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Abstract: Sr2TiO4 is a promising photocatalyst for antibiotic degradation in wastewater. The pho-
tocatalytic performance of pristine Sr2TiO4 is limited to its wide bandgap, especially under visible
light. Doping is an effective strategy to enhance photocatalytic performance. In this work, Nb/N
co-doped layered perovskite Sr2TiO4 (Sr2TiO4:N,Nb) with varying percentages (0–5 at%) of Nb were
synthesized by sol-gel and calcination. Nb/N co-doping slightly expanded the unit cell of Sr2TiO4.
Their photocatalytic performance towards antibiotic (tetracycline) was studied under visible light
(λ > 420 nm). When Nb/(Nb + Ti) was 2 at%, Sr2TiO4:N,Nb(2%) shows optimal photocatalytic perfor-
mance with the 99% degradation after 60 min visible light irradiation, which is higher than pristine
Sr2TiO4 (40%). The enhancement in photocatalytic performance is attributed to improving light ab-
sorption, and photo-generated charges separation derived from Nb/N co-doping. Sr2TiO4:N,Nb(2%)
shows good stability after five cycles photocatalytic degradation reaction. The capture experiments
confirm that superoxide radical is the leading active species during the photocatalytic degradation
process. Therefore, the Nb/N co-doping in this work could be used as an efficient strategy for
perovskite-type semiconductor to realize visible light driving for wastewater treatment.

Keywords: layered perovskite; Sr2TiO4; Nb/N co-doping; tetracycline; photocatalyst

1. Introduction

Tetracycline (TC) is a widely used broad-spectrum antibiotic in medical treatment,
animal husbandry, and aquaculture [1]. The accumulation of antibiotics in the environment
leads to drug-resistant bacteria, which could bring serious threats to the ecological environ-
ment and human health [2–5]. Tetracycline is not only hard to self-degrade in the natural
environment [3], but also difficult to be eliminated by conventional techniques.

Photocatalytic technology [6–9] utilizes a photocatalyst to generate light-generated
holes and electrons under irradiation. Holes or electrons react with H2O or O2 to gen-
erate superoxide radicals and hydroxyl radicals with strong oxidation capacity, thereby
thoroughly oxidizing and degrading organic pollutants [10] in wastewater. The core of pho-
tocatalytic oxidation technology are photocatalysts. Among many photocatalytic materials,
strontium titanate has attracted wide attention because of its advantages, such as being
inexpensive, pollution-free, and light corrosion resistant [11]. However, strontium titanate
also has the disadvantages of having a large bandgap and high photo-generated carrier
recombination rate. Layered perovskite Sr2TiO4 exhibits higher photocatalytic performance
than perovskite SrTiO3, due to the particularly layered crystal structure and typical 2D
charge transportation properties [12,13].
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The wide bandgap of Sr2TiO4 exhibits photocatalytic activity only under ultraviolet
light, which gravely affects further enhancement of photocatalytic performance. Ion doping
can reduce the bandgap [14] of the perovskite material [11], including single metal doping,
nonmetal doping, and co-doping. For instance, by introducing Cr [15], Ag [16], F [17],
chalcogens [18], La/N [13], Cr/F [19], La/Rh [20], and La/Fe [12], the light response range
of Sr2TiO4 is extended. Properties of Sr2TiO4 doping with different ions was shown in
Table 1. Among them, co-doping has gained more interest, because co-doping is expected
to maintain the charge-balance without forming oxygen vacancies.

Table 1. Properties of Sr2TiO4 doping with differentiation.

