positive and HPV negative HNSCC groups. We used differential gene 

expression analysis, differential methylation analysis, and a combination of these two analyses to 

identify the differences. Differential expression analysis identified 1854 differentially expressed 

genes, including PCNA, TNFRSF14, TRAF1, TRAF2, BCL2, and BIRC3. SYCP2 was identified as one 

of the top deregulated genes in the differential methylation analysis and in the combined differential 

expression and methylation analyses. Additionally, pathway and ontology analyses identified the 

extracellular matrix and receptor interaction pathway as the most altered between HPV negative 

and HPV positive HNSCC groups. Combining gene expression and DNA methylation can help in 

elucidating the genes involved in HPV positive HNSCC tumorigenesis, such as SYCP2 and TAF7L. 
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1. Background 

Head and neck squamous cell carcinomas (HNSCC) are a group of cancers from 

anatomically distinct areas: Oropharynx, larynx, hypopharynx, oral cavity, and tongue. 

HNSCC accounted for approximately 745,000 cancer cases worldwide in 2020, which is 

an alarming number [1,2]. Etiologic agents identified as causes of HNSCC include alcohol 

consumption and tobacco use, and high-risk human papillomavirus (HPV) infection [3,4]. 

Changes in sexual behavior have been found to be associated with higher HPV oral and 

oropharyngeal incidence and HPV is becoming increasingly indicated as one of the major 

HNSCC etiologic agents [5–9]. The predominant HPV genotype identified in HNSCC is 

HPV 16 (in as many as 90% of cases). 

HPVs are non-enveloped, double-stranded DNA viruses with a genome that 

includes six early expressed genes, and two late expressed genes [10]. Two of the early 

genes, E6 and E7, are characterized as oncogenes in cervical, oral, anal, and penile cases 

[11–13]. E6 interferes with cell survival pathways by targeting p53 for proteasome 
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degradation, and E7 promotes cell proliferation interfering with the function of the 

Retinoblastoma protein (pRb) [11,12]. 

Genes involved in cancer development and progression can affect cell proliferation, 

metastasis, and invasion [14]. As a result of HPV infection, pathways that control 

cytoskeletal rearrangement, immune response, extracellular matrix formation, and 

receptor activation are differentially altered [14–16]. These genetic changes sustained 

during carcinogenesis and viral oncogenesis are a result of changes in gene expression 

and transcriptome profile. HNSCC onset, progression, and outcome differ depending on 

the presence or absence of HPV. In HPV negative (HPVN) HNSCC patients, the tumor 

suppressor genes TP53 and p16, along with CCND1 oncogene are the most frequently 

identified mutated genes [17,18]. In HPV positive (HPVP) HNSCC patients, the viral 

oncogenes E6 and E7 initiate deregulation by targeting p53 and pRb, respectively [11,12]. 

Studies have started to describe epigenetic profile changes, specifically on the level of 

DNA methylation, and it has been reported that the methylation status in HNSCC patients 

is associated with HPV infection (i.e., positive versus negative) [19–22]. 

Recently, there has been a growing interest and need for understanding the biological 

significance of HPVP and HPVN HNSCC. Many of these studies have utilized tools of the 

rapidly expanding field of bioinformatics [23–25]. 

We performed a meta-analysis of The Cancer Genome Atlas (TCGA) HPVP and 

HPVN HNSCC transcriptome and DNA methylome data [26,27]. To our knowledge, this 

is the first time a study bridges these two datasets and compares groups based on the HPV 

status in HNSCC patient samples. Our findings show that pathways involved in viral 

invasion and trafficking, as well as immune system activation are differentially expressed 

in HPVP HNSCC. We identified that the differential expression of these pathways 

positively correlates with the differential methylation analysis. 

This study demonstrates the ability of computational methods to identify biomarkers 

of potential clinical significance from a centralized resource of available datasets, such as 

TCGA. 

2. Results 

2.1. TCGA HNSCC HPVP and HPVN Patients Have Comparable Clinical History 

To ensure that the data from the TCGA database were comparable, we first examined 

the clinical profile of the patients in both HPVP and HPVN patient groups. Patient age 

distribution showed that the median values were comparable in both HPVN and HPVP 

groups (HPVN = 59, HPVP = 58 years) (Figure 1A). Most patients were grouped into 56-

65 years of age range, and the collective (both for HPVP and HPVN groups) median age 

was in the same age range, as well (median = 58.5 years) (Figure 1B). We observed that 

there were no HPVP patients in the oldest patient category of 76–85 years of age (Figure 

