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Abstract: Synaptic loss and dysfunction are one of the earliest signs of neurodegeneration associated
with cognitive decline in Alzheimer’s disease (AD) and other neurodegenerative diseases. This study
aimed to assess the relationships between biological processes of the synaptic pathology underlying
AD, molecular functions, and dynamics of the change concentrations of selected proteins reflecting
synaptic and axonal pathology in dementia stages. Neurogranin (Ng), neuronal pentraxin receptor
(NPTXR), and Visinin-like protein 1 (VILIP1) concentrations were measured in the cerebrospinal fluid
(CSF) of MCI, AD, and non-demented controls (CTRL) using quantitative immunological methods.
Gene ontology (GO) enrichment analysis was used for the functional analysis of tested proteins.
The CSF Aβ42/Ng ratio was significantly different between all the compared groups. The CSF
NPTXR/Ng ratio was significantly different between MCI compared to CTRL and AD compared
to CTRL. The GO enrichment analysis revealed that two terms (the Biological Process (BP) and
Cellular Component (CC) levels) are significantly enriched for NPTXR and Ng but not for VILIP1.
Both Ng and NPTXR concentrations in CSF are promising synaptic dysfunction biomarkers for the
early diagnosis of the disease. Moreover, both proteins are biochemically associated with classical
biomarkers and VILIP-1. Mapping shared molecular and biological functions for the tested proteins
by GO enrichment analysis may be beneficial in screening and setting new research targets.

Keywords: neurogranin; neuronal pentraxin receptor; Visinin-like protein 1; CSF synaptic biomarkers

1. Introduction

Alzheimer’s Disease (AD) is the leading cause of dementia [1,2]. The etiology and
early pathogenesis of AD are still unclear. AD’s most common neuropathological changes
include extracellular depositions of amyloid-beta peptides, especially Aβ1–42, and intracel-
lular neurofibrillary tangles (NFT) composed of hyperphosphorylated Tau [2]. The classical
biomarkers widely studied and used in clinical practice are the proteins Aβ1–42, total Tau (t-
tau), and pTau181. These three CSF biomarkers were included for AD diagnosis established
by The National Institute of Aging and Alzheimer’s Association (NIA-AA) guidelines and
International Work Group (IWG) [3]. One of the first symptoms is progressive cognitive
decline related to Aβ deposits, neurofibrillary tangles, and synapse loss in crucial brain
regions, such as the hippocampus. Mental disability, including memory disturbance, is the
earliest symptom of AD. Memory processes are generally associated with hippocampal
function and neuronal communication maintained by synapses. The impairment of neu-
ronal transmission between synapses is associated with early neurodegenerative changes
and cognitive deficits. Some mechanisms leading to synaptic dysfunction are observed and
described in neurodegenerative diseases [4].
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In this study, we decided to investigate three proteins: neurogranin (Ng), neuronal
pentraxin receptor (NPTXR), and Visinin-like protein 1 (VILIP-1), related to synaptic plas-
ticity or calcium signaling. Neurogranin is a small synaptic protein that influences the
induction of LTP by binding to calmodulin (CaM) in response to low Ca2+ levels [5] Other
studies suggest that Ng is involved in LTP via Ca2+ and CaM signaling pathways, essential
for synaptic plasticity and regeneration [3,6] . In contrast, NPTXR is a unique transmem-
brane protein belonging to the neuronal pentraxin family [7] The highest expression of
NPTXR and involvement in neuronal processes have been observed in the hippocampus
and neocortex [7,8]. It has been suggested that NPTXR affects synapse formation and is
also responsible for synaptic transmission by attaching to AMPARs [7]. The VILIP1 is a
neuronal calcium sensor protein associated with calcium signaling and interaction with
α4β2 nAChR [9]. However, VILIP1 has been described as a modulator of cell-surface-
associated protein, especially with membranes of axons and dendrites [10]. Reduced levels
of nAChRs and cholinergic neurotransmission have been implicated in the etiology of AD,
and acetylcholinesterase inhibitors are used to treat AD [10,11] Given these reports on the
critical role of proteins modulating synaptic plasticity in the pathogenesis of AD, it seems
reasonable to investigate their potential clinical utility and compare them with classical
biomarkers. We also performed preliminary bioinformatic analysis to assess the possible
relationships between biological processes and tested proteins.

