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Abstract: L-serine is a non-essential amino acid endogenously produced by astrocytes and is abun-
dant in human diets. Beneficial roles of the metabolic products from L-serine in various conditions in
the brain including neuronal development have been reported. Through several preclinical studies,
L-serine treatment was also shown to offer beneficial therapeutic effects for brain damage such as
ischemic stroke, amyotrophic lateral sclerosis, and Parkinson’s disease. Despite evidence for the
value of L-serine in the clinic, however, its beneficial effects on the propionic acid (PPA)-induced
neuronal toxicity and underlying mechanisms of L-serine-mediated neuroprotection are unknown.
In this study, we observed that PPA-induced acidic stress induces abnormal lipid accumulation and
functional defects in lysosomes of hippocampal neurons. L-serine treatment was able to rescue the
structure and function of lysosomes in PPA-treated hippocampal neuronal cells. We further identified
that L-serine suppressed the formation of lipid droplets and abnormal lipid membrane accumulations
inside the lysosomes in PPA-treated hippocampal neuronal cells. Taken together, these findings
indicate that L-serine can be utilized as a neuroprotective agent for the functionality of lysosomes
through restoration of cathepsin D in disease conditions.
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1. Introduction

L-serine is an amino acid endogenously produced by astrocytes and is abundant in
human diets [1]. L-serine has been found to be a valuable therapeutic agent in vitro/in vivo
studies and human clinical trials [2]. D-serine, however, has limited clinical use because
of its potential nephrotoxicity [3] and poor diffusion through the blood–brain barrier [4].
Beneficial effects of L-serine in various pathological conditions have been reported. It was
shown to promote dendritic elongation and branching of Purkinje neurons [5]. As a precur-
sor of various nucleotides including L-cysteine, phosphatidyl-L-serine, and sphingolipids,
L-serine is required for the neuronal development process [6]. Because L-serine is also
a precursor of neurotransmitters including glycine and D-serine, it is a major player in
metabolic pathways related to synaptic activity and plasticity [7]. L-serine has been consid-
ered as a potential drug for ischemic stroke, having shown neuroprotective effects when
administered at an early stage after cerebral ischemia in rats [8], improving the recovery of
neurological functions, such as learning, memory, sensory, motor, and balance functions
in the rat model for stroke [9]. L-serine is also considered as a potential therapeutic for
neurodegenerative diseases. It has also shown a safe effect in phase I clinical trials in
amyotrophic lateral sclerosis patients [10]. Dietary supplementation with L-serine restored
various deficits in an Alzheimer’s disease mouse model [11]. Despite increasing evidence
for the value of L-serine in neuroprotection, further studies to elucidate the mechanism of
action are needed.
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In order to investigate how L-serine protects neurons, we utilized hippocampal neu-
ronal cells treated with propionic acid (PPA) as an in vitro model of neurotoxicity in this
study. PPA is a short-chain fatty acid (SCFA) that an essential role in the human body,
including increasing enteric smooth muscle contractions [12,13] and the stimulation of host
defense peptide expression [14]. However, excess levels of PPA cause propionic acidemia
(PA), which has been associated with brain atrophy, dementia, cognitive disorders, and
motor impairment [15,16]. PPA can penetrate the blood–brain barrier to modulate energy
metabolism, neurotransmitter synthesis and release, and lipid metabolism when the con-
centration of SCFAs in the gut is increased [17]. Our previous results showed that increased
Peroxisome proliferator-activated receptor gamma coactivator-1 alpha (PGC1a), a regulator
of fatty acid metabolism, and decreased Acyl-CoA synthetase-1 (ACSL1) facilitate long-
chain fatty acid transport in SH-SY5Y neuronal cells [18]. A mixture of SCFAs increased
carnitine palmitoyltransferase 1 (CPT1), which affects fatty acid oxidation, and decreased
the levels of CD36, the fatty acid translocase in a pig model [19]. PPA produced defects in
autophagy with a decrease in the number of autolysosomes, suggesting the existence of a
degradation defect [20]. The lysosome is a key organelle regulating lipid metabolism [21].
In this study, we tested the neuroprotective effects of L-serine in a PPA-treated in vitro
model. To precisely examine whether and how L-serine regulates PPA-induced lysosomal
alterations, we employed multiple imaging tools including confocal microscopy, correlative
light and electron microscopy (CLEM), and transmission electron microscopy (TEM). When
L-serine was co-administered with PPA to hippocampal neuronal cells, PPA-induced forma-
tion of lipid droplets and their colocalization with lysosomes was significantly suppressed.
Biochemical analysis showed that the levels of lysosomal aspartic protease and cathepsin
D (CTSD) were significantly changed in hippocampal neuronal cells by PPA, which were
ameliorated by L-serine. Taken together, these data showed that L-serine possess protec-
tive potentials against toxin-induced functional and structural changes of lysosomes by
resolving lysosomal lipid accumulation in hippocampal neurons.

2. Results
2.1. Toxicological Effects of Propionic Acid and L-Serine on HT22 Cells

To investigate the effect of PPA on the viability of HT22 hippocampal neuronal cells,
we treated the cells with different doses of PPA. We determined the concentration of PPA
that substantially changed cell viability. Cell viability decreased rapidly following treatment
with 10 mM PPA (Figure 1A). This result indicated that a concentration of 5 mM PPA was
not toxic to HT22 cells, and this concentration was used in further investigations of the
effect of PPA on the structure of cell organelles in HT22 cells. L-serine (SER) itself did not
affect the viability of the cells (Figure 1B).