1B). Sex distribution in our sample groups revealed that females (n = 21) were 

underrepresented in comparison to males (n = 93) (Figure 1C). According to TCGA’s 

classification in different race categories, race distribution showed that the white race was 

significantly the most represented one (n = 98) (Figure 1D). Anatomical site analysis of 

these HNSCC showed that there were apparent differences in the location of tumor 

depending on the HPV status (Figure 1E–G). HPVP cancers were primarily found in the 

tonsil region and the base of the tongue, and HPVN cancers were primarily in the oral 

tongue and the larynx (Figure 1F,G). 
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Figure 1. Clinical data of the TCGA HNSCC HPV- positive and negative patients. Patients were 

filtered according to the HPV status using the information regarding p16 expression and in situ 

hybridization information (only patients with information present were included in the study; n = 

114, HPVP = 41, HPVN = 73). (A) Distribution of age at cancer diagnosis between two groups of 

patients, HPVP and HPVP; (B) distribution of patients in different age groups, and sidewise 

comparison of age groups and HPV status; (C) representation of male and female patients, HPVP 

and HPVN; (D) representation of different races, independent of sex or HPV status; (E) distribution 

of different anatomical sites where cancer originated; (F,G) a closer look at the specific location of 

HPVN patients (F) and HPVP (G). 
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2.2. Clustering of Samples Confirms That HPVN and HPVP Are Two Separate Comparable 

Groups 

To explore clustering and similarity of samples, we analyzed the two experimental 

groups, HPVN and HPVP, by PCA and clustering on heatmap. PCA revealed that the two 

groups (detailed explanation in Material and Methods) clustered mostly as two separate 

and distinct groups with an overlapping middle area (Figure 2A, HPVN in blue, HPVP in 

pink). 

Heatmaps (Figures 2B–E) revealed specific patterns: 

1. The pattern of specific groups of genes in a larger scale analysis of the top 500 most 

variable genes (Figure 2B) and of the top 30 most variable genes (Figure 2C), 

remained consistent. Genes including kallikreins family genes (serine proteases) 

remained highly variable between the patients [28,29]. Keratin, a structural 

component was found as variable, as well as oxidative damage protection proteins 

(GPX2), cytokines, inflammatory response genes, immune response genes, and cell 

cycle controlling genes. Figure 2C depicts a gene responsible for stratification of the 

skin (KRTDAP), that was highly variably expressed, as well as an epithelial immune 

response and differentiation gene (CRNN). At a larger scale, genes from two groups 

of patients seemed to cluster mostly separately, significantly resembling the 

clustering observed in PCA (Figure 2A), with an intermediate overlapping cluster of 

samples (Figure 2B). 

2. Top 500 and top 30 most abundant transcripts clustered mostly in two different 

groups (Figures 2D and 3E, respectively). Notably, some of the genes with the highest 

numbers of transcripts were cell cycle checkpoint genes, cytoskeletal regulatory 

genes, and immune response genes. 
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Figure 2. Clustering of the TCGA HNSCC HPVP and HPVN samples and genes. PCA and heatmap 

clustering shows distinct patient groups as we classify them. (A) PCA shows that patients classify 

in two separate groups for the most part, confirming that separation in HPVP and HPVN groups 

by p16 expression and in situ hybridization was a valid parameter; (B–E) are heatmaps of the most 

variable genes (B,C) and most abundant transcripts (D,E) among n = 114 HNSCC samples; (B) shows 

the top 500 most variable genes, while a closer look at the top 30 most variable genes is shown in 

(C); top 500 transcripts with the highest mean values are depicted in (D) with a zoomed-in 

perspective to the top 30 in (E) HPVN samples (labeled in black) and HPVP (in red colored 

numbers). 
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2.3. Transcriptome Analysis Identified 1854 Differentially Expressed Genes among HPVN and 

HPVP HNSCC Groups 

To explore the impact of HPV on gene expression in HNSCC, we performed 

differential gene expression analysis (DGE) using TCGAbiolinks Bioconductor package 

for R (Material and Methods). Using FDR ≤ 0.01 and │logFC│ ≥ 1, with HPVN as baseline, 

DGE identified 1854 differentially expressed genes (DEG), 941 downregulated and 913 

upregulated in HPVP samples (Figure 3). Significant DEGs are in purple, and genes that 

are non-significant or significant by one of the parameters are in grey, blue, and green. 

Some of the key representative DEGs are: PCNA, TNFRSF14, TRAF1, TRAF2, BCL2, and 

BIRC3. 

 

Figure 3. Volcano plot depicting differentially expressed genes. Differential expression analysis 

identified 1854 DEGs, 941 were downregulated and 913 were upregulated between HPVP and 

HPVN HNSCC patient groups (using HPVN as a baseline for comparison). Purple represents DEGs, 

blue is statistically significant according to the p-value, green is statistically significant according to 

the logFC, while grey is not statistically significant. 

