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Abstract: The Yangtze sturgeon (Acipenser dabryanus) has recently been declared extinct in the wild,
and artificial breeding is the only means to protect its germplasm resources, but it has difficulty in
weaning (from live prey to artificial food). In this study, we first performed a histological observation,
enzyme-activity determination, and transcriptome sequencing on the livers of juvenile Yangtze
sturgeons, and we then cloned five critical genes of lipid metabolism according to the transcriptome-
sequencing results. We designed a weaning experiment to analyze their expression levels during
weaning. The results showed that the density of hepatocytes and the transaminase activity of
the juveniles failed to wean. The differentially expressed genes were enriched significantly in the
pathways involving steroid synthesis, amino acid metabolism, and pancreatic secretion. It was found
that the mRNA level of the fatty acid-synthesis gene decreased, and the mRNA level of the lipolysis
gene increased significantly during weaning. The results of this research indicated that weaning
could affect the liver health of Yangtze sturgeon, and it could affect the liver lipid metabolism by
inhibiting fatty acid synthesis and promoting lipolysis. This study enhances our understanding of
the impact of weaning on the lipid metabolism in fish.

Keywords: lipid metabolism; liver health; weaning; Yangtze sturgeon (Acipenser dabryanus)

1. Introduction

Weaning is commonly considered as the switch from one type of feed to another type,
and it is a necessary stage for raising animals, including mammals and fish, to meet their
nutritional requirements for growth. Fish, as a high-quality protein source of cultured
animals, is becoming more and more popular, and with the promotion of intensive farming,
aquaculture has become the fastest growing sector in the field of animal breeding [1]. In
the process of aquaculture, weaning is a very critical moment for cultured fish due to the
fact that the nutrition of live prey is not balanced enough to meet the needs of growth
and survival. However, it is difficult for many fish to complete the weaning, which has
become a bottleneck that is restricting the further development of aquaculture [2]. To solve
this problem, scholars have carried out a lot of research. Previous studies have shown
that weaning can affect the growth performance [3,4] and physiological functions of fish,
including the digestion [2,5,6], innate immunity [7], and metabolism [8], but the mechanism
is still unknown.

As one of the important links in aquaculture, there is a growing interest in the impact
of weaning on fish physiology. The use of an inert diet instead of live prey changed the
expressions of the digestive enzymes of spotted rose snapper (Lutjanus guttatus) [9] and
glass eels (Anguilla anguilla) [10]. Moreover, the gut microbial community of the host is
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also affected by weaning [2]. Campoverde et al. [7] found that the innate immune gene-
expression profiles (complement c3, Cyclooxygenase, Lysozyme, Mx protein, Myeloid
differentiation primary response gene 88, NOD-like receptors) of juveniles also changed
after weaning. In order to understand the mechanism of the effect of weaning on fish
physiology, a few studies have used transcriptome technology and have found that weaning
affects amino acid metabolism and lipid metabolism in fish, such as Siniperca chuatsi [8,11].
In addition, previous studies have shown that feed substitution has an effect on fish lipid
metabolism, but these studies mainly focus on the impact of feed nutrition [12–15], and
there is a lack of research on the impact of weaning on fish lipid metabolism.

Sturgeon is one of the earliest vertebrates in existence, which are known as living
fossils, many of which are endangered and listed as first-class protected wild animals, such
as the Yangtze sturgeon (Acipenser dabryanus) and Chinese sturgeon (Acipenser sinensis) [16].
So far, there have been research reports on the weaning of some sturgeons, such as Siberian
sturgeon (Acipenser baerii) [17], Persian sturgeon (Acipenser persicus) [18], sterlet (Acipenser
ruthenus) [19,20], white sturgeon (Acipenser transmontanus) [21], Atlantic sturgeon (Acipenser
oxyrinchus) [22], and Yangtze sturgeon [23]. Nevertheless, these studies were mainly
concerned with growth, survival, and intestinal microbes, and there is no report on the
effect of weaning on the physiological metabolism of sturgeon. Yangtze sturgeon, the
flagship species for the protection of rare and endemic fish in the upper reaches of the
Yangtze River, is a migratory fish that is distributed only in the middle and upper reaches
and tributaries of the Yangtze River in China [24], and it has been listed in Appendix II
of the Convention on International Trade in Endangered Species of Wild Fauna and Flora
(CITES) due to the decline of wild resources. Since 2000, no naturally bred juvenile fish
have been found [25], and so artificial cultivation is a necessary means to protect and restore
its germplasm resources. During artificial cultivation, weaning is an important challenge to
be overcome for Yangtze sturgeon. However, research on the weaning of Yangtze sturgeon
is scarce, and the effect of weaning on the physiological function of Yangtze sturgeon and
the mechanism are still unclear.