2. Results
2.1. Bioinformatic Analyses and Mapping of Possible Pathways between Tested Proteins and
Alzheimer’s Disease

The specific terms of Gene Ontology (GO) analysis are widely used for the discovery
and understanding of the biological roles of target proteins in three categories, namely,
cellular component (CC), molecular function (MF), and arrangement of biological processes
(BP). Additionally, GO term enrichment analysis provides functional interpretations of
targeted proteins based on sets of genes and associated terms of hierarchically classified
categories. In our research, we decided to use the gene names of coding proteins examined
in CSF for performing preliminary, and screening GO analysis. The results of the Go
enrichment analysis shown in Table 1 and Figure 1 were created based on the following
input gene names: MAPT, APP, NRGN, and NPTXR. The corresponding gene names were
representations of the tested proteins as follows: MAPT = Tau protein, APP = amyloid
precursor protein, NRGN = neurogranin, NPTXR = neuronal pentraxin receptor. The top
10 BP terms enriched with four genes are presented in the hierarchical GO plot (Figure 1)
with all related biological processes. We chose the five proteins (Ng, NPTXR, VILIP-1,
Tau, and Aβ42) and examined them using an over-representation test, which revealed
that four genes (MAPT, APP, NRGN, NPTXR) are involved in GO terms for biological
processes, including GO:0050804—“modulation of chemical synaptic transmission” and
GO:0099177—“regulation of trans-synaptic signaling” (Table 1). However, for GO cellular
component terms, significant enrichment analysis was found only for MAPT, APP, and
NGRN genes related to GO:0043197—“dendritic spine”, GO:0044309—“neuron spine”, and
GO:0043025—“neuronal cell body”, respectively.

Table 1. GO enrichment analysis for biological processes in terms of genes related to tested proteins
in CSF.

ID Description GeneRatio p-Value p.Adjust Q Value Gene ID

GO:0050804
modulation of

chemical synaptic
transmission

4/5 <0.001 0.000247178 7.87172 × 10−5 APP/NRGN/MAPT/NPTXR

GO:0099177
regulation of

trans-synaptic
signaling

4/5 <0.001 0.000247178 7.87172 × 10−5 APP/NRGN/MAPT/NPTXR

GO:0048167 regulation of
synaptic plasticity 3/5 <0.001 0.001265604 0.000403049 APP/NRGN/MAPT



Int. J. Mol. Sci. 2022, 23, 10867 3 of 11

Int. J. Mol. Sci. 2022, 23, x FOR PEER REVIEW 3 of 12 
 

 

 
Figure 1. GO plot biological processes with dependencies between them based on enriched gene 
ontology terms for MAPT, APP, NRGN, and NPTXR. Top 10 biological processes were highlighted 
as color dots. This plot was produced in ClusterProfiler; p.adjust  =  the Benjamini–Hochberg ad-
justed p-value for the enriched ontology term. 

  

Figure 1. GO plot biological processes with dependencies between them based on enriched gene
ontology terms for MAPT, APP, NRGN, and NPTXR. Top 10 biological processes were highlighted as
color dots. This plot was produced in ClusterProfiler; p.adjust = the Benjamini–Hochberg adjusted
p-value for the enriched ontology term.

2.2. Candidates’ Biomarkers Concentrations in Cerebrospinal Fluid

The concentrations of NPTXR, Ng, and VILIP-1 and calculated ratios (Aβ42/Ng and
Ng/NPTXR) in the cerebrospinal fluid are shown in the first table (Table 2). Table 2 also
shows the biochemical characteristics of novel biomarkers ratios, such as the Aβ42/Ng
ratio (p < 0.001) and Ng/NPTXR (p < 0.001). Based on the Kruskal–Wallis test, the signif-
icant differences in all tested groups were observed for CSF levels of the Aβ42/40 ratio
(p < 0.001), Aβ42 (p < 0.001), Tau (p < 0.001), pTau181 (p < 0.001), NPTXR (p < 0.001), Ng
(p < 0.001), and VILIP-1 (p < 0.001). The post hoc Dwass–Steele–Critchlow–Fligner test
revealed that the Ng levels in CSF differed significantly between tested groups of patients
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and the CTRL group (Table 2, Figure 2B). The CSF NPTXR levels were significantly higher
in AD and MCI patients compared to the CTRL, although the difference was not significant
between MCI and AD groups. The levels of VILIP1 have a similar trend as NPTXR without
statistically significant differences between AD and MCI (Table 2, Figure 2A). Additionally,
there were no significant differences between MCI and CTRL groups (Figure 2A).