Doping Elements A-Site/B-Site or
O-Site Doping Doping Content Eg (eV) References

Cr B 5 at% ~1.5 [15]
Ag A 2.5 at% 3.05 [16]
F O 3 at% 3.20 [17]

Chalcogens (S, Se, Te) O – 0~2.99 [18]
La/N A/O 10 at%/- 2.2 [13]
Cr/F B/O 5 at%/40 at % ~2.5 [19]

La/Rh A/B 1.5 at%/3 at % 2.43 [20]
La/Fe A/B 1.5 at%/3 at % ~2.75 [12]

Among various doping elements for oxide semiconductors, doping the nitrogen at the
O site can narrow the band gap through the hybridization N 2p with the O 2p [21]. Mean-
while, N-doped oxide semiconductors are often accompanied by oxygen vacancies [22] due
to charge compensation. Too high of a concentration of oxygen vacancies will act as a charge
carrier recombination center, which is detrimental to photocatalytic activity [16,23,24]. The
preparation methods of Sr2TiO4 mainly includes conventional solid-state reactions, the
molten-salt method, and sol-gel method. Among them, the sol-gel synthesis process can
achieve molecular-level doping.

This study chooses N-doped Sr2TiO4, where N3− replaces O2− to regulate the band
structure. In order to control the concentration of oxygen vacancies, we replace Ti4+

(r = 0.061 nm) ions with Nb5+ (r = 0.064 nm) to balance the negative charge introduced by
the unequal substitution of N3− and O2− Nb/N co-doped Sr2TiO4, which perhaps obtains
charge-balanced Sr2TiO4:N,Nb and avoids too high of a concentration of oxygen vacancies.
The amount of the dopant should also be optimized. Hence, we perform an investigation
on Nb/N co-doped layered perovskite Sr2TiO4 for photocatalytic degradation tetracycline
by varying Nb5+ doping content. To the authors’ knowledge, although there have been
several studies on the doping modification of Sr2TiO4 [12,13,15–17,19,20] for photocatalytic
hydrogen production, there is no literature report on the preparation and photocatalytic
degradation performance of Nb/N co-doped Sr2TiO4. In this work, Sr2TiO4:N,Nb(2%)
shows the best photocatalytic degradation performance towards tetracycline under visible
light. The superior photocatalytic performance can be attributed to N-doping, narrowing
the bandgap and Nb-doping compensating charge imbalance. This work affords a new
insight to realizing visible-light-driven perovskite-type semiconductors.

2. Results and Discussion
2.1. Materials Characterization

As shown in Figure 1, the crystal structure of Sr2TiO4, Sr2TiO4:N and Sr2TiO4:N,Nb
with different Nb-doping content were investigated by X-ray diffraction (XRD). There was
only one phase of Sr2TiO4 (JCPDS NO:39-1471) without preferred growth orientation in the
XRD patterns. Characteristic peaks of 2θ at 23.9, 28.3, 31.4, 32.6, 43.0, 43.7, 46.7, 55.0, 57.3,
65.4 and 68.2◦ were indexed to (101), (004), (103), (110), (006), (114), (200), (116), (213), (206)
and (220) planes of Sr2TiO4 (JCPDS NO:39-1471), respectively.
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Figure 1. XRD patterns and partial enlarged view of Sr2TiO4, Sr2TiO4:N, and Sr2TiO4:N,Nb.

After N-doping, the peak of (110) shown by Sr2TiO4:N in XRD shifted to a lower
angle, meaning larger d-spacing than that of Sr2TiO4, and this larger spacing proved that
N-doped Sr2TiO4 successfully. This is due to the N3− radius (0.146 nm) being slightly larger
than the O2− radius (0.140 nm); when N3− enters the Sr2TiO4 crystal lattice, the crystal
lattice expands. According to Bragg’s equation 2dsinθ = λ, with the increase of d-spacing,
the diffraction angle 2θ shifts to a lower angle. Similar to Sr2TiO4:N, 2θ of Sr2TiO4:N,N
shifted to a lower direction gradually with the increase of Nb-doping content, as shown
in Figure 1. Because the Nb5+ radius (0.064 nm) and N3− radius (0.146 nm) are slightly
larger than the Ti4+ radius (0.061 nm) and O2− radius (0.140 nm), respectively, the more the
Nb-doping content, the more the lattice expansion [25,26], and the more diffraction angle
offset. According to the XRD patterns, it can be concluded that both Nb5+ and N3− were
doped into the lattice of Sr2TiO4 successfully. The average crystallite sizes were calculated
by Scherrer’s equation [14] of the Sr2TiO4 (103) XRD reflection and were shown in Table 2.

