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Abstract: The main goal of vital pulp therapy (VPT) is to preserve the vitality of the pulp tissue, even
when it is exposed due to bacterial invasion, iatrogenic mechanical preparation, or trauma. The type
of new dentin formed as a result of VPT can differ in its cellular origin, its microstructure, and its
barrier function. It is generally agreed that the new dentin produced by odontoblasts (reactionary
dentin) has a tubular structure, while the dentin produced by pulp cells (reparative dentin) does
not or has less. Thus, even VPT aims to maintain the vitality of the pulp. It does not regenerate the
dentin pulp complex integrity. Therefore, many studies have sought to identify new therapeutic
strategies to successfully regenerate the dentin pulp complex. Among them is a Wnt protein-based
strategy based on the fact that Wnt proteins seem to be powerful stem cell factors that allow control
of the self-renewal and proliferation of multiple adult stem cell populations, suitable for homeostasis
maintenance, tissue healing, and regeneration promotion. Thus, this review outlines the different
agents targeting the Wnt signaling that could be applied in a tooth environment, and could be a
potential therapy for dentin pulp complex and bone regeneration.

Keywords: Wnt signal; dentin pulp complex regeneration engineering; small molecules

1. Introduction

The main goal of vital pulp therapy (VPT) is to preserve the vitality of the pulp tissue,
even when it is exposed due to bacterial invasion, iatrogenic mechanical preparation, or
trauma [1]. VPT procedures consist of direct pulp capping, and partial or full pulpotomy
with bioactive capping materials. Calcium hydroxide (CH) has been extensively used for
direct pulp capping and has long been considered the “gold standard” [2]. CH can release
hydroxyl and calcium ions that create an alkaline bactericidal environment around the
pulp tissues, prompting the formation of necrotic tissue beneath the exposed pulp, and this
tissular reaction may lead to increases in cell differentiation, collagen secretion, and dentin
formation [3,4].

However, the poor quality of the resulting dentin bridge and its lack of sealing within
the dentin walls explain why some authors prefer the use of Tricalcium silicate-based
(TCS-based) cements [4,5], such as ProRoot White MTA (Dentsply, Tulsa Dental, Tulsa, OK,
USA) or Biodentine (Septodont, Saint-Maur-des-Fossés, France), which both have high
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clinical success rates in dentistry. The widespread clinical indications of TCS-based cements
are mainly based on their ability to form CH as a by-product of hydration. MTA has been
considered as potential gold standard for vital pulp therapy, because it integrated better
with the pulp tissues than CH [5] and showed greater success than other capping agents
when used in different conditions in clinical trials [6,7]. The type of new dentin formed
can differ in different manners (cellular composition and function). Even though there
is no consensus regarding the origin of this new tissue [7], it is generally admitted that
reactionary dentin produced by odontoblasts has a tubular structure, while the reparative
dentin does not or has much less [8].

VPT aims to maintain and, if possible, regenerate the vitality of dental pulp. This last
objective is not achieved using the conventional VPT procedures. Therefore, many studies
have sought to identify new therapeutic strategies to successfully regenerate the dentin pulp
complex. Two different ways are currently being tested to achieve this enormous objective.
The first involves the introduction of stem or progenitor cells into a site of damage, and the
second aims to activate endogenous stem cells to promote tissue regeneration. This last
strategy, in which endogenous stem cells are activated, avoids the risk associated with the
implementation of different cells in nature or reprogrammed cells into the human body. For
this purpose, a Wnt protein-based strategy, based on the fact that Wnt proteins are powerful
stem cell factors [9], allows control of the self-renewal and proliferation of multiple adult
stem cell populations [10].

The secreted family Wnt proteins participate in the regulation of cell differentiation,
proliferation, and apoptosis, and through these mechanisms, play a key role in tissue
generation, regeneration, and self-renewal [11]. Wnts induce intracellular signaling by
binding to the extracellular domain of receptors encoded by Frizzled (Fz). These proteins
interact also with the low-density lipoprotein receptor-related protein (LRP) 5 and LRP 6
transmembrane proteins that act as coreceptors for Wnts. They also linked to neurotrophic
tyrosine kinase, receptor-related 2 (NTRK2). By means of an intracellular signal trans-
duction pathway (activation of Dishevelled (DVL)), a protein of the destruction complex
prevents activation of the destruction complex, constituted of Axin, adenomatosis poly-
posis coli (APC), glycogen synthase kinase 3 (GSK3), and other factors. At the same time,
the cytoplasmic domain of LRP5/6 becomes phosphorylated and binds axin. This leads
to disassembly of the APC-axin- β catenin complex and the release of β- catenin. Then,
β-catenin can accumulate in the cytoplasm and eventually, β-catenin translocates to the
nucleus, where it acts as a transcriptional activator of transcription factors in the T-cell-
specific factor/lymphoid enhancing factor Tcf/Lef family and increases the transcription
of Wnt target genes encoding axin, Smad6, cyclin D1 and Cx43 [12] (Figure 1). There are
numerous Wnt ligands, receptors, co-factors, antagonists, and intracellular mediators.