To functionally explain the up- and downregulated genes, we performed KEGG 

analysis [30]. Table 1 presents ten of the significantly enriched pathways (a full list of 

DEGs and KEGG pathways can be found in Supplementary Tables S1 and S3, 

respectively) [30,31]. The KEGG enriched pathways included those involved in ECM-

interaction, cytokine production, cell cycle regulators, apoptosis, and genes identified as 

part of an HPV infection. 

Pathway and ontology analyses were performed using the Enrichr and PANTHER 

classification systems (Tables 2 and 3) [32–34]. These tools identified similar pathways and 

patterns as KEGG (Tables 2–4, Supplementary Table S2). The top KEGG significantly 

enriched pathways (i.e., enrichment of genes) were consistent with HPV infection (Table 

4). Notably, transcription factors and genes involved in cell cycle progression were 

identified as upregulated. In contrast, genes involved in cellular response to stimulus, 

including chemotherapeutic agents and radiation were downregulated [35]. 
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Table 1. Representative enriched KEGG pathways with some of the top enriched respective genes 

from the DEG pool. 

Representative KEGG Pathways Mapped Differentially Expressed Genes in HPVP vs. HPVN 

ECM-receptor interaction CD36, ITGA6, ITGA5, ITGB3 

Focal adhesion BCL2, EGF, EGFR, ERBB2, IGF1, VEGFC 

Viral protein interaction with cytokine and 

cytokine receptor 
IL18, IL18RAP, IL19, LTA, TNFRSF14, IL6 

Proteoglycans in cancer TP53, EGFR, ERBB2, IGF1 

Transcriptional misregulation in cancer 
TP53, BCL2A1, CCNA1, CDKN2C, CSF2, GADD45G, ID2, IL6, 

MYCN, MEF2C, TLX3, TRAF1 

Human papillomavirus infection CCNE2, CDK6, E2F1, PDGFRB, EGF, EGFR, TP53 

TNF signaling pathway BIRC3, CCL20, CSF2, IL15, IL6, TRAF1, TRAF2, VEGFC 

Cell cycle 
BIRC3, BCL2, BCL2A1, NGF, TRAF1, TRAF2, PCNA, TP53, 

GADD45G 

TGF-beta signaling pathway AMH, DCN, ID2, IFNG, INHBA, INHBB, LTBP1, NOG, THBS1 

Apoptosis BCL2, BCL2A1, BIRC3, GADD45G, NGF, TP53, TRAF1, TRAF2 

Table 2. Representative enriched pathways, ontologies, and transcription factors filtered by A. 

Enrichr and B. PANTHER (from November 2019). 

Category Regulation Level q-Value Database 

Transcription Factors    

NFkB upregulated 3.29 × 10−2 
TRANSFAC and 

JASPAR PWMs 

SP1 human downregulated 2.37 × 10−6 
TRRUST Transcription 

Factors 2019 

Pathways    

Retinoblastoma gene in cancer WP2446 upregulated 4.58 × 10−6 
WikiPathways2019 

Human 

DNA strand elongation Homo Sapiens 

R-HAS-69190 
upregulated 2.02 × 10−4 Reactome2016 

Beta1 integrin cell surface interactions 

Homo Sapiens 
downregulated 1.25 × 10−15 NCI-Nature 2016 

ITGB1 downregulated 5.64 × 10−5 PPI Hub Proteins 

Integrin signaling pathway Homo 

Sapiens 
downregulated 2.02 × 10−6 PANTHER 2016 

Ontologies    

G1/S transition in mitotic cell cycle 

(GO:0000082) 
upregulated 3.04 × 10−2 

GO Biological Processes 

2018 

T cell receptor complex (GO:0042101) upregulated 7.57 × 10−5 
GO Cellular 

Component 2018 

Collagen binding (GO:0005518) downregulated 1.70 × 10−8 
GO Molecular Function 

2018 
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Table 3. Representative enriched pathways, ontologies, and transcription factors filtered by 

PANTHER (from November 2019). 

Upregulated Processes Downregulated Processes 

Category: Biological Processes Category: Biological Processes 

Cellular Process was top hit (GO:0009987) 311/913 genes Cellular Process was top hit (GO:0009987) 344/941 genes 

subcategory subcategory 

cell cycle (GO:0007049) 44/311 genes cellular response to stimulus (GO:0051716) 110/344 genes 

Table 4. Top 9 most statistically significant KEGG pathways obtained with the DEG from the 

differential expression analysis. 