Table 2. Average crystallite size of Sr2TiO4, Sr2TiO4:N, and Sr2TiO4:N,Nb.

Sr2TiO4 Sr2TiO4:N Sr2TiO4:N,Nb(1%) Sr2TiO4:N,Nb(2%) Sr2TiO4:N,Nb(3%) Sr2TiO4:N,Nb(4%) Sr2TiO4:N,Nb(5%)

Average
crystallite size 43 nm 65 nm 64 nm 55 nm 68 nm 71 nm 61 nm

The morphological characterization of Sr2TiO4 and Sr2TiO4:N,Nb(2%) were shown in
Figure 2. After being calcined at 1000 ◦C for 4 h, both pristine Sr2TiO4 and Sr2TiO4:N,Nb(2%)
were composed of irregular particles ranging from tens of nanometers to 1 micron.
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TEM elemental mapping of Sr2TiO4 was performed and the results were shown in
Figure 3a–d. It verified the existence of Sr, Ti, O, and these elements were distributed evenly.
TEM elemental mapping of Sr2TiO4:N,Nb(2%) was also performed and the results were
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shown in Figure 3f–j. It confirmed the existence of Sr, Ti, O, Nb, and N, and these elements
were evenly distributed as well.
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doped Sr2TiO4 were investigated by XPS. The complete measurement scan in Figure 5a 
showed the presence of Sr, Ti, O, N (except pristine Sr2TiO4), and Nb (only for 
Sr2TiO4:N,Nb(2%)). Figure 5b shows the fine spectra of Ti. The presence of Ti4+ was vali-
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Figure 3. (a) TEM image of Sr2TiO4; (b–d) Elemental mapping of Sr, Ti, and O; (e) TEM image of
Sr2TiO4:N,Nb(2%); (f–j) Elemental mapping of Sr, Ti, O, Nb, and N.

Figure 4a shows the absorbance of Sr2TiO4, Sr2TiO4:N, and Sr2TiO4:N,Nb. The UV-Vis
absorption spectra of the pristine and doped Sr2TiO4 showed a significant difference. The
absorption edge of pristine Sr2TiO4 is located in the ultraviolet region. However, the
absorption edge of N doping and Nb/N co-doping Sr2TiO4 were significantly red and
shifted into the visible light region, and Sr2TiO4:N,Nb(2%) showed the strongest absorption
capacity of visible light. According to the previous literature, N doping can reduce the
band gap through hybridization of N 2p with the O 2p, raising the valence band maximum.
The energy level of Nb5+ is similar to titanium 3d orbital energy, so Nb can replace Ti
and mix Nb 4d with Ti 3d orbitals without lowering the conduction band minimum [27].
The same observation has been seen in other metal oxides doped with nitrogen, such as
N-doped SrTiO3 [28], N-doped NaLaTiO4 [29], N-doped Sr2TiO4 [29], Nb/N co-doped
TiO2 [27], and so on. The bandgap Eg deduced from the Tauc plots in Figure 4b were 3.48 eV,
3.02 eV, and 2.95 eV for pristine Sr2TiO4, Sr2TiO4:N, and Sr2TiO4:N,Nb(2%), respectively.
Pristine Sr2TiO4 had a wide bandgap (3.48 eV), which was consistent with the previous
literature [13]. N doping and Nb/N co-doping can reduce the bandgap of Sr2TiO4. Similar
phenomena have also been observed in other materials involving N doping [13,24,30].
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The chemical state and chemical composition on the surfaces of the pristine and doped
Sr2TiO4 were investigated by XPS. The complete measurement scan in Figure 5a showed
the presence of Sr, Ti, O, N (except pristine Sr2TiO4), and Nb (only for Sr2TiO4:N,Nb(2%)).
Figure 5b shows the fine spectra of Ti. The presence of Ti4+ was validated by peaks at
458 and 464 eV, which were attributable to Ti 2p3/2 and Ti 2p1/2 [15,20]. The Ti 2p signal
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was gradually weakened by simultaneous Nb/N doping, confirming the substitution of Ti
with Nb. A similar phenomenon was also observed in La/Fe co-doped Sr2TiO4 [12]. The
peaks located around 529 eV and 531 eV belonged to the lattice oxygen and surface OH−