In order to explore the effect of weaning on Yangtze sturgeon, juvenile Yangtze stur-
geons that failed and succeeded in weaning were selected for anatomical observation, and
the histology and enzyme activities of the livers were detected due to the atrophy of the
livers of the weaning failed larvae. Next, RNA-Seq was used to investigate the effect of
weaning on the liver. Subsequently, based on the results of the RNA-Seq, the cDNA of
several critical genes of lipid metabolism were cloned, including acetyl-CoA carboxylase-
1(ACC1), fatty acid synthase (FAS), carnitine palmitoyl transferase 1(CPT1), sterol-regulator
element-binding protein 1(SREBP1), and peroxisome proliferators activate receptors γ

(PPARγ). The expressions of these genes and adipose triglyceride lipase (ATGL) during
weaning were further detected to understand the effect of weaning on lipid metabolism.
These genes are closely related to lipid metabolism in fish: ACC1 and FAS function in fatty
acid biosynthesis, ATGL and CPT1 play key roles in the process of lipolysis, and SREBP1
and PPARγ play important roles in lipid metabolism as transcription factors [26]. This study
is expected to provide a theoretical basis for formulating reasonable weaning strategies
for Yangtze sturgeon to contribute to the conservation and recovery of the germplasm
resources of Yangtze sturgeon, and to increase our understanding of the physiological and
metabolic mechanisms of weaning in the teleost.

2. Results
2.1. Histological Observation and Transaminase Activity of Liver

Compared with the nor-feeding fish, the non-feeding fish were thin, the livers were
atrophic, and there was no content in the intestines (Figure 1A,B). The liver-tissue sections of
the non-feeding and nor-feeding fish were observed under optical microscopes. The results
showed that the hepatocytes of the nor-feeding fish had clear boundaries, the nucleus
was located at the cell edge, and the cytoplasm was lightly stained, but there was mild
congestion in the central vein and hepatic sinuses (Figure 1C). In contrast, the hepatocytes
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of the non-feeding fish were closely arranged, the boundaries were not clear, the cytoplasm
was deeply stained, hemosiderin was deposited around the sinuses, Kupffer cells, which
are a marker of liver health, increased, and the hepatic sinusoids dilated (Figure 1D).
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Figure 1. Weaning affected the liver health of Yangtze sturgeons. (A,B) Comparison of morphology
and anatomy of Yangtze sturgeons. He: heart; Li: liver; St: stomach; Pc: pyloric caeca; Du: duodenum;
Vi: valvula intestine. Images of HE-stained liver sections in (C) successful and (D) failed weaning
Yangtze sturgeons (40×). Nor-feeding: successful weaning; non-feeding: failed weaning.

Compared with the Success-Fish, the activities of aspartate aminotransferase (AST)
and alanine aminotransferase (ALT) in the liver of the Failure-Fish increased significantly
(p < 0.05) (Figure 2).

Int. J. Mol. Sci. 2022, 23, x FOR PEER REVIEW 4 of 16 
 

 

 
Figure 2. Activity of aspartate aminotransferase and alanine transaminase in liver. Nor-feeding: 
successful weaning; non-feeding: failed weaning. * p < 0.05. 

2.2. Transcriptome-Data Analysis 
The F_L and S_L groups obtained 54,101,748 and 64,480,944 raw reads, respectively. 

After treatment, 53,678,894 and 63,958,528 clean reads were obtained from the F_L and 
S_L groups, respectively, with Q20 (nucleotides with quality values > 20) > 98%, Q30 > 
94%, and an error rate < 0.025%. The quality control is qualified and can be used for sub-
sequent analysis (Table 1). These clean reads were assembled into 78,286 transcripts with 
an N50 length of 1740 bp, and a final set of 52,559 unigenes with an N50 length of 1613 bp 
was generated. The scores for the quality assessment of the transcript assembly using 
TransRate and BUSCO were 0.43717 and 95.3%, respectively (Table 2). 

In order to obtain annotation information, the 52,559 unigenes were annotated in six 
databases, including NR, SwissProt, Pfam, COG, GO, and KEGG, after assembly optimi-
zation (Figure 3A). The results showed that 23,541 (46.38%), 19,239 (37.91%), 16,777 
(33.05%), 20,581 (40.55%), 18,892 (37.22%), and 14,301 (28.18%) unigenes were annotated 
in the above databases, respectively (Figure 4A). Moreover, 12,026 clusters (50.03%) were 
similar to Acipenser ruthenus, 3958 clusters (16.47%) were similar to Lepisosteus oculatu, and 
3107 clusters (12.93%) were similar to Erpetoichthys calabaricus ((Figure 3B). 