Table 2. Biochemical characteristics of the study groups.

Tested
Variables in

CSF

Median (Range of Interquartile)
p (Kruskal–
Wallis Test)

p (Dwass–Steele–Critchlow–Flinger Test)

AD MCI Controls AD vs.
CTRL AD vs. MCI MCI vs. CTRL

Tau (pg/mL) 671 (559–978) 389 (327–495) 220 (187–269) <0.001 <0.001 <0.001 <0.001
pTau181
(pg/mL) 82 (68–113) 57 (47–68) 37 (33–41) <0.001 0.001 <0.001 0.002

Aβ42/40 ratio 0.032
(0.02–0.04)

0.044
(0.03–0.06)

0.071
(0.06–0.08) <0.001 <0.001 <0.001 0.006

Aβ42 500 (383–600) 802 (474–1045) 923 (804–1003) <0.001 <0.001 0.012 0.833
NPTXR

(pg/mL) 15 (11–18) 14 (10–15) 19 (16–21) 0.003 0.027 0.349 0.003

Ng (pg/mL) 869 (655–1171) 692 (499–833) 468 (419–560) <0.001 <0.001 0.041 0.025
VILIP-1

(pg/mL)
0.109

(0.07–0.16) 0.09 (0.05–0.11) 0.036
(0.02–0.07) <0.001 <0.001 0.269 0.04

Aβ42/Ng 53.9 (42–72) 117 (101–160) 191 (164–205) <0.001 <0.001 <0.001 0.002
NPTXR/Ng 1.38 (1.17–2.18) 1.73 (1.58–2.36) 3.83 (3.62–4.31) <0.001 <0.001 0.088 <0.001
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Figure 2. Boxplots of CSF concentrations of tested biomarkers (A) VILIP-1, (B) Ng, (C) NPTXR,
and (D) NPTXR/Ng in examined groups. Abbreviations: cerebrospinal fluid (CSF), Visinin-like
protein 1 (VILIP1), neurogranin (Ng), neuronal pentraxin receptor (NPTXR), neuronal pentraxin
receptor/neurogranin ratio, Alzheimer’s disease (AD), mild cognitive impairments (MCI), control
group (CTRL).

2.3. Associations between CSF Levels of Ng, NPTXR, and VILIP1 and Neurochemical Biomarkers
(Aβ42/40 Ratio, Tau, and pTau181)

The associations between levels of Ng, NPTXR, and VILIP-1 and neurochemical
biomarkers were performed using the Spearman rank correlation test. Significantly positive
correlations were observed in the whole study group (AD + MCI + CTRL) between CSF
Ng and VILIP-1 (rho = 0.646, p < 0.001), age (rho = 0.340, p = 0.004), Tau (rho = 0.728,
p < 0.001), and pTau181 (rho = 0.749, p < 0.001) and negative with MMSE (rho = −0.438,
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p < 0.001) and the Aβ42/40 ratio (rho = −0.365, p < 0.01). Positive correlations were
observed between NPTXR and VILIP1 (rho = 0.249, p = 0.037) and negative with Aβ42
(rho = −0.438, p < 0.001). The CSF levels of VILIP-1 were positively correlated with age
(rho = 0.308, p = 0.009) and Tau (rho = 0.706, p < 0.001) and negatively correlated with
MMSE (rho = −0.410, p < 0.001) and the Aβ42/40 ratio (rho = −0.446, p < 0.001).