groups [31], respectively (Figure 5c). The signals of lattice oxygen gradually diminished
along with N doping, meaning the substitution of lattice oxygen with N3− for Sr2TiO4:N
and Sr2TiO4:N,Nb(2%), which was consistent with XRD results(Figure 1). Due to the strong
signal of surface OH−, it can be inferred that all samples are hydrophilic [13]. The peak
around 398 eV was assigned to lattice N3− as shown in Figure 5d. Along with Nb/N
co-doping, this signal of N 1s was enhanced, which demonstrated the introduction of Nb
promoting N doping. The 3d5/2 and 3d5/2 of Nb 3d electrons were detected at binding
energies of 207 eV and 209 eV [32], indicating the existence of Nb5+. It was worth noticing
that binding-energy shifted towards lower binding energy after Nb/N co-doping, which
suggests Nb5+ doping based on N3− doping was hole-doping. A similar shift was observed
in SrCuO2 [33].
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The charge carrier behaviors of the pristine Sr2TiO4 and Sr2TiO4:N,Nb with different
Nb-doping content were examined by PL with an excitation wavelength of 325 nm at room
temperature. As shown in Figure 6, the emission intensity of Nb/N co-doped Sr2TiO4 with
different Nb doping content were lower than that of pristine Sr2TiO4, implying that the
charge separation capability was enhanced significantly, especially for Sr2TiO4:N,Nb(2%).
The negative charge (O vacancy) introduced by the unequal replacement of N3− and
O2− can be balanced by Nb-doping. Therefore, Nb/N co-doping Sr2TiO4 can reduce the
photoelectron-hole recombination probability, which was beneficial to the photocatalytic
reaction. Nb5+, as a charge balancing agent, can compensate for a charge imbalance caused
by N substitution of O, Nb•Ti + N′O, just as La played a charge balancing role in La/N
co-doped Sr2TiO4 [13], La•Sr + N′O.
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2.2. Photoelectrochemical Properties of Sr2TiO4:N,Nb

To further confirm the effect of Nb doping on photo-carriers separation and migra-
tion of Sr2TiO4:N,Nb(2%), photochemical measurements were performed. As shown in
Figure 7a, the transient-state photocurrent densities of Sr2TiO4, Sr2TiO4:N, and Sr2TiO4:N,
Nb(2%) remains stable under chopped light conditions for AM 1.5 illumination. An anodic
photocurrent is clearly seen for all investigated samples, indicating that they are n-type
semiconductors. The photocurrent density of Sr2TiO4, Sr2TiO4:N, and Sr2TiO4:N,Nb(2%)
are 0.034 µA·cm−2, 0.199 µA·cm−2, and 0.274·cm−2 at 1.23 VRHE, respectively. The pho-
tocurrent density of Sr2TiO4:N,Nb(2%) was 8 times that of Sr2TiO4 and 1.37 times that of
Sr2TiO4:N, implying the charge-separated significantly more efficiently by the introduction
of Nb5+ based on N3−.
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Sr2TiO4:N,Nb(2%), inset shows the equivalent circuit.

Figure 7b shows the electrochemical impedance spectroscopy (EIS) of Sr2TiO4, Sr2TiO4:N,
and Sr2TiO4:N,Nb(2%) and the equivalent circuit, which can further verify the charge trans-
port and transfer. It is well known that the smaller resistance radius indicates the higher
separation and migration of electrons and holes. Compared with Sr2TiO4, Sr2TiO4:N, and
Sr2TiO4:N,Nb(2%) had a smaller resistance radius, indicating more efficient separation of
photocarriers. The result was consistent with the PL spectra and transient photocurrent
response. The enhancement of the photocurrent density was attributed to the sufficient light
absorption and effective photocarriers separation by introducing Nb5+ based on N3− doping.