The screening results of the differentially expressed genes showed that 2486 differ-
entially expressed genes were screened in the livers, of which 1602 were upregulated and 
884 were downregulated (Figure 4A). According to the expressions of the DEGs, and for 
the sake of further studying the effect of weaning on the transcription level of juvenile 
Yangtze sturgeon, the upregulated and downregulated genes in the livers were enriched 
by GO. Figure 4B shows the enriched biological processes that were involved: the steroid 
metabolic process, steroid biosynthetic process, cellular amino acid biosynthetic process, 
and organic hydroxy compound metabolic process (p < 0.05). The results of the KEGG 
enrichment of the DEGs in the livers showed they were mainly enriched in steroid bio-
synthesis, arginine biosynthesis, glycine, serine, and threonine metabolism, as well as 
pancreatic secretion (Figure 4C) (p < 0.05). 

In order to verify the expressions of the RNA-Seq analysis, a total of seven genes in 
the livers were verified by qPCR at the mRNA level. The results showed that the expres-
sion trends of these genes were the same under the detection of qPCR and RNA-Seq. The 
expressions of AACS, NUCB2, JunB, c-fos, Akt, and TNF-α were significantly upregulated, 
and the expression of SREBP1 was significantly downregulated (Figure 5). 
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2.2. Transcriptome-Data Analysis

The F_L and S_L groups obtained 54,101,748 and 64,480,944 raw reads, respectively.
After treatment, 53,678,894 and 63,958,528 clean reads were obtained from the F_L and S_L
groups, respectively, with Q20 (nucleotides with quality values > 20) > 98%, Q30 > 94%,
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and an error rate <0.025%. The quality control is qualified and can be used for subsequent
analysis (Table 1). These clean reads were assembled into 78,286 transcripts with an N50
length of 1740 bp, and a final set of 52,559 unigenes with an N50 length of 1613 bp was
generated. The scores for the quality assessment of the transcript assembly using TransRate
and BUSCO were 0.43717 and 95.3%, respectively (Table 2).

Table 1. Formulation and nutritional composition of commercial feed.

Sample Raw Reads Raw Bases Clean Reads Clean Bases Error Rate (%) Q20 Sample Raw Reads
F_L 54,101,748 8,169,363,948 53,678,894 8,008,681,153 0.0244 98.33 94.72 48.04
S_L 64,480,944 9,736,622,544 63,958,528 9,527,555,685 0.0242 98.38 94.86 47.77

Table 2. Statistical table of assembly-result evaluation.

Type Unigene Transcript

Total number 52,559 78,286
Total base 46,907,651 77,903,931

Largest length (bp) 15,546 15,546
Smallest length (bp) 201 201
Average length (bp) 892.48 995.12

N50 length (bp) 1613 1740
E90N50 length (bp) 2675 2399

Fragment-mapped percent (%) 67.268 79.695
GC percent (%) 44.37 44.4
TransRate score 0.37572 0.43717
BUSCO score C:95.3% [S:93.3%; D:2.0%] C:95.3% [S:93.3%; D:2.0%]

In order to obtain annotation information, the 52,559 unigenes were annotated in six
databases, including NR, SwissProt, Pfam, COG, GO, and KEGG, after assembly optimiza-
tion (Figure 3A). The results showed that 23,541 (46.38%), 19,239 (37.91%), 16,777 (33.05%),
20,581 (40.55%), 18,892 (37.22%), and 14,301 (28.18%) unigenes were annotated in the
above databases, respectively (Figure 4A). Moreover, 12,026 clusters (50.03%) were sim-
ilar to Acipenser ruthenus, 3958 clusters (16.47%) were similar to Lepisosteus oculatu, and
3107 clusters (12.93%) were similar to Erpetoichthys calabaricus (Figure 3B).
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Figure 4. Differentially-expressed-gene screening and enrichment analysis: (A) volcano map of
differentially expressed genes in livers; (B) GO enrichment; (C) KEGG-pathway enrichment of DEGs
in livers.

The screening results of the differentially expressed genes showed that 2486 differen-
tially expressed genes were screened in the livers, of which 1602 were upregulated and
884 were downregulated (Figure 4A). According to the expressions of the DEGs, and for the
sake of further studying the effect of weaning on the transcription level of juvenile Yangtze
sturgeon, the upregulated and downregulated genes in the livers were enriched by GO.
Figure 4B shows the enriched biological processes that were involved: the steroid metabolic
process, steroid biosynthetic process, cellular amino acid biosynthetic process, and organic
hydroxy compound metabolic process (p < 0.05). The results of the KEGG enrichment of
the DEGs in the livers showed they were mainly enriched in steroid biosynthesis, arginine
biosynthesis, glycine, serine, and threonine metabolism, as well as pancreatic secretion
(Figure 4C) (p < 0.05).