2.2. PPA Decreased Lysosomal Activity in PPA-Treated HT22 Cells, and L-Serine Attenuated
the Dysfunction

We observed abnormal autophagic vacuoles (lysosomes) and accumulated lipid mem-
branes as well as the accumulation of lipid droplets (LD) inside the lysosomes in PPA-
treated HT22 cells using TEM (Figure 2A). The structural changes observed in the lysosomes
were similar to those produced by treatment with the well-known lysosomal inhibitor,
bafilomycin A1 [22]. As a result of TEM analysis, the number of abnormal autophagic
vacuoles (lysosomes) including lipid accumulations significantly increased in HT22 cells
treated with only PPA. However, cells co-treated with PPA and L-serine showed a sig-
nificantly decreased number of the abnormal autophagic vacuoles (Figure 2B). We hy-
pothesized that PPA affects lysosomal activity as a result of lysosomal dysfunction and
induces the accumulation of lipid membranes. To investigate whether PPA affected the
lysosomal activity, we performed an intracellular lysosomal activity assay in HT22 cells
treated with PPA or co-treated with PPA and L-serine. We analyzed lysosomal activity
using confocal microscopy. Green puncta represent the lysosomal activity (Figure 2C). As
shown in Figure 2D, HT22 cells treated only with PPA showed significantly decreased
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lysosomal activity compared with the control group. However, cells co-treated with PPA
and L-serine had increased lysosomal activity compared with PPA-only treated cells. These
results showed that PPA induced lysosomal dysfunction, but L-serine increased lysosomal
activity in HT22 cells.
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Figure 1. The effect of different concentrations of propionic acid (PPA) or L-serine (SER) on the 
viability of HT22 cells. (A) Representative images of HT22 cells stained with trypan blue. Scale bar, 
100 μm. (B) Six PPA concentrations from 0 to 20 mM in DMEM medium were set. HT22 cells were 
incubated in a medium with different PPA concentrations for 48 h. Cell viability was measured by 
CCK-8 assay (n = 3 replicates). Cells were treated with equal amounts of L-serine (SER) or PPA in 
DMEM medium for 48 h. L-serine (SER) has no toxicity in HT22 cells. (C) Chemical structures of 
PPA and L-serine. 
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Figure 1. The effect of different concentrations of propionic acid (PPA) or L-serine (SER) on the
viability of HT22 cells. (A) Representative images of HT22 cells stained with trypan blue. Scale bar,
100 µm. (B) Six PPA concentrations from 0 to 20 mM in DMEM medium were set. HT22 cells were
incubated in a medium with different PPA concentrations for 48 h. Cell viability was measured by
CCK-8 assay (n = 3 replicates). Cells were treated with equal amounts of L-serine (SER) or PPA in
DMEM medium for 48 h. L-serine (SER) has no toxicity in HT22 cells. (C) Chemical structures of PPA
and L-serine.

2.3. PPA Increased Lipid Droplets in HT22 Cells, and L-Serine Attenuated the Lipid Accumulation

Some studies have provided evidence that lipid droplet formation is significantly
stimulated by SCFAs [23]. To investigate whether PPA affected lipid droplets, we treated
HT22 cells with PPA only or PPA together with L-serine. After treatment for 48 h, we
stained the cells with lipi-red probe and incubated them for 30 min. We then measured the
red fluorescent puncta using confocal microscopy (Figure 3A). The number and total area
of lipid droplets were significantly increased in HT22 cells treated with PPA (Figure 3B,C),
and the average size of lipid droplets was significantly increased compared with the control
group (Figure 3D). In contrast, co-treatment with PPA and L-serine significantly decreased
the number and total area of lipid droplets compared with cells treated only with PPA. In
this study, we found that PPA induced lipid droplet accumulation in HT22 cells.
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Figure 2. PPA induced lysosomal abnormality and decreased lysosomal activity in HT22 cells. Cells 
were treated with 5 mM PPA only or 5 mM PPA and 10 mM L-serine (SER) for 48 h. (A) Representa-
tive electron microscopic images of autolysosome in HT22 cells. PPA induced the lipid membrane-
bounded inside the lysosomes in HT22 cells. The white arrow represents the autolysosome struc-
ture, and yellow arrow represents the lipid droplet inside the autolysosome. Scale bar, 5 μm (left); 
0.5 μm (the magnified images). (B) Quantification of the abnormal autophagic vacuoles analyzed 

Figure 2. PPA induced lysosomal abnormality and decreased lysosomal activity in HT22 cells. Cells
were treated with 5 mM PPA only or 5 mM PPA and 10 mM L-serine (SER) for 48 h. (A) Representative
electron microscopic images of autolysosome in HT22 cells. PPA induced the lipid membrane-
bounded inside the lysosomes in HT22 cells. The white arrow represents the autolysosome structure,
and yellow arrow represents the lipid droplet inside the autolysosome. Scale bar, 5 µm (left);
0.5 µm (the magnified images). (B) Quantification of the abnormal autophagic vacuoles analyzed
by TEM images (n = 15). SEM, *** p < 0.001, **** p < 0.0001 by one-way ANOVA, Tukey’s multiple-
comparison test. (C) Representative fluorescence images of the release of the self-quenched substrate
in HT22 cells. Confocal images showed lysosomal activity with green fluorescence. Scale bar,
20 µm. (D) Quantification of the integrated density of lysosomal activity in HT22 cells (n = 5). PPA
significantly reduced lysosomal activity compared to control. L-serine (SER) restored lysosomal
activity compared to PPA. * p < 0.05 by one-way ANOVA, Tukey’s multiple-comparison test. TD:
transmitted light detector image. AB234622: Lysosomal intracellular activity assay kit.