ID Pathway Gene Ratio q-Value 

hsa04512 ECM-receptor interaction 32/714 3.47 × 10−10 

hsa04060 Cytokine-cytokine receptor interaction 61/714 3.38 × 10−8 

hsa04640 Hematopoetic cell lineage 30/714 5.86 × 10−8 

hsa04974 Protein digestion and absorption 29/714 1.19 × 10−7 

hsa04510 Focal adhesion 44/714 6.22 × 10−7 

hsa05410 Hypertrophic cardiomyopathy (HCM) 25/714 8.20 × 10−6 

hsa04151 PI3K-Akt signaling pathway 61/714 1.42 × 10−5 

hsa04061 Viral protein interaction with cytokine and cytokine receptor 26/714 1.47 × 10−5 

hsa05150 Staphylococcus aureus infection 24/714 6.90 × 10−5 

2.4. DNA Methylome Analysis Showed HPVP and HPVN HNSCC Methylation Levels Were 

Comparable 

To explore epigenetic changes in HNSCC due to HPV, we focused on DNA 

methylation. We performed a differential methylation analysis (DMA) using the 

following parameters: � �  ≥ 0.25 and p ≤ 10−5 that identified top hypo- and 

hypermethylated regions of the genome and genes involved (Table 5, Supplementary 

Table S3). We compared the overall median methylation levels of our two groups of 

patient samples, HPVN and HPVP, and observed that their median values were 

comparable ( � � ~0.46) (Figure 4A). DMA results are represented on a volcano plot 

comparing hypomethylated and hypermethylated regions in HPVP (HPVN samples used 

as baseline comparison) (Figure 4B). 

Table 5. Top 5 hypo- and hypermethylated genes among HPVN and HPVP HNSCC patients. HPVN 

is used as a baseline. 

Probe ID Gene Symbol Adjusted p-Value Status in HPVP 

cg11456145 CDC42EP5 8.40 × 10−11 Hypomethylated 

cg07915849 ABCA17P;ABCA3 6.97 × 10−10 Hypomethylated 

cg10504436 DERL3 6.97 × 10−10 Hypomethylated 

cg12181372 SYCP2 1.77 × 10−9 Hypomethylated 

cg22220310 SDF4;B3GALT6 2.08 × 10−9 Hypomethylated 

cg07907859 FAM133A;NAP1L3 2.90 × 10−9 Hypermethylated 

cg00757182 ZNF773 4.81 × 10−9 Hypermethylated 

cg12387713 MSX2 5.08 × 10−9 Hypermethylated 

cg13458645 PITX2 5.08 × 10−9 Hypermethylated 

cg11876013 SCHIP1 5.29 × 10−9 Hypermethylated 
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Figure 4. Differential methylation in HNSCC patients. Represented above is the methylation profile 

in HNSCC. (A) Mean methylation between HPVN and HPVP HNSCC patient samples; (B) volcano 

plot showing the hypomethylated genes in green and hypermethylated genes in red. HPVN 

samples are used as a baseline. We used �  ≥ 0.25 and p ≤ 10−5; (C,D) show a Starburst plot that 

combined differential gene expression data with differential methylation data. HPVN is used as a 

baseline. We used �  ≥ 0.25, FDRexpression ≤ 10-5, FDRDNAmethylation ≤ 10-5 │logFC│ ≥ 1 in (C) and more 

stringent parameters �  ≥ 0.25, FDRexpression ≤ 10-5, FDRDNAmethylation ≤ 10-5 │logFC│ ≥ 3 in (D). 

2.5. Starburst: An Analysis That Bridges Differentially Expressed and Methylated Genes 

Revealed Similar Patterns to DNA Methylome Analysis and Potential Biomarker Gene for 

HPVP HNSCC 

To identify common DEG and DMA genes, we performed a Starburst analysis [36]. 

This analysis identifies genes with similar DEG and DMR patterns (i.e., hypomethylated 

and upregulated and hypermethylated and downregulated), using the following 

parameters: � �  ≥ 0.25, FDRexpression ≤ 10−5, FDRDNAmethylation ≤ 10−5. Our analysis showed that a 

similar pattern was observed with │logFC, which is set to ≥ 1, and more stringent 

│logFC│ set to be ≥ 3. The pattern of DEG and DMR expression remained comparable 

with both parameters used, and the top statistically significant DEG and DMR identified 

in both analyses were consistent (Figure 4C,D). We decided to proceed with │logFC│ ≥ 1 

and depict some of the representative results (Table 6), and a complete list can be found 

in Supplementary Table S5. 

  



Int. J. Mol. Sci. 2022, 23, 10967 12 of 21 
 

 

Table 6. Representative top differentially expressed genes and differentially methylated regions 

filtered by Starburst (FDR cutoff = 1; HPVN group is used as a baseline). 

