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1 Methodology

1.1 Overview of supplementary material: multi-criteria decision in the
analysis of gene expression profiles

In this material we present the original em multicriterial decision-making (MCDM) [1] for the
possible characterization of gene expression profiles. MCDM was originally only an area of opera-
tional research, which is now increasingly influencing other domains of science. In this document
we combine MCDM with constructions of disagreement measures that are significantly conditioned
by data. The metric designed by us is implemented for analysis of the types of data provided by
experiment. A significant feature of the data processed here is that they show commutative prop-
erties and are arranged into triplicates. The measure is complex and is significantly conditional in
data. It is numerically designed to compare specific genes associated with glioblastoma profiling.
Its specificity is visible in that the proposed measure contains data -related and weighted individual
expression measures. Of course, there is also a significant universality of the metohodology given by
the possibility of applying it to different data.

1.2 Organization of data; sets and subsets and triplicates

We analyze experimental data describing the expression properties of genes j = 1, 2, . . . , Ng = 67.
The structure of the data is such that there are three triplets - the nine instances of relative gene
expression Ij,1, Ij,2, . . . , Ij,9 in the normal tissue case as a control. The additional nine values Ij,10,
Ij,11, . . . , Ij,18 corresponding to three triplets are representatives of the malignancy. We denote the
expression rates of the j−th gene by Ij,.... The data organization can be described as

Ij ≡ ( Ij,1, Ij,2, Ij,3, Ij,4, Ij,5, Ij,6, Ij,7, Ij,8, Ij,9,
Ij,10, Ij,11, Ij,12, Ij,13, Ij,14, Ij,15, Ij,16, Ij,17, Ij,18 ) .

(S1)

For better clarification and assignment of biological meaning to the genetic data, which we have
chosen to be indexed as 1, . . . , 18, we provide the table below

I.,1 . . . hRNA 1
I.,2 . . . hRNA 2
I.,3 . . . hRNA 3

∣∣∣∣∣ I.,4 . . . NHA 1
I.,5 . . . NHA 2
I.,6 . . . NHA 3

∣∣∣∣∣ I.,7 . . . HDFa 1
I.,8 . . . HDFa 2
I.,9 . . . HDFa 3

(S2)
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I.,10 . . . T98G 1
I.,11 . . . T98G 2
I.,12 . . . T98G 3

∣∣∣∣∣ I.,13 . . . A172 1
I.,14 . . . A172 2
I.,15 . . . A172 3

∣∣∣∣∣ I.,16 . . . SW1088 1
I.,17 . . . SW1088 2
I.,18 . . . SW1088 3

.

Alternatively, there are sub-structures with the following sets

X1,j ≡ Set ( Ij,1, Ij,2, Ij,3 ) , (S3)

X2,j ≡ Set ( Ij,4, Ij,5, Ij,6 ) ,

X3,j ≡ Set ( Ij,7, Ii,8, Ij,9 )

and

Y1,j ≡ Set ( Ij,10, Ij,11, Ij,12 ) , (S4)

Y2,j = Set ( Ij,13, Ij,14, Ij,15 ) ,

Y3,j = Set ( Ij,16, Ij,17, Ij,18 ) .

Here X... refers to all cases of healthy controls, whereas Y... refers to all malignant cases.

1.3 Inter-subset dissimilarity (inter-triplicate variations)

Let us emphasize that Set(., ., .) is free of ordering. Thus, here we are dealing with a two-fold
structure Ij ≡ (Xj ,Yj). The objective is to analyze and describe the homogeneity within the
introduced tuples Xj ≡ (X1,j , X2,j , X3,j) and Yj ≡ (Y1,j , Y2,j , Y3,j) separately, but also to explore
the dissimilarities between Xj and Yj , i.e. in the terms of the composite tuple (Xj ,Yj) ≡ (X,Y)j .
Let (Uj , Vj) be a representative of a pair of number sets in which both Uj and Vj include a triple of
the real numbers. Their introduction is thus fully consistent with the data structures from Eq.(S3)
and Eq.(S4). Uj , Vj are introduced as universal structures that can be used to define relations
between pairs of sets in general. For each pair (Uj , Vj), we can define a transformation into three
new numbers that do not depend on the order of the items inside Uj , Vj themselves. We implement
this invariant generation step by selecting three basic absolute (real) differences

∆mea(Uj , Vj) ≡
∣∣∣ arithmetic

mean
(Uj)− arithmetic

mean
(Vj)

∣∣∣ , (S5)

∆max(Uj , Vj) ≡
∣∣ max(Uj)−max(Vj)

∣∣ ,
∆min(Uj , Vj) ≡

∣∣ min(Uj)−min(Vj)
∣∣ .