The specific surface area was tested by an N2 adsorption-desorption isotherm at 77 K.
As shown in Figure 8, both Sr2TiO4 and Sr2TiO4:N,Nb(2%) had typical IV isotherms and H3
hysteresis loops. H3 type hysteresis loops can be observed virtually on adsorbents with a
lamellar structure. At high specific pressure, the curves showed an obvious hysteresis loop,
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which indicated that there was a mesoporous structure in the samples. The average pore
diameter was determined using the Barrett–Joyner–Halenda (BJH) methods. BJT desorption
average pore diameter (4 V/A) of Sr2TiO4 and Sr2TiO4:N,Nb(2%) were 3824 nm, and
23.22 nm, respectively. The specific surface areas of Sr2TiO4 and Sr2TiO4:N,Nb(2%) were
1.213 m2/g and 6.718 m2/g, respectively, which were very low. Specific surface area was
not the main reason for the improvement of the photocatalytic degradation performance of
Sr2TiO4:N,Nb(2%).
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2.3. Photocatalytic Degradation of TC

As shown in Figure 9a, the adsorption capacity of photocatalysts towards TC after stir-
ring for 30 min in the dark shows that Sr2TiO4:N,Nb(2%) exhibited the best adsorption prop-
erty among them. However, the adsorption capacity was low, which was consistent with
BET results. The photocatalytic properties of Sr2TiO4, Sr2TiO4:N, and Sr2TiO4:N,Nb(2%)
were investigated by photocatalytic degradation of TC with a 1 g·L−1 photocatalyst under
visible light. A blank experiment without a photocatalyst was also carried out to exclude the
impact of photolysis. The self-degradation rate was 3.6% after 60 min due to negligible pho-
tooxygenation reactions in the presence of dissolved oxygen (Figure 9b) [34,35]. As shown
in Figure 9b, the photocatalytic performance of all Nb/N co-doping Sr2TiO4 exhibited a
higher degradation rate than prime Sr2TiO4 under the same conditions. The photocatalytic
degradation rate of Sr2TiO4:N,Nb increased as Nb-doping content increased from 0% to
2%. When the content of Nb exceeded 2%, the degradation rate of Sr2TiO4:N,Nb decreased,
which may be due to the introduction of new defects caused by excessive Nb, ig. Nb•Ti +Ti′Ti.
Sr2TiO4:N,Nb(2%) exhibited the best photocatalytic degradation rate (99%), which was
higher than that of prime Sr2TiO4 (40%) and Sr2TiO4:N (94%). On the one hand, Nb/N
co-doping improved the light absorption in the visible-light region. On the other hand,
the recombination probability of Sr2TiO4:N,Nb decreased, especially Sr2TiO4:N,Nb(2%).
For comparison, the degradation rates of Sr2TiO4 towards different organic pollutants are
shown in Table 3. To the authors’ knowledge, the photocatalytic degradation performance
of N-doped Sr2TiO4 and Nb/N co-doped Sr2TiO4 has not been reported.

The photocatalytic degradation and fitting results of the TC kinetics followed pseudo-
first-order kinetics, as shown in Figure 9c. Sr2TiO4:N,Nb(2%) showed a maximum appar-
ent reaction rate constant of 0.0655 min−1 which was nearly 24.9 times that of Sr2TiO4
(0.00263 min−1) and just 1.25 times that of Sr2TiO4:N (0.0522 min−1). This indicated that
N doping had the main effect whereas adding Nb yielded only a slight increase to pho-
tocatalytic degradation rates. The maximum apparent reaction rate constant obtained by
Sr2TiO4:N,Nb(2%) was attributed to an appropriate Nb/N co-doping concentration.
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Table 3. Photocatalytic properties of Sr2TiO4.