As the regenerative capacity of multiple mammalian tissues has been shown depend-
ing on Wnt/β- catenin signaling and its activation. In the context of pulp dentin, complex
regeneration the role of canonical pathway seems obvious. Numerous studies have shown
this role in reactionary dentinogenesis [13]. In reparative dentinogenesis, the repair process
is accompanied by increased Axin2 expression, which results in differentiation of Axin2
expressing cells from resident dental pulp stem cells into odontoblasts-like cells [14].

However, the specific role of Wnt/β-catenin signaling on odontoblast-like differen-
tiation of hDPSCs is not completely known. Indeed, some authors such as Scheller et al.
demonstrated that canonical Wnt signaling inhibited odontogenic differentiation of hDP-
SCs [15]. In addition, Zhang et al. reported that Wnt10a, a Wnt agonist, could negatively
regulate the differentiation of DPSCs into odontoblasts by down-regulating odontoblast
specific genes [16]. However, some other researchers have reported that β-catenin accumu-
lation by various agonists promoted odontoblastic differentiation in hDPSCs [17–20]. Thus,
β-catenin could play an essential role in tertiary dentinogenesis [17,21]. β-catenin could
act as an activator of the transcription factor runt-related transcription factor 2 (Runx2) to
enhance the odontoblastic differentiation of dental pulp stem cells [19] and stem cells from
the apical papilla (SCAP) [22].
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Figure 1. Schematic illustration of the canonical Wnt pathway. (A). In the presence of Wnt ligands 
interacting with LRP5/6 and frizzled, the β-catenin degradation complex is sequestrated. Cytosolic 
accumulation of β-catenin leads to nuclear translocation and binding to transcription factors in the 
Lef/Tcf family. The resulting active transcriptional complex controls the expression of target genes 
involved in tissue generation, regeneration and, self-renewal. (B). In the absence of Wnt ligands, the 
interaction between DVL and axin leads to the phosphorylation of cytosolic β-catenin by a protein 
complex involving APC, axin, and GSK3. β-catenin is then degraded by ubiquitin-mediated 
proteolysis. LRP: lipoprotein receptor-related protein. DVL: dishevelled-APC: adenomatosis 
polyposis coli. GSK: glycogen synthase kinase. TCF/Lef1: T-cell factor/lymphoid enhancer factor. 
DPSCs: dental pulp stem cells. SCAPs: stem cells from apical papilla. 
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Figure 1. Schematic illustration of the canonical Wnt pathway. (A). In the presence of Wnt ligands
interacting with LRP5/6 and frizzled, the β-catenin degradation complex is sequestrated. Cytosolic
accumulation of β-catenin leads to nuclear translocation and binding to transcription factors in the
Lef/Tcf family. The resulting active transcriptional complex controls the expression of target genes
involved in tissue generation, regeneration and, self-renewal. (B). In the absence of Wnt ligands, the
interaction between DVL and axin leads to the phosphorylation of cytosolic β-catenin by a protein
complex involving APC, axin, and GSK3. β-catenin is then degraded by ubiquitin-mediated proteol-
ysis. LRP: lipoprotein receptor-related protein. DVL: dishevelled-APC: adenomatosis polyposis coli.
GSK: glycogen synthase kinase. TCF/Lef1: T-cell factor/lymphoid enhancer factor. DPSCs: dental
pulp stem cells. SCAPs: stem cells from apical papilla.

In this review, we aimed to recapitulate new biologically based strategies to enhance
this natural repair response by regulating Wnt signaling via modulatory molecules. These
molecules could be a potential therapy target for dentin pulp complex.