In order to verify the expressions of the RNA-Seq analysis, a total of seven genes in the
livers were verified by qPCR at the mRNA level. The results showed that the expression
trends of these genes were the same under the detection of qPCR and RNA-Seq. The
expressions of AACS, NUCB2, JunB, c-fos, Akt, and TNF-α were significantly upregulated,
and the expression of SREBP1 was significantly downregulated (Figure 5).
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Figure 5. Part of DEGs were verified by RT-qPCR. Gene-expression levels were normalized to that of
β-actin and EF1-α. Data are presented as the group means ± SD (n = 5). Statistical comparison of the
mRNA levels detected in different groups was carried out by t-test of variance (* p < 0.05, ** p < 0.01,
*** p < 0.001). (A) RT-qPCR of liver; (B) RNA-Seq of liver.

2.3. Gene Cloning and Sequence Analysis

To investigate the effect of weaning on the lipid metabolism of Yangtze sturgeon, the
key factors of lipid metabolism (ACC1, FAS, CPT1, SREBP1, and PPARγ) were cloned from
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the livers of Yangtze sturgeons. The amplified parts of the coding sequences (CDSs) of
ACC1, FAS, CPT1, SREBP1, and PPARγ were 888, 927, 945, 1815, and 1350 bp in length
(Figure 6A–E), respectively, encoding for a putative protein of 296, 309, 315, 605, and
447 amino acids, respectively. The nucleotide sequences of these genes of Yangtze sturgeon
were submitted to GenBank with the GenBank numbers: MN685787, MN685791, MN685789,
MN685809, and MN685800.
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Figure 6. cDNA sequences and deduced amino acid sequences of (A) ACC1, (B) FAS, (C) CPT1,
(D) SREBP, and (E) PPARγ in the Yangtze sturgeons. The asterisk (*) indicates the stop codon.

Based on the deduced ACC1, FAS, CPT1, SREBP1, and PPARγ, a multiple sequence
analysis of the amino acids showed that these amino acid sequences of different species
were highly conserved (Figure S1). The consistency of the ACC1 amino acid sequence
between Acipenser dabryanus and other species was more than 75% (Figure S1), among
which the consistency with the ACC1 amino acid sequence of Lepisosteus oculatus was the
highest (91.9%), followed by Gallus gallus (86.8%), and the lowest was with Danio rerio
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(75.9%). The consistency of the FAS amino acid sequence between Acipenser dabryanus and
Acipenser ruthenus was the highest (96.1%), followed by Cyprinus carpio (83.5%), and the
lowest was with Sus scrofa (61.3%) (Figure S2). The consistency of the CPT1 amino acid
sequence between Acipenser dabryanus and Lepisosteus oculatus was the highest (83.9%),
followed by Gallus gallus (78.7%), and the lowest was with Mus musculus (73.9%) (Figure S3).
SREBP1 was similar to FAS (Figure S4). The consistency of the PPARγ amino acid sequence
between Acipenser dabryanus and Acipenser ruthenus was the highest (98.4%), followed by
Homo sapiens (81.2%), and the lowest was with Salmo solar (60.0%) (Figure S5).

The evolutionary relationships of these genes are shown in Figure 7. The ACC1 was
mainly classified into two clades, with mammals as an outgroup. The genetic relationship
between Acipenser dabryanus FAS and Acipenser ruthenus FAS was the closest, and the
farthest from mammals (human, rat, and cow, etc.), which was consistent with the results
of the animal classification. The genetic relationship between Acipenser dabryanus CPT1
and Lepisosteus oculatus CPT1 was the closest. SREBP1 was similar to ACC1. The genetic
relationship between Acipenser dabryanus PPARγ and Acipenser ruthenus PPARγ was the
closest (Figure 7A–E).
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2.4. Effects of Weaning on the Expressions of Genes Related to Liver Lipid Metabolism