The situation requires that pairwise comparisons in triples X1,j , X2,j , X3,j and Y1,j , Y2,j .Y3,j be
defined. Let us now consider the combinations of the three indices 1, 2, 3 taken two at a time.
For this object, we’ll utilize shortened notation [1, 2, 3]pair ≡ {(1, 2), (1, 3), (2, 3)}. The pairwise
comparisons within the set Xj provide three specific definitions

Dmea((X,X)j) ≡ 1

3

∑
(k,s)∈[1,2,3]pair

∆mea(Xk,j , Xs,j) , (S6)

Dmax((X,X)j) ≡ 1

3

∑
(k,s)∈[1,2,3]pair

∆max(Xk,j , Xs,j) ,

Dmin((X,X)j) ≡ 1

3

∑
(k,s)∈[1,2,3]pair

∆min(Xk,j , Xs,j) .
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(The chosen normalization factor of 1/3 compensates for the number of possible terms. Because the
mathematical structural features of Yj are equivalent, we can write accordingly

Dmea((Y,Y)j) ≡ 1

3

∑
(k,s)∈[1,2,3]pair

∆mea(Yk,j , Ys,j) , (S7)

Dmax((Y,Y)j) ≡ 1

3

∑
(k,s)∈[1,2,3]pair

∆max(Yk,j , Ys,j) ,

Dmin((Y,Y)j) ≡ 1

3

∑
(k,s)∈[1,2,3]pair

∆min(Yk,j , Ys,j) .

The following measures are used to detect differences between Xj ,Yj without emphasis on the
position of their components

Dmea((X,Y)j) =
1

9

∑
k=1,2,3

∑
s=1,2,3

∆mea(Xk,j , Ys,j) , (S8)

Dmax((X,Y)j) =
1

9

∑
k=1,2,3

∑
s=1,2,3

∆max(Xk,j , Ys,j) ,

Dmin((X,Y)j) ≡ 1

9

∑
k=1,2,3

∑
s=1,2,3

∆min(Xk,j , Ys,j) .

1.4 Mean values from dissimilarity measures

Deciding which of these measures of dissimilarity to choose is a difficult task. The different options
need to be scalarized to obtain a unique output. An alternative is to take the averages of the
difference measures, which can be considered a good starting point for which reductions should be
made. However, this situation is complicated by the number of possible variants of the generalized
mean [3] as candidates for this purpose. Therefore, the MCDM may be considered as a suitable
further procedure. The latter will in fact include all candidate variant-attributes, but this is an
interpretational complication. However, once the data is included, not only a comprehensive measure
is offered as a result, but also with it a complete system of numeric weights, which ultimately will
tell us to what extent attribute, a way of dissimilarity is averaged, is applied.

Let us be more formal and denote by D(k) the measure of dissimilarity that can be obtained
using a suitable k−th mean of some primitive measures of the type Dmea(.), Dmax(.), Dmin(.)
Then introduce the appropriate scalar gk(., ., .), which we take to be the examples of generalized
mean which allows to express D(k) by means of algebraic functions. Assume that in the case of
j-th gene there will be (X,X)j , (Y,Y)j , (X,Y)j there are pairs characterized by the dissimilarity
measures

D(k)((X,X)j) = gk

(
Dmea((X,X)j), Dmax((X,X)j), Dmin((X,X)j)

)
, (S9)

D(k)((Y,Y)j) = gk

(
Dmea((Y,Y)j), Dmax((Y,Y)j), Dmin((Y,Y)j)

)
,

D(k)((X,Y)j) = gk

(
Dmea((X,Y)j), Dmax((X,Y)j), Dmin((X,Y)j)

)
.

From a practical point of view, we suggested list containing g1(.), g2(.), . . . gNc
(.) functions, which

represent the attributes of MCDM. The specific list of generalized means (including units indexed
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up to Nc = 11) employed for our purposes includes

g1(a, b, c) =
1

3
(a+ b+ c) , (S10)

g2(a, b, c) = ( abc )
1
3 ,

g3(a, b, c) =
1

3

(√
ab+

√
ac+

√
bc
)
,

g4(a, b, c) =

[
(a+ b)

2

(a+ c)

2

(b+ c)

2

] 1
3

,

g5(a, b, c) =

[
1

3

(
a−1 + b−1 + c−1

)]−1

,

g6(a, b, c) =

[
1

3

(
a−2 + b−2 + c−2

)]− 1
2

,

g7(a, b, c) =

[
1

3

(
a−3 + b−3 + c−3

)]− 1
3

,

g8(a, b, c) =

√
1

3
(a2 + b2 + c2) ,

g9(a, b, c) =

[
1

3
(a3 + b3 + c3)

] 1
3

,

g10(a, b, c) =
a2 + b2 + c2

a+ b+ c
,

g11(a, b, c) =
a3 + b3 + c3

a2 + b2 + c2
.