In the AD group, the CSF levels of Ng significantly correlated with the concentration
of VILIP-1 (rho = 0.646, p < 0.001), age (rho = 0.340, p = 0.004), Tau (rho = 0.728, p < 0.001),
pTau181 (rho = 0.749, p < 0.001), and NPTXR (rho = −0.181, p = 0.040). The NPTXR in
CSF positively correlated with VILIP-1 (rho = 0.500, p = 0.003), Tau (rho = 0.506, p = 0.003),
and pTau181 (rho = 0.574, p < 0.001). VILIP1 positively correlated with Aβ42 (rho = 0.397,
p = 0.022), Tau (rho = 0.650, p < 0.001), and pTau181 (rho = 0.673, p < 0.001).

In the MCI group, CSF levels of Ng significantly positively correlated with NPTXR
(rho = 0.799, p < 0.001), VILIP1 (rho = 0.598, p = 0.009), Aβ42 (rho = 0.748, p < 0.001), Tau
(rho = 0.680, p = 0.003), and pTau181 (rho = 0.667, p = 0.003). The CSF NPTXR positively
correlated with Tau (rho = 0.680, p = 0.003) and pTau181 (rho = 0.668, p = 0.003).

2.4. Diagnostic Usefulness of Candidate Biomarkers and Ratios

An analysis of the receiver operating characteristic curve (ROC) showed that the CSF
levels of neurogranin may significantly discriminate AD patients from controls
(AUC = 0.919, 95% CI 78.4–99.55, p < 0.001), with 81% accuracy, 82% specificity, and
79% sensitivity. The NPTXR levels may significantly differentiate AD patients from controls
(AUC = 0.751, p = 0.001), with 68% accuracy, 80% specificity and 62% sensitivity. The AUC
analysis of VILIP-1 was statistically significant (AUC = 0.805, p < 0.001), with 77% accuracy,
79% specificity, and 74% sensitivity. The AUCs for all tested proteins and classical biomark-
ers are presented in Figure 3 and Table 3. The AUCs of the candidate’s biomarkers and
ratios were compared to classical biomarkers via DeLong’s test. The comparison analysis
in the MCI versus CTRL groups showed a significant difference between NPTXR/Ng and
Aβ42/40 ratios (AUC differences = 0.173 [0.022–0.323], p = 0.025). An analysis of ROC also
compared MCI and AD patients, where the Aβ42/Ng ratio had the highest AUC value.
The significant results of the ROC are presented in Figure 3 and Table 3.
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Figure 3. Areas under ROC curves (AUC) for CSF Ng, NPTXR, VILIP-1, Aβ42/Ng, Ng/NPTXR, and
classical biomarkers in (A) AD compared to CTRL; (B) AD compared to MCI; (C) MCI compared
to CTRL. Ng—neurogranin, NPTXR—neuronal pentraxin receptor, VILIP-1—Visinin-like protein 1,
Aβ—amyloid beta, Aβ42/40—ratio of amyloid beta 1-42 and 1-40, Aβ42/Ng—ratio of amyloid beta
42 and neurogranin, AD—Alzheimer’s disease, CTRL—controls, MCI—mild cognitive impairment.
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Table 3. AUC of tested parameters in compared groups.

Tested
Parameters

ROC Criteria in AD Compared
to CTRL ROC Criteria in MCI Compared to AD ROC Criteria in MCI Compared to CTRL

AUC SE 95% C.I.
(AUC)

p
(AUC = 0.5) AUC SE 95% C.I.

(AUC)
p

(AUC = 0.5) AUC SE 95% C.I.
(AUC)

p
(AUC = 0.5)

Ng 0.919 0.036 0.847–0.99 <0.001 0.707 0.074 0.562–0.852 0.005 0.749 0.084 0.583–0.914 0.003
NPTXR 0.716 0.07 0.578–0.854 0.001 0.589 0.083 0.433–0.762 0.121 0.813 0.076 0.665–0.961 <0.001
VILIP-1 0.805 0.064 0.679–0.93 <0.001 0.632 0.079 0.477–0.787 0.095 0.708 0.088 0.535–0.88 0.018
Aβ42 0.894 0.049 0.797–0.991 <0.001 0.736 0.078 0.582–0.89 0.002 0.556 0.103 0.353–0.758 0.590