2. Modulators of Wnt Beta-Catenin Signaling Acting on Dental Pulp Cells
2.1. Inorganic Calcium-Containing Materials

The treatment of dental caries that results in pulp exposure is currently managed
by replacing lost dentine with inorganic calcium-containing materials such as CH, MTA
or Biodentine that remain in the crown. Since this dentine is formed directly from new
odontoblast-like cells that differentiate from resident stem cells in the pulp [14], it is
imaginable that overstimulation of stem cell activity might result in increased odontoblast
differentiation resulting in more efficient regenerative dentine formation. The most studied
material (ProRoot MTA), in direct contact with DPSCs/DPCs, has shown significant positive
results in in vitro assays assessing the involvement of the MAPK subfamilies JNK and P38,
the ERK subfamily, the nuclear factor kappa B (NF-κB), and Wnt/β-catenin pathways.
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2.2. Small Molecule GSK3 Inhibitors

In the context of response to damage, the pulp dentin complex can induce a Axin2 in-
crease repair process in odontoblast-like cells that subsequently form reparative dentin [14].
Glycogen synthase kinase 3 (GSK3) is a core intracellular component of the Wnt/β-catenin
signaling pathway that phosphorylates Axin and β-catenin [23–25]. When there are Wnt
ligands, GSK3 activity is disabled, and β-catenin can enter the nucleus to interact with
Lef/Tcf transcription and express the target genes such as Axin2. When Wnt ligands are
absent, β-catenin and Axin2 are phosphorylated, causing their ubiquitination and then
their degradation. GSK3 inhibitors (which are also Wnt pathway activators) could have
various forms. They have shown to have natural or synthetic sources and display different
mechanisms of action. A range of small molecule antagonists of GSK3 have been devel-
oped as drugs to activate the Wnt pathway in responsive cells [23,26–28]. Several GSK3
inhibitors have been shown to promote dentin repair in mice and rats with experimental
pulp exposure [29,30].

2.2.1. Tideglusib

Tideglusib is the most studied GSK3 drug that has to date been shown to be safe in
patients [31]. Delivery of GSK3 inhibitor drugs (20 µM CHIR99021 and 1 µM Tideglusib
on biodegradable collagen sponges) directly into experimentally exposed pulp cavities
in mice results in upregulation of Wnt-activity in pulp stem cells [29] and induction of
high quality of reparative dentinogenesis [30]. This reparative dentine was biochemically
indistinguishable from native dentine when analyzed by Raman spectroscopy. Although
the extent of damage in rats is not comparable to that in large lesions in humans, the
successful scaleup of reparative dentine formation in vivo seems promising, highlighting
the potential of this approach. However, Tideglusib has low aqueous solubility, and in
clinical trials, is delivered in a granulate form suspended in water that is less suitable in
clinical practice.

2.2.2. NP928

NP928 is a new GSK3 inhibitor small-molecule drug that has increased aqueous solu-
bility compared to other thiadiazolidinone (TDZD) drugs and can activate Wnt/β- catenin
pathway similarly to tideglusib. Therefore, NP928 is a modified version of Tideglusib that
removes the naphthyl moiety and increases solubility. The reparative potency and clinical
usability of NP928 was evaluated in microdose concentrations of loaded MA-HA hydrogels
in a pulp damage model in wild-type mice, and showed more reparative dentine was in
tested groups than in controls [32].

The use of hydrogel looks superior to the sponge delivery, and the overall simpler
user experience for the clinician. The use of hydrogel looks superior to the sponge delivery,
and the overall simpler user experience for the clinician. These results allowed a drug
called ReDent® to be transferred to clinic, on the basis of it being ready for its first human
clinical trials.

A tooth cavity is a good therapeutic site for the use of a small molecule, used at very
tiny concentrations. They should have a short half-life and limited range of action. They do
not activate cells in the roots, for example.

2.2.3. Tivantinib

Tivantinib is a small molecule that inhibits c-Met receptor tyrosine kinase. It is a non-
ATP competitive inhibitor. GSK3α and GSK3β, two structurally isoforms of GSK3, have
been identified as new targets for this molecule [33]. These isoforms are negatively and
positively regulated by serine or tyrosine phosphorylation, respectively. Recently, GSK3α
and β were inhibited by Tivantinib in lung cancer cells [34]. Therefore, this molecule
was tested in phase III trial of the treatment of hepatocellular carcinoma. Tivantinib’s
biocompatibility and low cytotoxicity have also been demonstrated on progenitors’ murine
cells [35]. It is quite interesting for the best of our knowledge and dental practice to notice



Int. J. Mol. Sci. 2022, 23, 10582 5 of 11

that a c-Met inhibitor tyrosine kinase used in a carcinoma treatment presented a weak
toxicity for dental pulp cells and the ability to activate the Wnt/β-catenin pathway at very
low concentrations in vitro [35]. Nevertheless, further studies are needed to analyze and
evaluate in vivo effects of delivering tivantinib on pulp injuries via collagen sponges or
other vectors, such as hydrogels.