The effect of weaning on the key enzymes and regulatory factors of lipid metabolism
in the liver is shown in Figure 8 Compared with the control group, the expressions of the
key enzymes in fatty acid synthesis (ACC1 (Figure 8A) and FAS (Figure 8B)) in the weaning
group declined in 10 days (p < 0.001). After refeeding, the expressions of ACC1 and FAS
were significantly higher than the weaning group (p < 0.001), and the expression of FAS was
significantly higher than the control group on the 8th (p < 0.001) and 10th (p < 0.01) days.
The expression pattern of ATGL (cloned but unpublished) was similar to FAS; however,
the expression of ATGL was significantly lower than that in the weaning group on the 8th
day (p < 0.001) (Figure 8C). The expression changes of CPT1, the key enzyme of lipolysis,
are shown in Figure 8D. Compared with the control group, the expression of CPT1 in the
weaning group increased significantly (days 1–8) (p < 0.05) and decreased on the 10th day
(p < 0.001). After refeeding, the expression of CPT1 was significantly higher than that in
the control group and weaning group (p < 0.01); however, the expression of CPT1 was
significantly lower than that in the weaning group on the 8th day (p < 0.05). Compared
with the control group, the lipid-metabolism regulator PPARγ increased significantly in the
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early stage (days 1–5) (p < 0.001), but it decreased significantly in the later stage (days 6–10)
(p < 0.01), showing a time-dependent trend. After refeeding, its expression was significantly
lower than that in the weaning group (p < 0.001) (Figure 8E). The expression of SREBP1
(Figure 8F), another metabolic regulator, decreased significantly after weaning (p < 0.001),
and continued to decrease after refeeding (p < 0.001). Moreover, on the 10th day, it was
significantly higher than that in the weaning group, and significantly lower than that in the
control group (p < 0.001).
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mRNA levels detected at different groups was carried out by t-test of variance (* p < 0.05, ** p < 0.01,
*** p < 0.001).

3. Discussion

In this study, the Yangtze sturgeons that failed to wean were significantly thinner,
and the body lengths and weights were significantly lower than those of the successful
weaning juveniles [27]. After dissecting the Yangtze sturgeons, it was found that the failure
in weaning caused liver and heart atrophy in the Yangtze sturgeons. As an important
organ of metabolism, the histomorphology of the liver can reflect the physiological disorder
caused by the imbalance or deficiency of the feed nutrition. ŽáK et al. [5] found that
male turquoise killifish possessed a lipid type of hepatocellular vacuolation after using
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commercial feed instead of live prey. This study was the first to compare the livers of failed
and successful weaning juveniles, and it found that the hepatocyte density of juvenile
fish with failed weaning increased, and the boundary of the cell membrane was blurred.
Kupffer cells also increased in the liver of juveniles with failed weaning. Kupffer cells are
macrophages that reside in the liver and are involved in many important physiological and
pathological processes, including inflammation, fatty liver, and tumor [28,29]. The results
of the liver-tissue sections further confirmed that the failure to wean could damage liver
health. In addition, the activities of ALT and AST in the liver of juvenile fish with failed
weaning in this study also increased significantly. ALT is not only a metabolic enzyme
related to energy metabolism, but also a marker of liver damage [30]. AST is closely related
to protein metabolism and is an importantly sensitive index in response to tissue and cell
damage [31]. These results were consistent with the tissue-section results, which further
confirmed that weaning could affect the liver health of Yangtze sturgeon.

In order to further understand the mechanism of weaning affecting liver health, the
RNA-Seq was taken to determine the transcription profile in the livers of the success-
ful and failed weaning Yangtze sturgeons. Zhao et al. [2] obtained 42,631 unigenes and
867 DEGs from the livers of largemouth bass larvae at different stages of weaning using
high-throughput sequencing. The genes with increased expression were related to amino
acid metabolism in the preweaning stage, but they were related to fatty acid metabolism
in the postweaning stage. He et al. [8] found three pathways related to food-habit domes-
tication through transcriptome and metabolome analysis, including retinol metabolism,
glycerin metabolism, and unsaturated fatty acid biosynthesis. These studies showed that
weaning can affect different physiological metabolism processes of fish. The present re-
sults indicated that there were 78,286 transcripts and 52,559 unigenes, of which 2486 were
DEGs. It was found that the DEGs in the livers were significantly enriched in the pathways
involved in steroid biosynthesis, amino acid metabolism, and pancreatic secretion. These
results indicate that weaning affects the liver metabolism, and they lay a foundation for a
follow-up study of the effect of weaning on liver lipid metabolism.

As the RNA-Seq results suggested that lipid metabolism would be affected by weaning,
the partial cDNA of ACC1, FAS, CPT1, SREBP1, and PPARγ were cloned from Yangtze
sturgeons to further explore the effect of weaning on lipid metabolism. The cloning
of these genes has been reported in some fish, including grass carp (Ctenopharyngodon
idella), yellow catfish (Pelteobagrus fulvidraco) [32], and orange-spotted grouper (Epinephelus
coioides) [33]. In the study, the amino acid-sequence analysis showed that these genes were
highly consistent among different species, and the phylogenetic-analysis results based on
the amino acid sequence was consistent with the traditional classification and evolutionary
status. This study lays a foundation for the follow-up study of lipid metabolism in fish.