Aβ42/40 0.952 0.047 0.861–1 <0.001 0.827 0.064 0.701–0.952 <0.001 0.800 0.075 0.653–0.946 <0.001
pTau181 0.986 0.012 0.962–1 <0.001 0.798 0.064 0.673–0.923 <0.001 0.870 0.060 0.755–0.987 <0.001

Tau 0.987 0.011 0.965–1 <0.001 0.858 0.057 0.746–0.968 <0.001 0.871 0.059 0.756–0.987 <0.001
Aβ42/Ng 0.982 0.014 0.955–1 <0.001 0.909 0.042 0.828–0.991 <0.001 0.830 0.069 0.695–0.965 <0.001

NPTXR/Ng 0.943 0.034 0.877–1 <0.001 0.646 0.077 0.496–0.797 0.055 0.974 0.027 0.921–1 <0.001

3. Discussion

The main objective of this study was to evaluate the associations between biological
processes of the synaptic pathology underlying this disease, the molecular functions of some
causative proteins, and the dynamics of the change in concentrations of selected proteins
reflecting synaptic and axonal pathology (Ng, NPTXR, VILIP1, the NPTXR/Ng ratio, and
the Aβ42/Ng ratio) in dementia stages. We used a bioinformatics approach to establish
the functions of proteins using GO enrichment analysis. By applying bioinformatics tools
to experimental data, we can better understand and interpret the results of the biological
functions of tested proteins. Enrichment analyses, such as GO, DO, and KEGG, are widely
used for high-throughput experiments (e.g., RNA seq) or determining which GO terms appear
more frequently in a set of genes [12]. This analysis technique was used in our study to see
which biological processes might correspond to defined proteins based on their gene names.

The loss of synapses seems to be very close to Aβ plaque formation. The exact path-
way of impact and role of Aβ are still being researched. One of the possible pathways
of impact is related to Aβ-triggered Ca2+ influx and induced calcium dyshomeostasis
in the endoplasmic reticulum (ER), mitochondrion, and whole neurons [13,14]. The al-
tered Ca2+ homeostasis by Aβ may cause excitotoxicity and neuronal death [14]. The
second possible pathway is related to synaptic transmission and plasticity, as the crucial
processes of memory depend on long-term potentiation (LTP) and long-term depression
(LTD) [15]. Aβ, through its ability to bind to N-methyl-D-aspartate receptors (NMDARs),
α-amino-3-hydroxy-5-methyl-4-isoxazolopropionate receptors (AMPARs), and nicotinic
acetylcholine receptors, makes them permeable for Ca2+ [5,6]. Aβ oligomers (Aβo) mainly
accumulate at the excitatory synaptic sites of glutamatergic neurons, deregulate NMDA
signaling pathways, and inhibit long-term potentiation [6,16,17]. The synergistic mech-
anism of Aβ and Ca2+ could promote neurodegeneration and cognitive deficits in AD
and MCI patients [14]. In the glutamatergic synapses, Ca2+ influx through LTP activates
calcium-calmodulin-dependent protein kinase II (CaMKII) depending on the availability
of calmodulin (CaM) [18]. The availability of CaM depends on neurogranin (Ng) [19,20].
Ca2+ alters the affinity of calmodulin and, upon activation of the CaMKII, interacts with
neurotransmitter receptors inside the synapse [19]. CaMKII interactions play a crucial role
in strengthening synapses [19]. However, altered calcium signaling may also be associated
with the expression or response of calcium-binding and sensing proteins [13,14]. Research
focused on synaptic proteins can help us to better understand neurobiological mechanisms
related to dysfunctions of memory, one of the earlier signs of AD [4,14,21]. Several mecha-
nisms and pathways regulate the pathological dysregulation of synaptic transmission and
other conditions in AD. Therefore, panels of proteins should be used to better understand
the pathological conditions in neurodegenerative diseases.