Int. J. Mol. Sci. 2022, 23, 10613 5 of 18
Int. J. Mol. Sci. 2022, 23, x FOR PEER REVIEW 6 of 21 
 

 

 Figure 3. PPA induced lipid droplet (LD) accumulation in HT22 cells. Cells were treated with 5 mM
PPA only or 5 mM PPA and 10 mM L-serine (SER) for 48 h. (A) Confocal imaging of HT22 incubated
with red fluorescence to label lipid droplets. Scale bar, 10 µm (left, right); 2 µm (middle, the magnified
images). (B–D) Quantification of Lipi-red number of puncta (B), total area (C), and average size (D)
(n = 30). *** p < 0.001, **** p < 0.0001 by One-way ANOVA, Tukey’s multiple-comparison test.

2.4. Three-Dimensional Volume Reconstruction in Serial TEM Showed Effects of L-Serine in
Decreasing Lipid Droplets in PPA-Treated HT22 Cells

TEM showed that the lipid droplets in HT22 cells were larger in the presence of PPA
(Figure 4A). We also observed the location of lipid droplet accumulation using CLEM
(Figure 4B). CLEM is a powerful technique that provides both the valuable functional
information given by fluorescence microscopy and the high-resolution structural informa-
tion given by TEM [24]. The use of this technique allowed us to observe more clearly the
location of lipid droplets using lipi-red fluorescence and the detail structures in cells under
electron microscopy. We acquired serial sections and images for three-dimensional (3D) vol-
ume reconstruction, and the 3D structure was visualized with Amira software (Figure 4C).
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Structural analysis through 3D reconstruction revealed a significantly decreased volume
and area of lipid droplets in cells co-treated with PPA and L-serine than in cells treated
only with PPA (Figure 4D). These data suggested that L-serine decreased the formation
and accumulation of lipid droplets induced by PPA.
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Figure 4. Three-dimensional volume reconstruction of lipid droplets (LD) shows a different size in 
PPA-treated HT22 cells. Cells were treated with 5 mM PPA only or 5 mM PPA with 10 mM L-serine 
(SER) for 48 h. (A) Representative electron microscopic images of HT22 cells. TEM images showed 
the increased size of lipid droplets in PPA-treated HT22 cells. White arrows represent lipid droplets 

Figure 4. Three-dimensional volume reconstruction of lipid droplets (LD) shows a different size in
PPA-treated HT22 cells. Cells were treated with 5 mM PPA only or 5 mM PPA with 10 mM L-serine
(SER) for 48 h. (A) Representative electron microscopic images of HT22 cells. TEM images showed
the increased size of lipid droplets in PPA-treated HT22 cells. White arrows represent lipid droplets
(LD). Scale bar, 1 µm. (B) Representative CLEM images of lipid droplets (LD) in PPA-treated HT22
cells. The location of the red signal under confocal microscopy was specifically in the abnormal lipid
droplets (LD) under electron microscopy. Scale bar, 10 µm (confocal image); 5 µm (TEM image).
(C) Representative 3D volume reconstruction of lipid droplets (LD) in HT22 cells. Scale bar, 4 µm (top);
2 µm (bottom, the magnified images). (D) Quantification of 3D volume and area of reconstructing
lipid droplets (LD) in HT22 cells. *** p < 0.001, **** p < 0.0001 by unpaired two-samples t-test.
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2.5. L-Serine Decreased the Colocalization of Lipi-Red and Lysotracker in PPA-Treated
Hippocampal Neurons

To confirm whether PPA induces lysosomal dysfunction in hippocampal neurons,
we performed an intracellular lysosomal activity assay in hippocampal neurons treated
with PPA or co-treated with PPA and L-serine. We measured lysosomal activity using
confocal microscopy. Green puncta represent the lysosomal activity (Figure 5A, Supple-
mentary Figure S1A). As shown in Figure 5B, hippocampal neurons treated only with PPA
showed significantly decreased lysosomal activity compared to the control group. However,
neurons co-treated with PPA and L-serine had significantly increased lysosomal activity
compared with PPA-only treated hippocampal neurons. These results showed that PPA
induced lysosomal dysfunction, and L-serine increased lysosomal activity in hippocampal
neurons as in HT22 cells.

To investigate whether dysfunctional lysosomes do not degrade abnormally accumu-
lated lipid droplets, we measured the colocalization of lipi-red and DND-22 lysotracker
signal in hippocampal neurons (Figure 5C, Supplementary Figure S1B). The colocalization
of total area in each group was 6.3676 ± 3.4905474 µm2 (control group), 22.0612 ± 4.4119301
µm2 (PPA group) and 10.4798 ± 4.7557928 µm2 (PPA + SER group) in hippocampal neurons.
The colocalization of average puncta size in each group was 0.2592 ± 0.097189 µm2 (control
group), 0.5084 ± 0.103289883 µm2 (PPA group) and 0.2658 ± 0.0679169 µm2 (PPA + SER
group) in hippocampal neurons. Colocalization of the total area and average puncta size
were significantly increased compared to control in PPA-treated hippocampal neurons.
The colocalization of the total area and the average size were significantly decreased by
co-treatment with PPA and L-serine (Figure 5D,E). These data suggested that L-serine
decreased the accumulation of lipid droplets induced by PPA through the increase in
lysosomal activity.