Based on the results of the transcriptome sequencing and gene cloning, we explored
the effect of weaning on lipid metabolism. An important component of lipid metabolism,
including in fish, is the biosynthesis of fatty acids [34]. ACC1 and FAS play a key role
in the process of fatty acid synthesis. ACC1 relies on biotin to catalyze the irreversible
carboxylation of acetyl-CoA to malonyl-CoA, which is the rate-limiting step in the pathway
of fatty acid biosynthesis [35]. FAS can convert acetyl-CoA and malonyl-CoA into palmitate,
and then esterify it into triglyceride (TAG) stored in adipose tissue [36]. In this study, the
mRNA levels of ACC1 and FAS decreased in the weaning group, but the mRNA levels
of ACC1 and FAS increased after refeeding with T. Limnodrilus, indicating that the direct
weaning of the Yangtze sturgeons inhibited their fatty acid synthesis. After refeeding
with water earthworm, the synthesis of fatty acids increased, promoting fat deposition,
which is an important reason for the weight gain of juvenile fish after refeeding. Peng
et al. found that the expression of FAS of juvenile turbot was upregulated and promoted
liver fat deposition after using soybean oil instead of fish oil [37]. For Atlantic bluefin
tuna, compared with Artemia, the expression of FAS in the larvae was higher when they
were fed with copepods with a high DHA and DHA/EPA ratio [12]. The reason for these
differences may be that the purpose of these studies was to find fish-oil substitutes. This
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study explored the effect of weaning on lipid metabolism for the first time, which provides
ideas for formulating reasonable weaning schemes in the future. This study shows that
direct weaning can inhibit fatty acid synthesis by reducing the expressions of ACC1 and
FAS, and refeeding live prey can reduce this effect.

Moreover, lipolysis is another important process of lipid metabolism, which is crucial
for maintaining the energy balance of fish. ATGL is an important part of lipolysis and
the mobilization of the lipid stores in mammals. It can specifically hydrolyze the first
ester bond of TG to form diglyceride (DG) and free fatty acid (FFA) [38], as it is the
rate-limiting enzyme in the hydrolysis of TG. CPT1 is mainly distributed in the outer
membranes of microsomes and mitochondria and is a fatty acid β-oxidation-limiting
enzyme in the oxidation process [39]. These two enzymes play important roles in regulating
lipid catabolism and energy metabolism. In the present study, the mRNA level of ATGL
decreased during weaning, but recovered after refeeding with T. Limnodrilus, and it was
higher than those of the other two groups at the 10th day. In large yellow croaker, after
feeding with a high-fat diet, the expression of CPT1 in the liver decreased significantly,
whereas the expression of ATGL did not change significantly [15]. Li et al. [14] fed juvenile
pond loach with different dietary soybean-oil levels, and they found that the expressions of
the fatty acid-synthesis genes, such as FAS, increased, and fat-decomposition genes, such
as ATGL and CPT1, decreased. In this study, the expression of CPT1 mRNA increased
first, and then decreased in the weaning group. After refeeding with T. Limnodrilus, the
expression increased significantly. These results may be because n-3 LC PUFA in fish oil
stimulates the expression of lipolytic factor CPT1 and enhances fatty acid β-oxidation [34].
These results showed that Yangtze sturgeons need to mobilize a large amount of fatty
acid oxidation for their energy supply during weaning, due to the reduction in the energy
intake, to increase the process of lipolysis. The results of the present study showed that
direct weaning promoted lipolysis, and this effect was further enhanced when refeeding
was performed.

4. Materials and Methods
4.1. Animals

The experimental fish were the F2-generation offspring of a captive-bred population
of Yangtze sturgeons. Artificial reproduction of the fish was implemented at the facilities
of the Fisheries Research Institute of Sichuan Academy of Agricultural Sciences, Sichuan,
China. The larvae were fed chopped T. Limnodrilus beginning 4 days posthatching (dph),
with natural light and filtered river water (20.5± 1.0 ◦C; changed twice a day, and one-third
of the total volume of water was changed each time). All experimental procedures were
approved by the Animal Care and Use Committee of SAAS and Sichuan Agricultural
University (approval numbers: SAAS20180628 and DKY-S20180629).

4.2. Experimental Design and Sample Collection

During the breeding process of sturgeon seeds, there is a weaning stage (the live
prey is changed to artificial feed). After being weaned for a period, some larvae fail to
wean. In order to investigate the effect of weaning on the digestive system of Yangtze
sturgeon, 10 juveniles failed to wean (characterized by a thin body, poor vitality, and
less than 70% of the intestinal-filling degree after feeding for 30 min), and 10 juveniles
that succeeded to wean were randomly selected. After low-temperature anesthesia, these
fish were dissected rapidly for anatomical observation. The liver tissues of 5 fish in each
group were frozen in liquid nitrogen and stored at −80 ◦C for transcriptome analysis and
transaminase-activity detection. The liver tissues of the other 5 fish were fixed in Bonn’s
solution for histological analysis.