In our study, we performed a bioinformatic analysis and combined it with an assess-
ment of the concentrations of synaptic dysfunction biomarkers (Ng, NPTXR), as well as one
for neuronal injury (VILIP1), to verify the association between the analysis of molecular
functions and dynamics of the concentration changes in dementia stages. An enrichment
analysis based on gene names was performed to find out more precisely in which biological
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processes all proteins might be involved. Enrichment analysis was intended to point to com-
mon pathways and cellular components, even though our study is not a genomic study [12].
Enrichment analysis revealed several important processes in which the selected proteins
are involved. Two processes proved particularly important for all the tested proteins and
their corresponding gene names: the modulation of chemical synaptic transmission and the
regulation of trans-synaptic signaling. In contrast, more relationships are shared between
NGRN and APP: “positive regulation of long-term synaptic potentiation”, “regulation of
long-term synaptic potentiation, associative learning”, “long-term synaptic potentiation”,
“learning”, and “positive regulation of synaptic transmission”. All of the above processes
appear to be particularly relevant in early signs of AD and justify using the Aβ42/Ng ratio.
Interestingly, “astrocyte activation” also proved to be significant, which is essential for the
release of glutamate and the cascade of pathological processes. This study showed that this
type of bioinformatic analysis could be applied even in a very narrow scope. It is likely that
the use of more genes encoding relevant proteins in AD could give more extensive results.
In addition, bioinformatics analysis provides a better understanding of which proteins are
involved in biological processes, in which regions of the brain, and in which cell types
they are highly expressed. However, experimental data should be carried out on a larger
cohort, and bioinformatic analysis should be replicated by other researchers with the same
background genes.

The levels of Ng increased progressively from MCI to AD compared to CTRL. Our
results confirm the general trend associated with increased CSF Ng levels concerning dis-
ease progression [22]. Interestingly, the increase in Ng concentration may be related to the
loss of glutamatergic synapses, one of the key and early signs of memory problems [19,23].
The accurate diagnosis of early changes before the MCI stage seems to be a particularly
crucial diagnostic goal. The NPTXR, also an important molecule for glutamatergic synaptic
transmission, similarly to Ng, not only proved to be statistically significant in the MCI
group but also in AD patients compared to the CTRL group. Our results are in agreement
with other studies [23,24]. The reduced NPTXR levels in AD and MCI groups may indicate
early and persistent changes in the availability of glutamine and synapse reduction. Inter-
estingly, we did not observe statistically significant differences in NPTXR levels between
AD and MCI patients. The lack of differentiation between later stages of the disease may
be due to very early changes in excitatory and inhibitory postsynaptic sites, especially in
glutamatergic neurons or dyshomeostasis glutamate between synaptic cleft [7]. This is
likely influenced by many overlapping processes rather than one that is strictly isolated.
Nevertheless, NPTXR seems particularly relevant in the early stages of the disease but not
in conversion from MCI to AD [24,25].

The correlations in the AD group, especially between Ng and Tau proteins (tTau and
pTau181), may be related to synaptic loss and microtubule dysfunctions [26–28]. This rela-
tionship can be interpreted as reflecting cognitive decline, atrophy of the brain, and calcium
dyshomeostasis [29]. Additionally, the positive correlation of the Ng with VILIP1 may
reflect the involvement of both proteins in calcium signaling. Interestingly, both proteins in-
fluence calcium pathology by different receptors. On the one hand, Ng is strongly involved
in Ca2+ signaling for NMDAR channels. On the other hand, VILIP1, as a neuronal Ca2+
sensor protein, may interact with the nicotinic acetylcholine receptor (nAChR) [10,11,30].
The arrangement of both receptors and proteins in memory and cognition dysfunction
in AD and MCI pathology may be one of the important early pathological mechanisms.
However, whether there is the involvement of multiple mental processes, or one mechanism
of their joint action is still unclear.