2.6. Attenuation of Lysosomal Dysfunction by L-Serine in PPA-Treated Hippocampal Neurons

To further examine whether L-serine affects lysosomal activity in PPA-treated hip-
pocampal neurons, we performed immunocytochemistry with the lysosome marker lamp1
and the active lysosome marker cathepsin D (CTSD) (Figure 6A, Supplementary Figure S2).
Co-treatment of hippocampal neurons with PPA and L-serine significantly increased the
fluorescence intensity of lamp1 and CTSD compared to treatment only with PPA (Figure 6B).
We also examined the expression levels of lamp1 and CTSD in each group of hippocampal
neurons with treatments (Figure 6C). The quantitation of CTSD band intensity normalized
to housekeeping GAPDH signals indicated a significant increase in the level of CTSD in
hippocampal neurons co-treated with PPA and L-serine. Compared to control, CTSD levels
were downregulated in hippocampal neurons treated only with PPA (Figure 6D,E). The ex-
pression level of prepro CTSD (fold change) in each group was 0.675844667 ± 0.059133796
(PPA 100 µM), 0.826306333 ± 0.06993275 (PPA 100 µM + SER 100 µM) and 1.082893333 ±
0.176601 (PPA 100 µM + SER 1 mM). The expression level of mature CTSD (fold change)
in each group was 0.591488 ± 0.064692 (PPA 100 µM), 0.714738 ± 0.093947
(PPA 100 µM + SER 100 µM) and 0.969378 ± 0.205194 (PPA 100 µM + SER 1 mM). Co-
treatment of hippocampal neurons with PPA and L-serine showed an increased level
of lamp1 compared to that in cells treated only with PPA (Figure 6F). The expression
level of lamp1 (fold change) in each group was 1.206469 ± 0.169617 (PPA 100 µM),
1.597523 ± 0.096476 (PPA 100 µM + SER 100 µM) and 1.335504 ± 0.045853 (PPA 100 µM
+ SER 1 mM). These results provided further evidence that L-serine increased lysosomal
activity in PPA-treated hippocampal neurons through regulation of CTSD levels [25].



Int. J. Mol. Sci. 2022, 23, 10613 8 of 18
Int. J. Mol. Sci. 2022, 23, x FOR PEER REVIEW 10 of 21 
 

 

 
Figure 5. L-serine (SER) reduced the colocalization of lysosomes and lipid droplets against PPA. (A) 
Representative fluorescence images of the release of the self-quenched substrate in hippocampal 
neurons (n = 8). Confocal images showed lysosomal activity with green fluorescence. Scale bar, 20 
μm. (B) Quantification of the integrated density in hippocampal neurons. PPA significantly reduced 
lysosomal activity compared to control. L-serine (SER) significantly increased lysosomal activity 
compared to PPA. * p < 0.05 by one-way ANOVA, Tukey’s multiple-comparison test. TD: transmit-
ted light detector image. AB234622: Lysosomal intracellular activity assay kit. (C) Representative 
fluorescence images of colocalization of lysosome and lipid droplets (LD) in hippocampal neurons. 
Blue fluorescent signals represent lysosomes, and red fluorescent signals represent lipid droplets 

Figure 5. L-serine (SER) reduced the colocalization of lysosomes and lipid droplets against PPA.
(A) Representative fluorescence images of the release of the self-quenched substrate in hippocampal
neurons (n = 8). Confocal images showed lysosomal activity with green fluorescence. Scale bar, 20 µm.
(B) Quantification of the integrated density in hippocampal neurons. PPA significantly reduced
lysosomal activity compared to control. L-serine (SER) significantly increased lysosomal activity
compared to PPA. * p < 0.05 by one-way ANOVA, Tukey’s multiple-comparison test. TD: transmitted
light detector image. AB234622: Lysosomal intracellular activity assay kit. (C) Representative
fluorescence images of colocalization of lysosome and lipid droplets (LD) in hippocampal neurons.
Blue fluorescent signals represent lysosomes, and red fluorescent signals represent lipid droplets (LD).
Scale bar, 10 µm; 5 µm (the magnified images). (D,E) Quantification of total area (D) and average
size (E) of colocalization of lysosomes and lipid droplets (LD) in hippocampal neurons. ** p < 0.01,
*** p < 0.001 by one-way ANOVA, Tukey’s multiple-comparison test.
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Figure 6. L-serine (SER) increased lysosomal activity in hippocampal neurons. (A) Representative 
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were treated at DIV 18 with 100 μM PPA or 100 μM PPA and 100 μM L-serine for 48 h, and immu-
nolabelled for lamp1 or CTSD. Scale bar, 10 μm; 5 μm (right, the magnified images). (B) Quantifica-
tion of the integrated density of lamp1 or CTSD in hippocampal neurons (n = 40). (C) Representa-
tives immunoblot of lamp1 and CTSD. (D,E) Analysis of CTSD protein expression by quantification 
of CTSD levels normalized to GAPDH. (F) Analysis of Lamp1 protein expression by quantification 
of lamp1 levels normalized to GAPDH. Data obtained from independent experiments (n = 3 repli-
cates) are presented as the mean ± SEM. * p < 0.05, ** p < 0.01, *** p < 0.001, **** p < 0.0001 by one-way 
ANOVA, Tukey’s multiple-comparison test. 
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lysosome in hippocampal neurons by PPA, we examined the lysosomal location and mor-
phology in hippocampal neurons using TEM and immunofluorescence staining with 
lamp1 and lysotracker. The number of puncta identified in cells transfected with lamp1-
GFP was increased in PPA-treated hippocampal neurons (Figure 7A). CLEM analysis re-
vealed abnormally increased sizes of lysosomes in hippocampal neurons treated with 
PPA (Figure 7B). TEM images also showed an increase in abnormally large vacuoles and 
accumulation of lipid membranes inside the lysosomes (Figure 7C). Accumulated lipid 
membranes were observed more clearly inside the lysosomes using 3D volume 

Figure 6. L-serine (SER) increased lysosomal activity in hippocampal neurons. (A) Representative
lamp1 and CTSD immunocytochemistry images of rat hippocampal neurons. Cultured neurons were
treated at DIV 18 with 100 µM PPA or 100 µM PPA and 100 µM L-serine for 48 h, and immunolabelled
for lamp1 or CTSD. Scale bar, 10 µm; 5 µm (right, the magnified images). (B) Quantification of
the integrated density of lamp1 or CTSD in hippocampal neurons (n = 40). (C) Representatives
immunoblot of lamp1 and CTSD. (D,E) Analysis of CTSD protein expression by quantification of
CTSD levels normalized to GAPDH. (F) Analysis of Lamp1 protein expression by quantification of
lamp1 levels normalized to GAPDH. Data obtained from independent experiments (n = 3 replicates)
are presented as the mean ± SEM. * p < 0.05, ** p < 0.01, *** p < 0.001, **** p < 0.0001 by one-way
ANOVA, Tukey’s multiple-comparison test.