Based on the results of the RNA-Seq, this study performed the gene cloning. For
the cloning, 5 juvenile Yangtze sturgeons (224.56 ± 31.75 g) were randomly selected and
hypothermically anesthetized. The liver tissues were quickly taken out, frozen in liquid
nitrogen, and stored at −80 ◦C.
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To investigate the effect of weaning on the lipid metabolism of Yangtze sturgeon,
360 juvenile Yangtze sturgeons were randomly divided into three groups: a control group,
weaning group, and refeeding group. Each group was split into three tanks, with 40 fish per
tank. At 60 dph, the control group continued to feed on T. Limnodrilus, while the weaning
group was fed with commercial feed (the ingredients and chemical composition of the feed
are shown in Table 3). The refeeding group was fed with commercial food and refed with
T. Limnodrilus on the 5th day. Each group was fed at 8:00 and 20:00 every day to ensure fish
satiety. At 14:00 on the 1st, 3rd, 5th, 6th, 8th, and 10th days after weaning, 6 sturgeons were
randomly selected from each group to collect the livers for the subsequent experiments.

Table 3. Statistical table of assembly-result evaluation.

Ingredients Nutrient Composition (%)

Casein 49
Gelatin 5
α-starch 25
Fish oil 8

Choline chloride 0.25
Vitamin and mineral premix 1

CMC-Na 4
Microcrystalline cellulose 2.75

Potassium sorbate 0.1
Moisture 6.35

Crud protein 42.55
Crud lipid 10.53

4.3. Histological Analysis of Liver

The liver was repaired to an appropriate size, fixed in neutral formalin, washed with
water, dehydrated with gradient alcohol, made transparent, soaked in wax, and embedded
in paraffin. The embedded tissue was cut into 3–5 µm slices. Then, hematoxylin–eosin (HE)
staining was performed: the sections were fixed on slides, then dewaxed and rehydrated,
stained with hematoxylin for 3 min, differentiated with 1% hydrochloric acid alcohol,
rinsed with tap water, stained with eosin for 1 min, washed with tap water, dehydrated
with ethanol gradient, clarified with xylene, and sealed with neutral gum. The tissue
sections were observed and photographed with a Nikon Eclipse Ti-s microscope (Nikon,
Tokyo, Japan).

4.4. Transaminase Activity in Liver

The livers were made into a tissue homogenate at a ratio of 1:9 with 0.9% saline
solution, and the supernatant was obtained after centrifugation at 2500 rpm for 10 min. The
total protein concentration was determined by the Coomassie Brilliant Blue method. The
activities of ALT and AST were measured according to the instructions (Nanjing Jiancheng,
Nanjing, China).

4.5. RNA Extraction and Transcriptome Sequencing

Total RNA was extracted from the livers of juvenile Yangtze sturgeons using the Spin
Column Animal Total RNA Purification Kit (Sangon Biotech, Shanghai, China). The con-
centration of total RNA was detected by a bioanalyzer (Agilent 2100, Agilent Technologies,
Santa Clara, CA, USA) and 1% agarose gel electrophoresis. RNA with RIN ≥ 7.0, OD
260/280 ≥1.8 and OD 260/230 ≥1.5 was approved for the next step.

The construction of the cDNA library and Illumina sequencing were completed by
Majorbio (Majorbio, Shanghai, China). To ensure the reliability of the analysis, SeqPrep
(https://github.com/jstjohn/SeqPrep (accessed on 8 July 2011)) and Sickle (https://github.
com/najoshi/ sickle (accessed on 4 April 2012)) were used to filter the raw reads to remove
the low-quality sequences, sequenced splice sequences, and repetitive redundant sequences
(unknown nucleotides greater than 5%). After obtaining clean reads, Trinity (https://

https://github.com/jstjohn/SeqPrep
https://github.com/najoshi/
https://github.com/najoshi/
https://github.com/trinityrnaseq/trinityrnaseq
https://github.com/trinityrnaseq/trinityrnaseq
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github.com/trinityrnaseq/trinityrnaseq (accessed on 25 May 2019).) was used for the de
novo assembly to obtain the nonredundant unigenes.

The unigenes were compared with six databases to obtain the annotation information.
The six databases are the following: NR (https://www.ncbi.nlm.nih.gov/refseq/about/
nonredundantproteins/ (accessed on 24 August 2020)); Swiss-Prot (http://web.expasy.
org/docs/swiss-prot_guideline. html (accessed on 8 December 2019)); Pfam (http://pfam.
xfam.org/ (accessed on 27 September 2018)); COG (http://www.ncbi.nlm.nih.gov/COG/
(accessed on 25 November 2020).); GO (http://www.geneontology.org (accessed on 29 May
2019)); KEGG (http://www.genome.jp/kegg/ (accessed on 1 November 2018)).