Gene Symbol Status in HPVP Gene Name 

TAF7L Hypomethylated TATA-Box Binding Protein Associated Factor 7 Like 

SYCP2 Hypomethylated Synaptonemal Complex Protein 2 

LOC285954;INHB

A 
Hypermethylated Inhibin Subunit Beta A 

SULF1 Hypermethylated Sulfatase 1 

CCNA1 Hypermethylated Cyclin A1 

3. Discussion 

HPV has been recognized as an important driver of HNSCC [23,37,38]. The patient 

treatment varies depending on HPV positive (HPVP) versus negative (HPVN) HNSCC; 

therefore, it is important to gain further knowledge of the genetic profile of HNSCC. Our 

study showed that HPVP HNSCC patients exhibit gene deregulation at gene transcription 

and methylation levels different from HPVN HNSCC patients. When analyzed, both 

independently and collectively, gene expression and methylation deregulation patterns 

specifically point out changes in gene pathways including those involved in controlling 

invasion, immune response, differentiation, and cell division. 

In total, the cohort of patient’s samples analyzed was 114 (HPVN = 73 and HPVP = 

41). There was a disparity in the male/female self-described sample ratio, where male 

samples accounted for 93, and female samples the remaining 21 (Figure 1C). A possible 

explanation for this disparity might be that HNSCC cases are sex biased and more 

prevalent in males, but a larger cohort needs to be analyzed to address this disparity. 

Moreover, there was an overrepresentation of white race (n = 98) in this cohort for HNSCC 

(Figure 1D). This lack of racial representation is unfortunately not uncommon in clinical 

studies. We have since identified studies that report HNSCC incidence in non-white 

population, and a similar analysis will be conducted in the future to include more equally 

distributed races [39–42]. There was an apparent absence of HPVP HNSCC patients in the 

oldest patient category (76–85 years of age—Figure 1B), and we theorize that might be due 

to the fact that HPVP HNSCC are significantly more rare than HPVN patients, thus 

causing this age groups’ underrepresentation. Alternatively, the HPVP HNSCC patients 

do not survive for a long period to be included in the data (76–85 years of age) [43,44]. We 

observed differences in anatomical sites of HNSCC that were dependent on the HPV 

status (Figure 1E–G). Tonsil was the predominant location in HPVP patients, while the 

oral tongue had the most cases in HPVN patients (Figure 1F,G). In the US, regardless of 

HPV status, the oral tongue is the most common site for HNSCC [39]. 

In our analysis, genes that play a role in all HNSCC development belonged to four 

main functional pathways: Cell survival, cellular proliferation, squamous epithelial 

differentiation, and invasion/metastasis. We identified differentially expressed and 

methylated genes in HPVP versus HPVN HNSCC. Of the 1854 DEG, 16 genes were the 

top hits identified in the transcriptome and methylome analyses. The functions of these 

genes range from cell cycle, immune response, to cell death regulation. Specifically, we 

found that SYCP2 and TAF7L were the two most deregulated genes in both analyses. 

Synaptonemal complex protein 2 (SYCP2) was the top hypomethylated and upregulated 

gene in HPVP HNSCC. This gene is the testis-specific human gene and has been 

associated with impaired meiosis [45]. It is known that SYCP2 aberrant expression in 

HPVP cancers may contribute to the genomic instability induced by high-risk HPVs and 

subsequent oncogenic change [46]. In 2015, a paper by Masterson et al. reported that 

deregulation of SYCP2 predicts early-stage human papillomavirus-positive 

oropharyngeal carcinoma. The same authors concluded their study by proposing SYCP2 

as a potential biomarker [47]. In addition, an independent study showed that SYCP2 was 

hypomethylated in HPVP HNSCC, which is in concordance with what we have 
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discovered [19]. This might imply that the previously proposed biomarker function for 

SYCP2 is not unlikely. In addition to these reports, the elevated expression of SYCP2 in 

HPV-associated tumors has previously been observed in three additional gene expression 

analysis studies [48–50]. The human protein atlas reports the highest expression of SYCP2 

in male tissues, while this protein is also expressed in female tissues, although less 

(https://www.proteinatlas.org/ENSG00000196074-SYCP2/tissue, accessed on 16 

September 2022). All of this suggests that SYCP2 is involved in more than its primary 

function as the synaptonemal complex protein when deregulated. Additional research is 

needed to determine the significance of SYCP2 levels in male and female samples. 

Similarly, the second highlighted gene that was hypomethylated and upregulated in 

HPVP HNSCC is TATA-box binding protein associated factor 7-like (TAF7L), a gene 

involved in spermatogenesis [51]. According to a study by Mobasheri et al., TAF7L is 

upregulated in breast cancer; therefore, it is possible that it is not an exclusive feature, 

which is observed only in breast cancer tissue [52]. 