2.7. CLEM and Serial TEM Showed Increase in Lysosomal Lipid Membrane Accumulation by PPA
in Hippocampal Neurons

Finally, to confirm whether lipid membranes are accumulated inside the abnormal
lysosome in hippocampal neurons by PPA, we examined the lysosomal location and
morphology in hippocampal neurons using TEM and immunofluorescence staining with
lamp1 and lysotracker. The number of puncta identified in cells transfected with lamp1-
GFP was increased in PPA-treated hippocampal neurons (Figure 7A). CLEM analysis
revealed abnormally increased sizes of lysosomes in hippocampal neurons treated with
PPA (Figure 7B). TEM images also showed an increase in abnormally large vacuoles
and accumulation of lipid membranes inside the lysosomes (Figure 7C). Accumulated
lipid membranes were observed more clearly inside the lysosomes using 3D volume
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reconstruction analysis. Lysosomal lipid membrane accumulation was further confirmed
by the serial section images (Figure 7D).
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Figure 7. PPA induced lipid membrane accumulation inside the lysosomes in hippocampal neurons.
Representative CLEM images of the lamp1 (A) or lysotracker (B) in PPA-treated hippocampal
neurons. The white arrow indicates the lipid membrane accumulation inside the lysosomes. Scale
bar, 1 µm (left); 5 µm (right). (C) Representative TEM images of lipid membrane accumulation inside
the lysosomes in the presence of PPA in hippocampal neurons. Scale bar, 5 µm (left); 1 µm (the
magnified images). The white arrow indicates the lipid membrane accumulation inside the lysosomes.
(D) Representative 3D volume reconstruction images in PPA-treated hippocampal neurons. Aqua
color, lysosome; crimson color, lipid membrane accumulation. Scale bar, 1 µm (left); 200 nm (right);
100 nm (bottom).
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3. Discussion

In this study, we observed the accumulation of lipid droplets and lysosomal lipid
membranes in PPA-treated hippocampal neuronal cells (Figures 3 and 7). Recent studies
have demonstrated that changes in lipid metabolism and the rearrangement of cellular
lipid composition are important in the adaptation of yeast cells to acid stress. These lipid
rearrangements include changes in the abundance of sphingolipids, changes in the quan-
tity of sterol, and adaptations in fatty acid saturation and chain length [26–29]. PPA and
butyrate significantly stimulated the triacylglycerol content and extent of lipid droplet for-
mation [30,31]. SCFAs affect the mRNA expression level of lipogenic genes. The expression
of fatty acid binding protein 3 (FABP3), stearoyl-CoA desaturase-1 (SCD1), peroxisome
proliferator-activated receptor (PPARG), sterol regulatory elements-binding transcription
factor 1 (SREBP1), diacylglycerol acyltransferase 1 (DGAT1), l-acylglycerol-3-phosphate
O-acyltransferase 6 (AGPAT6), and adipose differentiation-related protein (ADFP) was
upregulated by PPA and butyrate treatment. Besides the suggestion that PPA can affect
the expression of SCD1 and FABP3 through PPARG, the upregulation of SREBP1 by PPA
suggests that PPA regulates the desaturation and transport of fatty acids through the com-
bined action of PPARG and SREBP1 [23]. Our results also showed the abnormal structure
of lysosomes and a decrease in lysosomal activity in PPA-treated hippocampal neuronal
cells (Figure 4). Lysosomes are dynamic organelles that respond to cellular conditions,
and lysosomal activity correlates with physical changes in lysosomal structure, including
their size, number, and position [32]. The size of a lysosome regulates its dynamics, and its
relationship with several human diseases has been reported. Luminal pH is closely related
to the functions of organelles. Cytoplasmic acidification regulates the localization and
shape of lysosomes closer to plasma membranes [33]. Deacidification changes the position
of endolysosomes in the cytoplasm [34]. It affects the intraluminal and cytosolic levels
of divalent cations, the expression levels and activity of acid hydrolases, endolysosome
volumes and sizes, and various protein aggregations [35,36]. Lysosomal pH is regulated
by vacuolar-type ATPase (V-ATPase) through the transport of protons into the lysosomal
lumen. V-ATPase dysfunction influences the lysosomal pH, disrupting substrate degra-
dation and leading to neurodegenerative diseases [37]. One of the effects of lysosomal
dysfunction induced by PPA appears to be changed in intraluminal pH and subsequently
the acidification of the lysosomes. PPA is the anion of a weak acid, which is known to
acidify the interior of cells. The undissociated form of PPA enters the cytoplasm and dis-
sociates, thus decreasing the intracellular pH. Since PPA affects intracellular acidification,
V-ATPase acts as a key player in counteracting changes in intracellular pH and membrane
proton gradients. V-ATPase can change the structure in vivo in response to various stimuli,
including increased glucose concentrations, amino acid starvation, and growth factors. For
example, the binding of concanamycin, a V-ATPase inhibitor, to the pump may hinder
the interactions necessary for amino acid sensing [38]. Starvation of some amino acids,
including serine, glutamate, and aspartate, leads to a decrease in V-ATPase activity [39].
Many V-ATPase inhibitors, including archazolid, the plant toxin pea albumin 1 subunit b
(PA1b), and concanamycin have binding sites that overlap with bafilomycin, indicating
a common mechanism of inhibition [40]. The macrolide bafilomycin A1 is synthesized
starting from D-valine and D-mannitol as chiral progenitors of propionate units [41]. Due
to a lack of tissue specificity, most available V-ATPase inhibitors cause cellular toxicity [42].
For these reasons, PPA may have a functional effect similar to that of the lysosomal in-
hibitor Bafilomycin A1, which may degrade lysosomal activity. The lysosomal proteases
carry out the degradation function of the lysosomes within their lumen. These enzymes
are active under highly acidic pH in the luminal compartment. The lysosomal protease
CTSD was reported to protect against alpha-synuclein aggregation and toxicity in mouse
models [43–45]. A decreased level of CTSD was found in several models of neurodegen-
eration and aged rats [46]. L-serine selectively activates lysosomal cathepsins B and L,
and it has been suggested that cysteine protease mediates the processing of CTSD, and
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cysteine cathepsins B and L are involved in the final processing step. This may be a helpful
pharmacological mediator for the regulation of autophagy [47].