2.2.4. Lithium Chloride

Lithium compounds are inhibitors of GSK3β, used among other things to treat the
bipolar patients and inhibit cancer cell metastasis [36]. Many in vitro studies reported that
these agents can potentiate bone regeneration process and upregulate osteoblast differenti-
ation and mineralization [37,38]. Ishimoto’s team identified the effect of 10 mM Lithium
chloride as an activator of reparative tubular dentin formation. The application of Lithium
has been realized locally in rats after a pulpotomy procedure. Thus, they have shown
stimulation of the Wnt/b-catenin pathway (through inhibition of the b-catenin destruction
complex) when pulp cells were treated with lithium ions in vitro [39]. Interestingly, recently
LiCl-100 mM was shown to activate this signaling pathway in vitro [40]. In rats, capping of
pulps with surface pre-reacted glass combined with LiCl at concentrations of 10 mM or
100 mM was associated with the formation of complete reparative dentin structures that
were continuous with the primary dentin without any defects, similar to that produced
by MTA [40]. A research team has incorporated lithium-containing bioactive glass in a
commercial GIC, so that lithium released from the GIC could naturally penetrate dentin and
stimulate odontoblast activity. They succeeded to stimulate dentin formation and improve
repair in a murine molar defect model [41]. Likewise, in a context injury in restorative treat-
ment with resin polymers, the study of Bakopoulou et al. in 2015 [42] showed that human
DPSCs were stimulated after lithium treatment through the accumulation of β-catenin and
enhancement of its translocation in nucleus and expression of transcription factors. Expo-
sure of lithium chloride-pre-treated cells to TEGDMA (triethylene-glycol-dimethacrylate)
showed a stronger activation of the pathway. Thus, these findings stipulated that TEGDMA
could continue to induce canonical Wnt pathway in DPSCs that were already “activated”
by various environmental factors during pulp repair.

2.3. R-Spondin 2

Recombinant proteins such as the Wnt agonist R-spondin [43] have been used to treat
oral mucositis [44]. R-spondins are secreted proteins that act as stem cell growth factors [45].
It has been shown that R-spondins clearly increase Wnt signal. R-spondin 2 (Rspo2) has
been reported to show a predominant role in many differentiation processes, such as
neurogenic differentiation [46], chondrogenic [47], and osteoblastic [48] differentiation.
In a recent study, Gong Y. et al. succeeded in inducing odontogenic differentiation in
combination with exogenously added Rspo2 in hDPSCs through an increase in levels of
both mRNA and protein expression of dentin sialophosphoprotein, dentin matrix protein-1,
alkaline phosphatase, bone sialoprotein, and protein expression levels of osteopontin and
osteocalcin, whereas silencing Rspo2 significantly decreased the expression levels of these
odontogenic markers [49]. This promotion of odontogenic differentiation is attributable
to the activation of Wnt/β-catenin signaling. Thus, more investigations are needed to
evaluate effects of Rspo2 in dental pulp complex repair.

2.4. Wedelolactone

Wedelolactone is a natural plant compound that has been shown to have anti-inflammatory,
anticancer, and antiosteoporosis effects. The effect of wedelolactone has also been evaluated
for dental treatment. For that purpose, DPSCs were treated with wedelolactone in vitro [50].
This experiment has been shown to promote odontoblast differentiation and mineralization
through a direct enhancement of the nuclear accumulation of β-catenin and expression of
genes involved in odontoblast differentiation. These genes included DMP-1, DSPP, and
runx2. This study highlighted that wedelolactone induced the differentiation of odontoblast
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cells by means of semaphorin 3A/neuropilin-1 pathway-mediated β-catenin stimulation
and NF-κB pathway disactivation.

2.5. Semaphorin 3A and Its Receptor Neuropilin 1

Sema3A has been shown to be an osteoprotective factor by inhibiting osteoclastic
bone resorption and promoting osteoblastic bone formation through canonical Wnt/β-
catenin signaling [51]. When Neuropilin-1 (NRP1) binds to Sema3A, it stimulates osteoblast
differentiation through the classical Wnt/β-catenin pathway. Overexpression of NRP1
upregulated dentin matrix protein-1, dentin sialophosphoprotein, alkaline phosphatase
protein level, and mineralization in DPSCs, while knockdown of NRP1 induced the opposite
effects. NRP1, therefore, regulates DPSCs via the classical Wnt/β-catenin pathway [52].
Sema3A has also been showed to induce cell migration, chemotaxis, proliferation, and
odontoblastic differentiation of DPSCs, and Sema3A application to dental pulp exposure
sites in a rat model induced effective reparative dentin reconstruction [19].