Here a, b, c represent an arbitrary nonzero positive arguments.

1.5 Weighting and relative measures of inter-subset differences

In cases where we want to consider the differences of X and Y with respect to the similarities in the
X frame or also in the Y frame, we obtain, for example, the definition of a dimensionless measure

R
(k)
j =

D(k)((X,Y)j)√
D(k)((X,X)j)D

(k)((Y,Y)j)
(S11)

defined in connection to the j−th gene projected on the k−th attribute - mean, is fundamental to
our efforts. If we apply all the attributes to all the genes (Ng), we get summary, basic statistics

σ
(k)
R =

√√√√ 1

Ng − 1

Ng∑
j=1

(
R

(k)
j −R

(k)
)2

, R
(k)

=
1

Ng

Ng∑
j=1

R
(k)
j . (S12)

The standard focus of the MCDM is the calculation of weights of attributes. They can be determined
using

w
(k)
R =

σ
(k)
R∑Nc

k′=1 σ
(k′)
R

. (S13)
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Therefore, the role of the average gk with higher variance is preferred. The following weighted
average is given by

R̃j =

Nc∑
k=1

w
(k)
R R

(k)
j . (S14)

We will subsequently extend this measure. The extension is based on the approximation of the
weights retained.

1.6 Over- and under expression properly characterized

To make the description more detailed, we abandon the formulation in terms of the absolute values.
We are instead interested in a description using the pair of functions

|x |+ =

{
x for x > 0
0 for x ≤ 0

, (emphasis on over-expression) (S15)

|x |− =

{
−x for x < 0
0 for x ≥ 0

(emphasis on under-expression) . (S16)

The plus/minus symbols are indicative only, they are not operations. They only serve to extend
the definition of absolute value by focusing it on two different areas, thus obtaining two variants of
functions. It is convenient to redefine and modify the original ∆mea, ∆max, ∆min and thus obtain
their more structured alternatives

∆±mea(Uj , Vj) ≡
∣∣∣ arithmetic

mean
(Uj)− arithmetic

mean
(Vj)

∣∣∣± , (S17)

∆±max(Uj , Vj) ≡
∣∣ max(Uj)−max(Vj)

∣∣± ,

∆±min(Uj , Vj) ≡
∣∣ min(Uj)−min(Vj)

∣∣± .

The same logic can be used when defining intermediate steps within auxiliary expressions D±mea,
D±max, D±min. The original, which is given by Eq.(S6), then changes to

Dmea±((X,X)j) ≡ 1

3

∑
(k,s)∈[1,2,3](2)

∆±mea(Xk,j , Xs,j) . (S18)

Analogously we obtained the diversity measures D±,(k)((X,Y)j) which finally yield definition

R
±,(k)
j =

D±,(k)((X,Y)j)√
D(k)((X,X)j)D(k)((Y,Y)j)

. (S19)

(The denominator of the expression shown is not incorrect, it is left as originally defined because
it does not focus on the relationship between control and between diseased tissues.) We turn to

the canonical aspect of MCDM to use the approximation, where weights are obtained for R
±,(k)
j to

calculate

R̃±
j =

Nc∑
k=1

w
(k)
R R

±,(k)
j . (S20)

Note that for the figures in the main text, the reduced notation R+, R− is used to label the
corresponding means of R±,(k) values with the respective weights.
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2 Results for data-driven weights

The system of weights associated with Eq.(S20) obtained for the experimental data is

w
(1)
R = 0.0712 , w

(2)
R = 0.0854 , w

(3)
R = 0.0789 , w

(4)
R = 0.0723 , (S21)

w
(5)
R = 0.1210 , w

(6)
R = 0.1478 , w

(7)
R = 0.1611 , w

(8)
R = 0.0676 ,

w
(9)
R = 0.0662 , w

(10)
R = 0.0644 , w

(11)
R = 0.0636 .

From these results it is evident that the exceptional weights are as follows

1. Maximum w
(7)
R , which corresponds to [(1/3)(a−3 + b−3 + c−3)]−1/3, which can be called third

order superharmonic mean.

2. Minimum w
(11)
R belongs to a3+b3+c3

a2+b2+c2 , which is Lehmer mean [2] of power 3. Note also that
several generalized averages (k = 8, 9, 10) are close in the magnitude to 0.06.
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