Our results showed that L-serine co-treatment increases the degradative function
of lysosomes against PPA-treated hippocampal neurons (Figure 4). The level of CTSD
was significantly increased by L-serine compared to that in PPA-treated cells (Figure 6).
Endogenous CTSD inhibitors are unknown, and pH seems to be the major factor regulating
mature CTSD activity. CTSD is mainly activated at low pH, such as in lysosomes, because
the two active sites, aspartic residues, are prone to deprotonation [48]. Therefore, PPA may
affect the activity of CTSD, as well as the level of CTSD, by changing the intracellular pH. In
this study, we identified an accumulation of lipid membranes in PPA-treated hippocampal
neurons. Inhibition of CTSD was affected in cholesterol metabolism and degradation in
murine steatohepatitis. Inhibition of CTSD activity dramatically improved lipid metabolism
in hepatic inflammation [49]. CTSD activity might affect cellular cholesterol transport or
efflux. CTSD binding of ceramide affects its autocatalytic activity. In cells with acid
sphingomyelinase deficiency, low endogenous ceramide is associated with decreased CTSD
activity. CTSD regulates the intracellular transport of phospholipids, cholesterol, and ATP-
binding cassette protein A1 (ABCA1)-mediated lipid efflux [50]. The role of ABC proteins
in many species is known to involve maintaining the low pH of organelles. V-ATPase
is recruited to the cell surface by ABCA1 without affecting total V-ATPase levels, and
inhibition of V-ATPase significantly impairs ABCA1-mediated cholesterol efflux [51].

In summary, our results demonstrate that PPA induced a decrease in lysosomal ac-
tivity and accumulation of lipid droplets. These effects may be the results of changes in
intracellular pH, which affect lysosomal activity, and PPA may, therefore, have potential as
a V-ATPase inhibitor. PPA may also increase the mRNA expression level of lipogenic genes.
L-serine can be a neuroprotective agent that restores the lysosomal damage caused by PPA.
L-serine may increase the lipid efflux of ABCA1 by increasing the assembly of V-ATPase.
In addition, the degradation of lipid droplets may be increased because of the increase in
lysosomal activity. Therefore, our results demonstrate that L-serine may be a major player
in lipid metabolism, regulating lysosomal activity in hippocampal neuronal cells.

4. Materials and Methods
4.1. Cell Culture

The hippocampal neuronal cell line HT22 was maintained in Dulbecco’s modified
Eagle’s medium (#11995-065, Gibco, Waltham, MA, USA) supplemented with 10% (v/v)
FBS, 20 mM HEPES (pH 7.2), and 1% penicillin-streptomycin (#15140122, Gibco, Waltham,
MA, USA) in a CO2 incubator at 37 ◦C. Primary hippocampal neurons were cultured from
embryonic day 18 Sprague–Dawley fetal rats, as previously described [52]. Briefly, the
hippocampal tissue was dissected in Hanks’ Balanced Salt solution (#14185052, Gibco,
Waltham, MA, USA) and dissociated with 0.125% trypsin (#15090046, Gibco, Waltham,
MA, USA) for 15 min at 37 ◦C. Cells were seeded on a pre-coated coverslip or plate with
100 µg/mL poly-D-lysine (#P6407, Sigma-Aldrich, St. Louis, MO, USA) and 10 µg/mL
laminin (#354232, Corning, Lowell, MA, USA). The hippocampal neurons were incubated
in a Neurobasal medium (#21103-049, Gibco, Waltham, MA, USA), 0.5 mM glutamine, and
25 µM glutamate and supplemented with SM1 components (#05711, Stemcell, Vancouver,
BC, Canada) for 18–21 days in vitro.

4.2. Pharmacological Treatment

Propionic acid (#402907, Sigma-Aldrich, St. Louis, MO, USA) was purchased from
Sigma-Aldrich, and L-serine was provided by Astrogen Ltd., Daegu, Korea. PPA and
L-serine were dissolved in cell culture grade water (LS 016-01, Welgene, Gyeongsan, Korea)
for treatment at each concentration.
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4.3. Cell Viability Assays

For the cell viability assays, HT22 cells (2 × 103/well) were added into 96-well plates
with three wells for each condition, in DMEM medium with 10% FBS and 1% P/S. Cells
were cultured overnight, and the following day they were incubated with PPA or L-serine
at concentrations of 0, 1, 2, 5, 10, and 20 mM for 48 h followed by CCK-8 assay (Chromo-
CK, #CH-3000, Monobio, Seoul, Korea). In order to investigate the protective effects of
L-serine, cells incubated with the six concentrations of PPA were then treated with 5 mM
or 10 mM L-serine. The OD values at a wavelength of 450 nm were measured using a
spectrophotometer (VersaMax, Sunnyvale, CA, USA).