Samples Doping
Elements Organic Pollutants Degradation Rates Irradiation System References

Sr2TiO4 —— methylene orange 32% (120 min) UV lamp (400 W Osram lamps) [36]
Sr2TiO4 —— methylene orange 3.2% (180 min) Xenon lamp (300 W without filter) [37]
Sr2TiO4 —— methylene orange 78% (120 min) UV lamp (λ = 253.7 nm, 2200 mW·cm−2) [38]

Sr2TiO4 La methylene orange 90.5% (120 min) UV lamp (λ = 253.7 nm, 2200 mW·cm−2) [38]
Sr2TiO4 —— tetracycline 40% (60 min) LED lamp (λ > 420 nm) This work

Sr2TiO4 Nb/N tetracycline 99% (60 min) LED lamp (λ > 420 nm) This work

To examine the stability and reusability of Sr2TiO4:N,Nb(2%), five cycles of pho-
todegradation experiments were carried out. After each cycle, the photocatalyst was
centrifuged (at 9000 rpm) and washed several times with deionized water for several times
and re-placed in a deionized water solution containing fresh TC. As shown in Figure 9d, the
degradation rate of Sr2TiO4:N,Nb(2%) from 99% to 90% after five repeated cycles without
an obvious decrease, indicating that Sr2TiO4:N,Nb(2%) exhibited relatively good stability
and repeatability. The decrease of degradation performance could be ascribed to the mass
loss in the centrifugation and washing process. Sr2TiO4:N,Nb(2%) shows good potential in
photocatalytic degradation of antibiotic pollutants.

To further understand the key active species in the photocatalytic process of TC
degradation, active species trapping experiments were performed, as shown in Figure 10.
Isopropyl alcohol (IPA, 0.01 M), triethanolamine (TEOA, 0.01 M), p-benzoquinone (BQ,
0.005 M), and AgNO3 (0.01M) were added as scavengers for hydroxyl radical (·OH), hole
(h+), superoxide radical (·O−2 ), and photogenerated electrons (e−) to TC solution at the
presence of Sr2TiO4:N,Nb(2%), respectively. When the IPA, TEOA, and AgNO3 was added,
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the photodegradation rate of TC only slightly decreased. However, when BQ was added,
the degradation rate of TC reduced greatly, indicating that superoxide radical (·O−2 ) was
the main active species during the photocatalytic degradation of TC.
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2.4. Improvement Mechanism of Photocatalytic Performance

The effect of N doping and Nb/N co-doping on the valence bands of Sr2TiO4 was
evaluated by XPS valence band (VB) spectra. As shown in Figure 11, valence band
potential (EVB, XPS) measured by XPS valence band spectra of Sr2TiO4, Sr2TiO4:N, and
Sr2TiO4:N,Nb(2%) were 2.86, 2.66, and 2.03 eV, respectively. EVB vs. SHE can be deduced
according to the formula: EVB, NHE = ϕ + EVB, XPS − 4.5 (ϕ is the work function of the instru-
ment: 4.59 eV, 4.5 eV vs. vacuum level is 0 V vs. SHE) [39–42]. Thus, EVB, NHE of Sr2TiO4,
Sr2TiO4:N, and Sr2TiO4:N,Nb(2%) were calculated to be 2.95 eV, 2.75 eV, and 2.12 eV, respec-
tively. The conduction band (VB) minimum of Sr2TiO4, Sr2TiO4:N, and Sr2TiO4:N,Nb(2%)
are calculated to be −0.53 eV, −0.27 eV, and −0.83 eV(vs. SHE) according to these valance
band and bandgap values (Figure 4b) mentioned above. The conduction band minimum
of Sr2TiO4 reported in the previous literature varies widely and ranges from −0.254 eV to
−0.87 eV [16,17,20,41], and the conduction band minimum of N-doped Sr2TiO4 and Nb/N
co-doped Sr2TiO4 have not been reported.
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According to our experimental results of XPS valence band spectra (Figure 11) and UV-Vis
spectra (Figure 4b), schematic band structures of Sr2TiO4, Sr2TiO4:N, and Sr2TiO4:N,Nb(2%)
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were illustrated in Figure 12. The pure Sr2TiO4 had a wide bandgap. In contrast, Sr2TiO4:N
displayed visible light response derived from N orbital. The state of the oxygen vacancies
(accompanied by N-doping) was located below the conduction band minimum, which
was consistent with previous literature about SrTiO3 co-doped with N and La [21]. Re-
garding Sr2TiO4:N,Nb(2%), Nb/N co-doping uplifted the valence band furthermore. As
we know, the more negative the valance band, the higher reduction ability of photo-
generated electrons to generate superoxide radicals (O−2 ). The conduction band potential
of Sr2TiO4:N,Nb(2%) was more negative than Sr2TiO4, Sr2TiO4:N, and O2/O−2 (−0.28 eV),
so electrons can more easily transfer to the oxygen molecules, producing O−2 . The uplift of
conduction band after cationic doping had also been observed in Ag doping Sr2TiO4 [16].
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Hydroxyl radical (OH) may be difficult to produce by the photogenerated holes, directly,
because the valence band position (+2.12 eV) in Sr2TiO4:N,Nb(2%) was higher than that of
OH/H2O (+2.27 eV) and slightly more positive than that of OH/OH−(1.99 eV). Therefore,
O−2 is the predominant active species in the degradation of TC, which coincided with the
previous result (Figure 10). A similar situation was also discovered in Bi2WO6 [43,44].