The correlation between Ng and Aβ42 in the MCI group may be related to shrinkage
of dendritic spines and glutamate excitotoxicity. The loss of dendritic spines, where Ng is
mainly localized, may be associated with α7-nicotinic receptors via internalization of NM-
DAR and lead to impaired glutamatergic transmission [11,18,31]. Minor forms of Aβ may
trigger the astrocytic release of glutamate and extrasynaptic NMDARs activation, which
may promote the β-secretase processing of APP leading to increased Aβ production [32].
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One potential explanation for these pathological processes may be synaptic depression
and persistent dendritic loss dependent on Aβ [18]. Oligomers may also trigger dendritic
pruning and toxicity, which could explain the sub-high concentration of Ng localized on
dendritic spines [33]. However, Aβ oligomers also influenced the combined effects of
impaired glutamate uptake and their excessive concentration in the presynaptic space,
which increases the level of Ca2+ inside the neurons [34,35]. Given the above mechanisms,
it seems advisable to test the Aβ42/Ng ratio. Our study demonstrated a significant diag-
nostic value of the Aβ42/Ng ratio in all compared groups. Interestingly, its usefulness in
the differentiation of AD and MCI patients based on the AUC value seems to be better than
other biomarkers, such as Aβ42/40, tTau, and pTau181. The relationship between Ng and
amyloid may be significant for monitoring disease progression related to synaptic loss and
disrupted transmission.

The correlation between Ng and NPTXR in the MCI group appears to reflect mecha-
nisms strongly related to impaired transmission of glutamatergic synapses but in different
receptors. In the presence of excess glutamate induced by Aβo, the transmembrane domain
of NPTXR is cleaved. Both NPTXR and AMPAR are internalized by endocytosis, which
can be interpreted in the context of their early down-regulation. However, excitotoxicity
may reflect the altered mechanism of decreased detection of glutamate and endocytosis
of NPTXs family complexes and AMPARs. Moreover, the NPTXR/Ng ratio seems to be
the most promising in differentiating MCI from CTRL, which is supported by the highest
AUC score. The ratio of two novel biomarkers related to synaptic dysfunction gave better
results than their separate analysis. The early changes and disruption of synaptic trans-
mission, which also seem to be reflected in the above results, may also be related to Aβ

oligomers [14,19].

Future Directions and Challenges

Bioinformatics analyses are increasingly used to search for associations between
protein-coding genes and their functions that may be significantly involved in neurodegen-
eration. Therefore, it seems reasonable to use enrichGo to search for similar functions of
the tested proteins. Furthermore, this functional analysis based on MF expands the knowl-
edge of potential protein interactions and common functions related to neuropathology.
These approaches in biochemical research are not common but seem to carry additional
knowledge about the tested proteins. However, any result indicating that a group of
proteins or a pair of proteins is significantly enriched should be checked against available
studies. Perhaps the biggest challenge is establishing the procedure and interpretation
of enriched results in proteomic studies, especially about which background should be
chosen. Performing GO enrichment analysis based on the whole genome or downregulated
genes/proteins compared to upregulated genes/proteins can significantly affect enrich-
ment results. Research on functional analysis and procedures or guidelines in proteomics
should be continued and replicated by other researchers.

4. Materials and Methods

The study population involved n = 70 (n = 48 women, n = 24 men, 73 median years)
subjects from the Department of Neurology, Jagiellonian University Hospital, Krakow,
Poland, and included 33 AD patients (age: 76 (68–81)), 18 subjects with MCI (age: 75
(70–78)), and 19 non-demented controls (age: 66 (63–71)). In the clinical diagnosis of study
groups, standard medical, physical, and neurological examination, laboratory screening
tests, a comprehensive neurocognitive evaluation, and magnetic resonance imaging or
computed tomography of the brain were used. Information on the past medical history of
patients was also verified. Patients with alternations in CT or MRI suggesting cerebrovas-
cular disorder and subjects with increased albumin quotient (QAlb) indicating blood-CSF
barrier dysfunction were excluded from the study. The diagnosis of AD and MCI were
based on the recommendations from the National Institute on Aging and Alzheimer’s
Association (NIA-AA) criteria. Neuroimaging and neuropsychological examinations were
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combined with neurochemical findings (levels of Aβ1–42, Tau, and pTau181 and values of
the Aβ1–42/Aβ1–40 ratio) for the most accurate clinical diagnosis of AD and MCI patients.
The Erlangen Score algorithm was used for the interpretation of CSF biomarkers. The
biochemical characteristics of study participants based on the concentrations of classical
biomarkers for AD and CSF parameters are presented in Table 1. The MMSE score (range
0–30) was used to assess dementia severity (AD patients (MMSE: 22 [0–28]), MCI patients
(MMSE: 26.5 [26–29]), and 19 non-demented controls (MMSE: 28 [25–30])).