DEG analysis identified that PCNA, TNFRSF14, TRAF1, TRAF2, BIRC3, and BCL2 

were significantly altered in HPVP HNSCC. 

Proliferating cell nuclear antigen (PCNA) is a gene that was significantly 

overexpressed in HPVP versus HPVN HNSCC patient samples. It has been shown that 

PCNA expression levels change during cell cycle, as PCNA is associated with proliferation 

and cell transformation in cancer [53,54]. PCNA is one of the crucial regulators in cell cycle 

as it forms complexes with cell cycle activators (cyclins and cyclin dependent kinases) and 

inhibitors (p21) [53]. Post-translational modifications are crucial for the PCNA function, 

significantly, that PCNA exists in an alternative methylated form in cancers [55]. 

Tumor necrosis factor receptor superfamily member 14 (TNFRSF14) is known to be 

a herpesvirus entry mediator by being a part of signal transduction pathways that activate 

inflammatory and inhibitory T-cell immune response [56]. It is not surprising to observe 

that it was upregulated in HPVP HNSCC, although it is interesting that a herpesvirus-

related gene has been upregulated upon HPV infection in this cancer type. TNFRSF14 is 

known to interact with TNF receptor associated factor 2 (TRAF2), which is also 

upregulated in HPVP HNSCC. This protein directly interacts with the TNF receptors, and 

forms a complex with another TRAF family member, TRAF1 which is also upregulated in 

HPVP HNSCC. This is all necessary for TNFα-mediated activation of MAPK8/JNK and 

NF-kβ, which are known to be involved in cell survival. The protein complex formed by 

TRAF2 and TRAF1 interacts with the inhibitor-of-apoptosis proteins (IAPs), and functions 

as a mediator of the anti-apoptotic and pro-survival signals from TNF receptors. One of 

those IAPs that is upregulated in HPVP HNSCC is BIRC3-apoptosis inhibitor [57–59]. 

According to The Human Protein Atlas (THPA), TRAF2 has the highest expression in 

HNSCC, followed by cervical cancer among all sampled cancer types (17 cancer types) 

[60]. BIRC3 shows similar observations, implying that this pattern may be specific for 

HPV-related HNSCC [60]. Another role of TRAF1 is a negative regulation of Toll-like 

receptor (TLR) and Nod-like receptor (NLR) signaling. TRAF1 can also, independently 

from TRAF2, contribute to NF-kβ activation; conversely, during TLR and NLR signaling, 

TRAF1 can also negatively regulate NF-kβ activation. According to THPA, TRAF1 has 

been found to be overexpressed in HNSCC. Additionally, TRAF1 can contribute to chronic 

viral infection and limit inflammation, contributing to the survival of Epstein-Barr virus 

dependent cancers [57,60]. TRAF family genes (TRAF1 and TRAF2, specifically) have been 

found to be differentially expressed in a couple of HPV-related studies, including one in 

our lab [61,62]. An interesting question follows: Does TRAF1 have a similar role in HPV-

dependent cancers, as well? To investigate this, more research is required. 

In addition to BIRC3-apoptosis inhibitor which is upregulated in HPVP HNSCC, 

BCL-2, an anti-apoptotic gene has been observed to be upregulated in HPVP HNSCC, as 

well. An existing model explains the observed picture in our data. Similarly to oncogene 

addiction, some tumor cells may be dependent on BCL-2 for survival [63]. As tumor 

environment may induce higher stress signal production that is pro-apoptotic in nature, 



Int. J. Mol. Sci. 2022, 23, 10967 14 of 21 
 

 

a proportion of cancer cells manage to overexpress BCL-2 and survive the production of 

this anti-apoptotic signal. In this way, BCL-2 helps cancer progression by promoting the 

survival of altered cells [64,65]. Moreover, BCL-2 is known to be overexpressed in non-

hematologic tumors as ovarian, neuroblastoma, colorectal, and HNSCC [66–69]. 