3. Materials and Methods
3.1. Chemicals

The chemicals in this work were obtained from Shanghai Maclin Biochemical Technol-
ogy Co., Ltd. (Shanghai, China) and Tianjin Yongda Chemical Reagent Co., Ltd. (Tianjin,
China), without any further purification.

3.2. Materials Synthesis
3.2.1. Synthesis of Sr2TiO4

Firstly, 0.01 mol tetrabutyl titanate was dissolved in 50 mL of absolute ethanol, and
0.07 mol citric acid was injected as a complex agent (solution A). Secondly, 0.02 mol Sr(NO3)2
was dissolved in deionized water (solution B). Solution B was added dropwise to solution A
to gain a transparent mixed solution. The mixed solution was heated and stirred in a water
bath at 60 ◦C to form a homogeneous transparent sol. After aging for 24 h, the sol was dried at
120 ◦C for several hours to form a dry gel. Finally, the obtained gel was ground and calcined
at 1000 ◦C for 4 h (heating rate 10 ◦C·min−1) to obtain Sr2TiO4 powder.

3.2.2. Synthesis of N-Doped Sr2TiO4

The preparation process of N-doped Sr2TiO4 was as follows: After mixing urea and
Sr2TiO4 uniformly (m(urea):m(Sr2TiO4) = 1.5:1), the mixture was calcinated at 400 ◦C for
2 h, cooled naturally, and grinded. N-doped Sr2TiO4 was labeled as Sr2TiO4:N.
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3.2.3. Synthesis of Nb/N Co-Doped Sr2TiO4

The preparation process of Nb/N co-doped Sr2TiO4 was as follows: Nb-doped Sr2TiO4
was prepared first, which was the same as that of Sr2TiO4, except for the addition of NbCl5
in solution B (Nb/(Nb + Ti), which was 1 at%, 2 at%, 3 at%, 4 at%, 5 at%. Nb/N co-doped
Sr2TiO4 was prepared the same as that of N-doped Sr2TiO4, except that urea was mixed
with Nb-doped Sr2TiO4. Nb/N co-doped Sr2TiO4 with different Nb doping content were
denoted as Sr2TiO4:N,Nb(1%), Sr2TiO4:N,Nb(2%), Sr2TiO4:N,Nb(3%), Sr2TiO4:N,Nb(4%),
and Sr2TiO4:N,Nb(5%), respectively.