4.4. Trypan Blue Staining

Cultured cells were fixed with 4% paraformaldehyde in PBS for 20 min at room
temperature, and then washed twice with PBS. The fixed cells were then stained with 0.4%
Trypan Blue Stain (#15250061, Gibco, Waltham, MA, USA) for 30 min at room temperature.
The cells were then washed to completely remove the remaining trypan blue residue.
Optical images were acquired using a 10 × inverted microscope (Eclipse TS100, Nikon,
Tokyo, Japan) with a TUCSEM ISH300 camera.

4.5. Lysosomal Activity Assays

The lysosomal activity was confirmed using Lysosomal Intracellular Activity Kits
(ab234622, Abcam, Cambridge, UK) following the manufacturer’s instructions. Lysosome-
specific self-quenched substrate has low background fluorescence and a high signal to
background ratio. The substrate, acting as endocytic cargo, can be taken up by cells
and degraded within an endo-lysosomal vesicle. The fluorescence signal generated by
degradation is proportional to the intracellular lysosomal activity. Briefly, neuronal cells
were incubated in the presence of only 5 mM PPA, 10 mM L-serine with 5 mM PPA, or
without any substrate as controls. The cells were cultured in appropriate density and
treated with PPA or co-treated with PPA and L-serine for 48 h. The next day, the medium
was removed and replaced with fresh medium containing the same concentration of PPA
or PPA + L-serene, and the cells were incubated for 1 h in a CO2 incubator at 37 ◦C. Then
the medium was removed and replaced with fresh medium supplemented with 0.5% FBS.
Self-quenched substrate was added, and the cells were incubated for 1 h. After incubation,
the cells were washed twice in 1 mL ice-cold 1 × assay buffer in the presence of PPA or PPA
+ L-serine at the same concentration. Finally, the cells were observed under fluorescence
confocal microscope with a 488 nm excitation filter. The confocal microscopic images
were acquired using an A1 Rsi/Ti-E confocal microscope (Nikon, Tokyo, Japan) with a
60 × oil-immersion lens. Z-stack image sequences were acquired at 0.4 µm intervals for
a total of 11 images and converted with maximal intensity projection using NIS-element
AR software (Nikon, Tokyo, Japan). Integrated density was analyzed using the ImageJ
software.

4.6. Immunocytochemistry

Primary hippocampal neurons were fixed with 4% paraformaldehyde in PBS with 4%
sucrose for 15 min at room temperature for immunofluorescent labeling of endogenous
LAMP1 (H4A3, Santa Cruz, Heidelberg, Germany) and cathepsin D (#69854, Cell Signaling
Technology, Danvers, MA, USA). Cultured neurons were incubated with lamp1 or cathep-
sin D antibody in a GDB solution (450 mM NaCl, 0.1% gelatin, 0.3% Triton X-100, and
30 mM phosphate buffer, pH 7.4) overnight at 4 ◦C. After being washed with PBS, cover-
slips were incubated with AlexaFluor488 (#4412, Cell Signaling Technology, Danvers, MA,
USA) or AlexaFluor594 (#8890, Cell Signaling Technology, Danvers, MA, USA)-conjugated
secondary antibodies for 1 h at room temperature. After washing with PBS and distilled
water, the cells were stained with 5 µg/mL Hoechst 33342 (#H1399, Thermo Fisher Sci-
entific, Waltham, MA, USA) to label the nuclei. Finally, coverslips were mounted with
VECTASHIELD mounting solution (H-1000, Vector Laboratories Burlingame, CA, USA).
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4.7. Confocal Microscopy Analysis

To visualize the accumulation of lipid droplets, cells were stained with 1 µM Lipi-Red
probe (LD03-10, Dojindo, Kumamoto, Japan) for 30 min. To confirm the colocalization
of lipids and lysosomes, the cells were stained with 100 nM Lysotracker Blue DND-22
(L7525, Thermo Fisher Scientific, Waltham, MA, USA) or 100 nM Lysotracker DND-99
(L7528, Thermo Fisher Scientific, Waltham, MA, USA) for 15 min and 1 µM Lipi-Red probe
(LD03-10, Dojindo, Kumamoto, Japan) for 30 min. To confirm the location of lysosomes,
the hippocampal neurons were transfected with 2µg of lamp1-mGFP (#34831, Addgene,
Watertown, MA, USA) with 2µL of lipofectamine 2000 reagent (Thermo Fisher Scientific,
Waltham, MA, USA). The cells were then stained with anti-GFP antibody (A11122, In-
vitrogen, Carlsbad, CA, USA). The confocal microscopic images were acquired using an
A1 Rsi/Ti-E confocal microscope (Nikon, Tokyo, Japan) with a 60 × oil-immersion lens.
Z-stack image sequences were acquired at 0.4 µm intervals and converted with maximal
intensity projection using NIS-element AR software (Nikon, Tokyo, Japan).