Starburst analysis combined DEG and DMR results and highlighted genes that were 

the most hypomethylated and upregulated and the most hypermethylated and 

downregulated. We performed Starburst with FDR cutoff = 1 and a more stringent 

parameter FDR cutoff = 3 and maintained the top highlighted gene profile 

(Supplementary Table S4, and Figure 4C,D), specifically SYCP2 and TAF7L. Considered 

together, some of the DEG identified as top hits may be used as potential biomarkers for 

early identification of HPVP HNSCC, including SYCP2, TAFL7, and ZFR2. The analysis 

of DEG of tonsil HPVP HNSCC and oral tongue HPVN HNSCC (predominant anatomical 

locations of samples), identified unique genes that were downregulated in HPVP tonsil 

HNSCC (Supplementary Table S5). Of these genes, RBM24, is shown to mediate 

repression of p53/TP53 mRNA translation and INHBA, a member of the transforming 

growth factor-beta (TGF-β) superfamily of proteins. According to THPA, the highest 

expression of RBM24 is observed in HNSCC, followed by cervical cancer, although we 

have not seen its use as a diagnostic tool [60,70]. This implies that when these genes are 

downregulated, this might specifically indicate HPVP HNSCC site specific (tonsil) cancer 

development. 

4. Methods 

4.1. Study Design, Patient Samples, and Analysis Workflow 

In this study, data were acquired through the publicly available database TCGA and 

NCI Genomic Data Commons (GDC) [26,27]. We focused on HNSCC tumor data, and all 

data used in this study were open access (downloaded in 2019). We grouped the HNSCC 

patient samples in two experimental groups: (1) HPVP HNSCC, and (2) HPVN HNSCC. 

We were interested in comparing gene expression and methylation state of tumors in the 

absence or presence of HPV. The TCGA gene expression and DNA methylome data were 

extracted from RNA-seq studies of HNSCC, and from DNA methylation arrays, 

respectively. Moreover, we requested corresponding clinical data [27]. We used the 

clinical information to filter the samples into HPVP or HPVN HNSCC. We used two 

criteria to determine the presence of HPV: (1) The expression levels of p16 gene, a well-

known tumor-suppressor gene indicative of high-risk HPV-related cancers [71]; and (2) 

we used the in situ hybridization information for p16 gene if the expression information 

of p16 was not available. Using these criteria, we were able to acquire the information 

from 73 HPVN patients and 41 HPVP patients from the transcriptome studies, and 74 

HPVN and 44 HPVP patients from the DNA methylome studies (detailed list of patients 

in Supplementary Table S6). For the patients that we had RNA-seq data available, we 

performed the analysis on clinical status, as well. To visualize clinical data, we used 

gplots, ggplot2, RColorBrewer, and colorRamps Bioconductor packages [72–75]. TCGA 

data consisted of already mapped reads that were downloaded using Bioconductor’s 

package TCGAbiolinks for TCGA data handling. R (version 3.6.1) and RStudio software 

were used for all data analyses [36,76–80]. Figure 5 shows our overall workflow, with each 

part described in detail in the following sections. 
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Figure 5. Workflow of the TCGA HPV-related HNSCC data. A schematic representation of the 

stepwise workflow of TCGA data analysis. * Clinical data analysis was performed only on RNA-seq 

patients’ data, and not on DNA methylation data. 

4.2. Data Preprocessing to Normalize Data 

We preprocessed and filtered the data according to the parameters of HPV status. 

Preprocessing makes the data as uniform as possible, rearranges, and enables it for the 

analysis software to handle it. Moreover, we normalized the data to be able to perform 

subsequent clustering steps. Data were filtered using TCGAbiolinks and xlsx packages, 

and used embedded functions TCGAanalyze_Preprocessing, TCGAanalyze 

Normalization, and TCGAanalyze_Filtering [36,81]. 

4.3. Data Clustering Analyses 

To investigate whether clustering was as expected (HPVP versus HPVN HNSCC), 

principal component analysis (PCA) and hierarchical clustering with heatmaps using 

edgeR and gplots packages, and heatmap.2 function in R were performed [75,82,83]. For 

the PCA analysis, we used prcomp function already existent in R, and for the hierarchical 

clustering with heatmaps, we used edgeR package for R and gplots, ggplot2, and RColor 

Brewer libraries for data visualization throughout the analyses [72,73,75,82]. For heatmap 

clustering, we followed a recommended online tutorial [84]. Using heatmap clustering, 

we investigated the most variable transcripts, as well as the genes that have the highest 

mean values across 114 patients, using it as a proxy for the most abundant transcripts. 
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4.4. Transcriptome Analysis: Differential Gene Expression Analysis (DGE) and Pathway 

Analysis 

To understand differential gene expression of the filtered data, a DGE analysis was 

performed using TCGAbiolinks TCGAanalyze_DEA function. We used a false discovery 

rate (FDR) cutoff of 0.01, which represents a threshold to filter DEGs according to their 

corrected p-value. Moreover, a probe expression fold change (logFC) cutoff of 1 was used. 

To understand the nature of the extracted deregulated genes, we performed a pathway 

analysis using clusterProfiler Bioconductor package, and the function enrichKEGG, along 

with packages SummarizedExperiment, MultiAssayExperiment, and genefilter [85–88]. 