RSEM (http://deweylab.github.io/RSEM/ (accessed on 27 June 2018)) was used for
the transcriptome quantification. After the read counts between the different samples
were standardized based on the TMP method, DEGseq software was used to screen the
differentially expressed genes (DEGs) according to p-adjust < 0.001 and | log2FC | ≥ 2.
The software Goatools (v1.0.15, Fuzhou, China) was used to perform the GO-enrichment
analysis, and R language was used to write the scripts to perform the KEGG-pathway-
enrichment analysis on the DEGs.

4.6. Gene Cloning

The total RNA of the livers was extracted using the Spin Column Animal Total RNA
Purification Kit (Sangon Biotech, Shanghai, China). The cDNA was synthesized by the
PrimeScript™ RT reagent kit with the gDNA Eraser (Takara, Dalian, China). According
to the sequences of the teleost published on GenBank and the transcriptome sequenc-
ing, primers of ACC1, FAS, CPT1, SREBP1, and PPARγ were designed by Primer Premier
5.0 software (Table S1) and synthesized by Sangon Biotech (Shanghai, China). The PCR
program was the same as a previous study [40]. The BLAST was used to analyze the
similarity of the sequences. The deduced amino acid sequence was analyzed with Clustalx
W (http://www.clustal.org/ (accessed on 13 January 2011)). A phylogenetic tree was
constructed based on the amino-sequence alignment by the neighbor-joining (NJ) algo-
rithm embedded in the MEGA 11 program (Philadelphia, PA, USA). The reliability of the
branching was tested by bootstrap consensus (1000 replicates).

4.7. Quantitative Real-Time PCR (qRT-PCR)

In order to study the effect of weaning on the liver lipid metabolism of Yangtze
sturgeon, the expressions of the key factors of lipid metabolism (ACC1, FAS, ATGL, CPT1,
SREBP1, and PPARγ) were analyzed. The total RNA extraction and cDNA synthesis
were the same as above. Primers (Table S1) with standard curve amplification efficiency
(97~99%) and R2 (0.967~0.998) that meet the requirements can be used for subsequent
tests. The results were normalized using β-actin and EF1-α as the internal control [41].
Real-time PCR assays were carried out on a quantitative thermal cycler (CFX Connect
Real-Time System, BIO-RAD, Hercules, CA, USA). Gene expression was calculated using
the comparative-threshold-cycle method (2−44CT).

4.8. Statistical Analysis

SPASS 22.0 statistical software (SPSS Inc., Chicago, IL, USA) was used for statistical
analysis. The data were presented as mean ± SD. An independent between-variable t-test
was performed to determine the significant differences between the two groups. p < 0.05
was recorded as significant, and p < 0.01 was recorded as extremely significant.

5. Conclusions

In conclusion, this study found that the failure to wean could cause growth retarda-
tion and liver damage in juvenile Yangtze sturgeon. Moreover, through the RNA-Seq, it
was found that weaning could affect steroid biosynthesis, amino acid metabolism, and
pancreatic secretion in the liver. Moreover, the critical genes of lipid metabolism, including
ACC1, FAS, CPT1, SREBP1, and PPARγ, were cloned in Yangtze sturgeon for the first
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https://www.ncbi.nlm.nih.gov/refseq/about/nonredundantproteins/
https://www.ncbi.nlm.nih.gov/refseq/about/nonredundantproteins/
http://web.expasy.org/docs/swiss-prot_guideline
http://web.expasy.org/docs/swiss-prot_guideline
http://pfam.xfam.org/
http://pfam.xfam.org/
http://www.ncbi.nlm.nih.gov/COG/
http://www.geneontology.org
http://www.genome.jp/kegg/
http://deweylab.github.io/RSEM/
http://www.clustal.org/
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time. Furthermore, it was found that direct weaning could inhibit fatty acid synthesis
by decreasing FAS and ACC1 and the nuclear transcription factors SREBP1 and PPARγ,
and could enhance lipolysis by stimulating the CPT1 expression in the Yangtze sturgeon,
while the expression of ATGL decreased. The results of the present study indicate that
weaning can affect liver health and inhibit the growth of Yangtze sturgeon by reducing
fatty acid synthesis and promoting lipolysis. This study provides a theoretical basis for
a further understanding of the mechanism of weaning on fish physiological metabolism,
and especially lipid metabolism. These genes can be utilized as target genes to develop
appropriate weaning regimens and feed formulations.
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