4.8. Western Blotting Analysis

Cultured cells were lysed with RIPA buffer (R0278, Sigma-Aldrich, St. Louis, MO,
USA) containing phosphatase inhibitor (P3200, GenDEPOT, Katy, TX, USA) and protease
inhibitor (P3100, GenDEPOT, Katy, TX, USA). After incubation on ice for 30 min, all
lysates were centrifuged at 15,000× g at 4 ◦C for 30 min. Total protein concentrations were
evaluated using a BCA Protein Assay Kits (#23225, Thermo Fisher Scientific, Waltham, MA,
USA). Equal amounts of protein samples were incubated with 4 × Laemmli sample buffer
(#1610747, Bio-Rad, Hercules, CA, USA) at 95 ◦C for 5 min. The samples were separated on
4–15% polyacrylamide gels (#4561084, Bio-Rad, Hercules, CA, USA) and transferred to a
nitrocellulose membrane (Whatman, Maidstone, UK). The membranes were blocked using
3% BSA (#9048-4-8, GENEray Biotechnology, Shanghai, China) and 0.1% Tween 20 (H5152,
Promega, Madison, WI, USA) in TBST buffer (#CBTB-9110, CHEMBIO, Seoul, Korea) for 1 h
and washed with TBST. Blots were incubated with lamp1 (H4A3, Santa Cruz, Heidelberg,
Germany) or cathepsin D (#69854, Cell Signaling Technology, Danvers, MA, USA) at 4 ◦C
overnight, followed by infrared dye-conjugated secondary antibodies (Li-Cor Bioscience,
Lincoln, NE, USA) for 1 h. Then, blots were detected using the Odyssey CLx Infrared
Imaging System (Li-Cor Bioscience, Lincoln, NE, USA). Blot images were analyzed using
the ImageJ software (National Institutes of Health).

4.9. Transmission Electron Microscopy (TEM)

The cells were grown in 35 mm glass grid-bottomed culture dishes (P35G-1.5-14-C-
GRID, MatTek, Ashland, MA, USA) to 50–60% confluency. After acquiring confocal images,
the cells were prefixed with 2% paraformaldehyde and 2.5% glutaraldehyde in 0.1 M
sodium cacodylate buffer (pH 7.4). After being washed three times in 0.15 M cacodylate
buffer, cells were postfixed in 2% osmium tetroxide (#1610747, EMS, Hatfield, PA, USA)
with 1.5% ferrocyanide in 0.1 M sodium cacodylate buffer on ice for 1 h. After washing
three times in ddH2O for 5 min, the cells were incubated in 1% thiocarbohydrazide (#T1136,
TCI, Tokyo, Japan) for 20 min at room temperature. After being washed three times in
ddH2O at room temperature for 5 min, the cells were placed in 2% OsO4 in ddH2O for
30 min at room temperature. After being washed in ddH2O at room temperature for
30 min, they were en bloc stained with 1% uranyl acetate overnight at 4 ◦C. The cells were
then washed three times in ddH2O for 5 min. For embedding, samples were dehydrated
through a graded ethanol series (20, 30, 50, 70, 80, 90, and 100% for 10 min each, all cooled
to 4 ◦C) followed by epoxy resin infiltration by immersion into 3:1, 1:1, and 1:3 mixtures
of ethanol and Epon 812 resin (EMS, Hatfield, PA, USA) at room temperature for 2 h. The
infiltrated samples were then incubated in pure resin overnight and placed in an inverted
capsule on a confocal dish in a pre-warmed oven (70 ◦C) for 48 h. After trimming the
epoxy resin embedded cells, ultrathin serial sections 60 or 100 nm thick were cut using an
ultramicrotome (EM UC7, Leica, Wetzlar, Germany) and mounted on 0.5% formvar coated
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on hole grids. To enhance the electron density, the sections were stained with UranylLess
(#22409, EMS, Hatfield, PA, USA) and 3% lead citrate (#22410, EMS, Hatfield, PA, USA).
TEM images were acquired using a Tecnai G2 20 (Thermo Fisher Scientific, Waltham, MA,
USA) at 120 kV with a US1000XP CCD detector (Gatan, Pleasanton, CA, USA).

4.10. Three-Dimensional Reconstruction of Serial TEM Images

Serial TEM images were aligned using the TrakEM2 plugin in Fiji/ImageJ. The mon-
taged images were checked visually, and the stack slice images were aligned manually
using a landmark point. Subsequently, the corrected image stacks were imported into
Amira software (Thermo Fisher Scientific, Waltham, MA, USA). The nucleus and lipid
droplets were selected by tracking their membrane boundaries. After identifying the or-
ganelle structures in the serial images, 3D surface-rendering reconstruction was performed
using Amira.

4.11. Statistical Analysis

Statistical analyses were performed using GraphPad Prism 8.0 (GraphPad Software,
San Diego, CA, USA, www.graphpad.com). Data are shown as mean ± standard deviation
or SEM. Statistical significance was calculated using unpaired two-sample t-tests and
Turkey’s multiple-comparisons tests. Statistically significant differences were determined
as * p < 0.05.

5. Conclusions

In this paper, lysosome dysfunction caused by PPA, which was known from previously
published results, was confirmed in primary hippocampal neurons and HT22 hippocampal
neurons. Specifically, the morphology of the lipid membrane, which was not degraded
in lysosomes, was observed, which could be elucidated using the advantages of electron
microscopy and CLEM. As a result of examining the difference in lysosome protein expres-
sion level, we can suggest that the morphological changes occur because of CTSD levels.
This means that PPA inhibits the expression level of CTSD to lower the lysosome activity.
In both systems using primary hippocampal neurons and HT22 cells, L-serine increased the
lysosome activity by increasing the expression level of CTSD in PPA treated cells. Therefore,
these data suggest that L-serine has protective potentials against PPA-induced functional
and structural changes of lysosomes by restoring CTSD levels in hippocampal neurons.
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Abbreviations

PPA propionic acid
SER L-serine
CTSD cathepsin D
LD lipid droplet
SCFAs short-chain fatty acids
TEM transmission electron microscopy
CLEM correlative light and electron microscopy
V-ATPase vacuolar-type ATPase
AB234622 lysosomal intracellular activity assay kit
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