To visualize the identified pathways, we used pathview Bioconductor package, and to 

visualize DEG in a volcano plot we used EnhancedVolcano Bioconductor package [31,89]. 

We used PANTHER (Protein ANalysis THrough Evolutionary Relationships) and 

Enrichr, two comprehensive gene set enrichment analysis tools, to investigate the 

enriched pathways in the DEG dataset [32–34]. 

4.5. DNA Methylome Analysis: Differential Methylation Analysis (DMA) 

To analyze the DNA methylation patterns, we used TCGAbiolinks function 

TCGAanalyze_DMR, and used p-value cutoff = 10−5 and � �  ≥ 0.25. “� � ” is a parameter for 

differential methylation levels that ranges between 0 and 1, 0 being unmethylated and 1 

being fully methylated. 

4.6. Starburst Analysis: Integrative Analysis of DEG and Differentially Methylated Regions 

(DMR) 

To observe common patterns of gene silencing or overexpression, we combined the 

two datasets (DEG and DMR) using TCGAbiolinks TCGAvisualize_starburst function 

[36]. We used � �  ≥ 0.25, FDRexpression ≤ 10−5, FDRDNAmethylation ≤ 10−5, and │logFC│ ≥ 1. 

Moreover, we tested the data with a more stringent parameter of │logFC│ ≥ 3, and 

decided to work with the former parameter, as the analysis demonstrated that the most 

prominent genes were filtered under both parameters. 

5. Conclusions 

In conclusion, using TCGA transcriptome data enabled us to identify 1854 DEG, and 

these DEG belong to a wide range of pathways, including cell cycle, papillomavirus 

infection, transcriptional misregulation, TNF signaling, cytoskeletal rearrangement, and 

apoptosis. Combining the knowledge gained, both by transcriptome and DNA 

methylome data analyses, we identified potential players that might contribute to cancer 

development in HPVP HNSCC. In particular, SYCP2 and TAF7L, which have been shown 

in the past to be deregulated in cancer development [46,47,52]. SYCP2 specifically attracts 

our attention, as it has been shown that deregulation of SYCP2 predicts early stage HPVP 

oropharyngeal carcinoma and it has been proposed to serve as a biomarker by other 

authors [47]. Moreover, we propose a potential panel of genes to serve for HPVP HNSCC 

detection and possible anatomical characterization. Screening for circulating tumor DNA 

from peripheral blood is low invasive and provides fast results, and we suggest screening 

for HPVP HNSCC using a panel, including RBM24, INHBA, SYCP2, TAFL7, and ZFR2. 

This may serve as an informative tool for HNSCC HPVP screening, and even for the 

detection of the specific anatomical location. 

Supplementary Materials: The following supporting information can be downloaded at: 

https://www.mdpi.com/article/10.3390/ijms231810967/s1. 
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Abbreviations 

HPV Human Papillomavirus 

HNSCC head and neck squamous cell carcinoma 

pRb Retinoblastoma protein 

PCNA proliferating cell nuclear antigen 

TNFRSF14 Tumor Necrosis Factor (TNF) Receptor Superfamily Member 14 

TRAF1 TNF Receptor Associated Factor 1 

TRAF2 TNF Receptor Associated Factor 2 

BCL2 B-cell lymphoma 2 apoptosis regulator 

BIRC3 Baculoviral Inhibitor of Apoptosis (IAP) Repeat Containing 3 

SYCP2 Synaptonemal Complex Protein 2 

TAF7L TATA-Box Binding Protein Associated Factor 7-Like 

E6 HPV early gene 6 

E7 HPV early gene 7 

TP53/p53 tumor suppressor gene/protein p53 

HPVN HPV negative HNSCC 

HPVP HPV positive HNSCC 

p16 cyclin-dependent kinase inhibitor 

CCND1 cyclin D1 

TCGA The Cancer Genome Atlas 

GDC NCI Genomic Data Commons 

PCA Principal Component Analysis 

DGE differential gene expression 

DMA differential methylation analysis 

DMR differential methylated regions 

GPX2 Glutathione peroxidase 2 

KRTDAP Keratinocyte Differentiation Associated Protein 

CRNN Cornulin 

PCA Principal component analysis 

KEGG Kyoto Encyclopedia of Genes and Genomes 

ECM extracellular matrix 

PANTHER protein annotation through evolutionary relationship 

THPA The Human Protein Atlas 

TLR Toll-like receptor 

NLR Nod-like receptor 

NF-kβ nuclear factor kappa-light-chain-enhancer of activated B cells 

ZFR2 Zinc Finger RNA Binding Protein 2 

INHBA Inhibin Subunit Beta A 
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