3.3. Characterization

The crystal structure analysis was carried out by a Japanese D/MAX2500PC X-ray
diffractometer employing Cu Kα radiation; the surface morphology was investigated by a
Japan JEM-2010 transmission electron microscope (TEM); a specific surface and pore size
analyzer (3H-2000PM1, BeiShiDe Instrument Technology Co., Ltd., Beijing, China) was
used to calculate the specific surface area (BET) and pore size of the sample; the optical
properties were investigated by an Ultraviolet-Visible spectrophotometer (Lambda750,
PerkinElmer, Norwalk, CT, USA); the photoluminescence (PL, SR830) with the excitation
at 325 nm was characterized using a fluorescence spectrometer; the chemical composition
and valence band spectrum were detected by X-ray photoelectron spectroscopy (Thermo
Scientific, Waltham, MA, USA, ESCALAB 250XI).

3.4. Photoelectrochemical Measurements

Photocurrent density-time (I-t) and electrochemical impedance spectroscopy (EIS)
were characterized on an electrochemical workstation (CHI660D, Shanghai Chenhua In-
strument, Shanghai, China) through a three-electrode system. Three-electrode system was
set up using 0.5 M Na2SO4 solution, Ag/AgCl as reference electrode, Pt foil as counter
electrode, and photoelectrodes fabricated by these sample powders on FTO glass as work-
ing electrodes. During the measurements of photocurrent density, simulated sunlight was
irradiated with an intensity of 100 mW·cm−2 (AM1.5G filter) under chopped light at a bias
of 1.23 V vs. RHE. The EIS was measured with a frequency from 100 kHz to 0.01 Hz with
an AC amplitude of 5 mV.

3.5. Photocatalytic Degradation of TC

The photocatalytic performances of the samples were assessed by photocatalytic
degradation towards TC. In total, 50 mg Sr2TiO4 or 50 mg Sr2TiO4:N,Nb was dispersed in
50 mL of TC solution at a concentration of 20 mg·L−1. Before irradiation, the mixtures were
continuously stirred in the dark for 30 min to reach adsorption-desorption equilibrium.
Then, a photocatalytic reaction was performed under visible light using a 5 W LED lamp
(white light, λ > 420 nm, 250 mW/cm2). Extract 3 mL of TC solution every 10 min and
centrifuge at 9000 rpm for 5 min. The TC degradation rate was calculated as follows:

Degradation rate =
C0 − Ct

C0
× 100% =

A0 − At

A0
× 100% (1)

where C0 (A0) and Ct (At) represent the TC’s concentration (absorbance at 357 nm) of initial
and after min irradiation, respectively.

In order to ascertain the active species during the photocatalytic degradation pro-
cess, the active species capture experiment was carried out, similar to the photocatalytic
degradation of TC experiments, except that TC solution was replaced by TC and scavenger.

4. Conclusions

In summary, Nb/N co-doped layered perovskite Sr2TiO4 (Sr2TiO4:N,Nb) with vary-
ing percentages (0–5 at%) of Nb were successfully synthesized by sol-gel and calcination.
Nb/N could co-dope into Sr2TiO4 with a slight unit cell expansion, which was confirmed by
X-ray diffraction. Nb/N co-doped Sr2TiO4 showed better photocatalytic performance for
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tetracycline photocatalytic degradation than pristine Sr2TiO4 under visible light, especially
Sr2TiO4:N,Nb(2%). Sr2TiO4:N,Nb(2%) showed optimal photocatalytic performance with
the 99% degradation after 60 min visible light irradiation, which was higher than pristine
Sr2TiO4 (40%). Nb/N co-doping enhanced the photocatalytic activity by broadening light
response to the visible region and reducing the photogenerated carrier recombination.
Nb/N co-doping had a slight effect on morphology and the average grain size of Sr2TiO4.
Sr2TiO4:N,Nb(2%) showed good stability and recyclability after five cycles photocatalytic
degradation reaction. The superoxide radical (·O−2 ) was the leading contributor to tetra-
cycline degradation. Nb/N co-doping strategy in this work affords insight to realizing
visible-light-driven perovskite-type semiconductors for wastewater treatment.
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