The control group consisted of people who did not have subjective memory disorders
that did not fulfill the MCI criteria or recurrent headaches. A careful examination of subjects
in the control group, with detailed analyses of the CSF, allowed us to exclude the symptoms’
organic background. No control group subjects showed any significant alternations in the
established biomarkers for AD (levels of Aβ1–42, Tau, and pTau181). These findings were
confirmed by the Erlangen Score of 0 points in all 19 subjects of this group.

4.1. Biochemical Measurements

Samples of CSF were put into polypropylene tubes by a lumbar puncture at the L4/L5
or L3/L4 interspace. All the CSF samples were centrifuged, aliquoted, and frozen at −80 ◦C
until analysis. Biochemical measurements of tested proteins (Ng, NPTXR, VILIP1) in CSF
and AD biomarkers (Aβ1–42, Aβ1–40, Tau, and pTau181) in CSF were performed in the
Department of Neurodegeneration Diagnostics, Medical University of Bialystok, Poland.
The concentrations of neurogranin were assessed with commercially available quantitative
bead-based immunoassay (MILLIPLEX MAP Human Neuroscience Magnetic Bead Panel 2,
HNS2MAG-95K, Merck KGaA, Darmstadt, Germany). The concentrations of NPTXR were
assessed with a commercially available RayBioHuman NPTXR ELISA kit (ELH-NPTXR;
Ray Biotech, Norcross, GA, USA). The CSF samples were diluted 25-fold in PBS and
tested in duplicates. Absorbance was read at 450 nm. The assay was performed following
the manufacturer’s instructions. Washing steps were completed using Biotek 405LS. For
readout, 96-well plates and a Luminex® 100/200™ analyzer (Luminex Corporation, Austin,
TX, USA) were used. Standards and samples were run in duplicates with a coefficient of
variance (CV) <20%.

The concentrations of neurochemical dementia diagnostics (NDD) biomarkers were
measured in CSF using IBL kits (Hamburg, Germany) for Aβ1–42 and Aβ1–40 and Fujirebio
kits (Gent, Belgium) for t-Tau and pTau181 proteins.

4.2. Statistical Analysis

Statistical analysis was performed by nonparametric tests and analysis using the
PMCMRplus package in the statistical software R RStudio: Integrated Development for
R. RStudio (Version 1.2.5019), PBC, Boston, MA, USA. The Shapiro–Wilk test revealed
that the concentrations of the tested proteins did not follow a normal distribution. The
comparison between AD, MCI, and the control group was performed using the Kruskal–
Wallis test. Subsequently, significant differences between the levels of the tested groups
were analyzed using the post hoc Dwass Steele–Critchlow–Fligner test to verify in which
groups the difference was statistically significant. The results are presented as medians and
interquartile ranges, and statistical significance was set at p < 0.05. Additionally, the receiver
operating characteristic (ROC) curve and area under curve (AUC) analysis were used to
determine tested proteins’ diagnostic usefulness as candidate biomarkers. Gene Ontology
(GO) enrichment analysis was performed using a Bioconductor package (ClusterProfiler).
The whole genome was used as a background.

5. Conclusions

The Ng, NPTXR, and the ratios of NPTXR/Ng, as well as Aβ42/Ng, were significantly
different in the MCI patients compared to the CTRL group. Furthermore, the NPTXR/Ng
ratio presented the highest diagnostic usefulness for differentiation of the above-mentioned
groups, whereas the AUC for Aβ42/Ng ratio was high in all compared groups. The



Int. J. Mol. Sci. 2022, 23, 10867 10 of 11

preliminary and screening bioinformatic analysis of pathways and functions based on
enriched GO enabled a deeper understanding of the biological mechanisms of this disease.
The combination of proteomic results and GO enrichment analysis seems particularly
promising in generating new research objectives and possible therapeutic targets, and it
seems that it is particularly important to apply and compare the results of empirical studies
with bioinformatic analyses to better understand AD disease.
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