2.6. Wnt3a Protein

In vitro, the effects of a continuous activation of Wnt/β-catenin signaling by the ad-
dition of Wnt3a on the mineralization and differentiation of pulp cells demonstrated that
Wnt3a induced marked increases in the expression of Dmp1, Dspp, and Bsp, compared to
controls between days 10 and 17 [53], and highlighted the role of Wnt/β-catenin signaling
in the survival of resident progenitors. Indeed, a limited and early exposure to Wnt3a
resulted in increased proliferation and decreased apoptosis in the undifferentiated popu-
lation [54]. In vivo, the study of Hunter et al.; in 2015 [54] showed that pulp healing was
positively impacted by a Wnt3a (a typical canonical Wnt ligand) amplified environment in
a model of direct pulp capping. In fact, the application of Wnt3a through a lipidic vesicle,
which allowed the maintenance of its activity, led to the formation of a reparative matrix
resembled native dentin. In addition, this liposome delivered Wnt3a protected pulp cells
from death and stimulated proliferation of undifferentiated cells in the pulp, which together
significantly improved pulp healing.

2.7. Sclerostin

Sclerostin, is a secreted glycoprotein which is largely produced by osteocytes under a
physiologic environment. It is an antagonist of the Wnt-BMPs signaling pathway through
its binding to LRP 5/6receptor which is present on the membrane osteoblast [55]. It has
been shown that when sclerostin is downregulated, an increase of osteogenesis and in bone
mass are observed [56].

Secretion of sclerostin by odontoblasts has been demonstrated during tooth devel-
opment [57,58]. Many studies have investigated the potential role of this molecule in the
dentin pulp complex healing process [59]. In absence of sclerostin in Sost knock out mice,
an increase in the pulp-healing process, following a direct pulp-capping mice model, was
demonstrated [59]. In vitro, cultures of mDPCs isolated from Sost knock out germs allowed
for elevated mineralization. Interestingly, the role of sclerostin in the process of human
dental pulp cell (hDPCs) senescence was studied as the expression level of sclerostin varies
in embryonic and adult mouse incisors and molars, and in aged individuals [58,60]. Thus,
it has been shown that expression of sclerostin was increased in senescent human dental
pulp and subculture-induced senescent hDPCs by immunohistochemistry and qRT-PCR
analyses [61]. In addition, overexpression of sclerostin led to hDPCs senescence and inhi-
bition of odontoblastic differentiation of hDPCs. Therefore, an anti-sclerostin treatment
may be beneficial for the maintenance of the proliferation and odontoblastic differentiation
potentials of hDPCs and to improve the pulp healing process in exposed pulps treatment.
Indeed, Liao et al., 2019 have shown that sclerostin increased the inflammatory responses
of odontoblasts under an LPS-induced environment and led to impaired dentin tissue
regeneration by inhibition of odontoblastic differentiation of inflamed DPCs [62]. These
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findings allow new ideas toward therapeutic treatments combining anti-inflammatory
effects and promotion of regeneration during dental pulp inflammation.

3. Cellular Metabolism Effect of Wnt
3.1. Epigenetic Remodeling in Human DPSCs under Wnt Ligant Exposure

The canonical Wnt signaling pathway is considered as an important regulator of stem-
ness [11,23,63] and cell differentiation [15] in DPSCs and many other stem cell types [64].
The epigenetic regulations that Wnt pathways may exert on DPSCs have been studied. The
authors have found that Wnt-3a exposure induced plural epigenetic reprogramming facets
in DPSCs; especially, a global DNA hypomethylation, a global histone hyperacetylation,
and an increase in both activating and repressing histone methylation marks were high-
lighted [65]. These findings could have seductive implications in the optimization of the
clinical cell therapy.

3.2. Effect on Energetic Metabolism

Certain systemic conditions compromised the capacity of proliferation and odonto-
genic differentiation of human DPSCs. Diabetes is one of these pathological conditions.
The reduction in human pulpal mesenchymal cells stemness in diabetic patients could
affect the regenerative capacity of pulp-dentin complex and the formation of the dentin
bridge. Based on these data, some authors studied the potential role of Wnt signaling in a
high glucose-induced senescence model (close to diabetic conditions) [66]. Interestingly,
Asghari et al. have observed the decrease in proliferation of DPSC, as well as an increased
number of senescent cells and an increased p21 expression, after being exposed to different
concentrations of glucose. β -catenin and Wnt1 expression in response to high glucose were
significantly increased. In the same way, the authors demonstrated that in the presence of a
β-catenin inhibitor PNU-74564, the amount of the senescent cells was reduced. Therefore,
Wnt signaling might be the potential target for the inhibition of the senescence response in
the hyperglycemic condition, suggesting the potential development of bioactive materials
applied in pulp capping that would be specific for diabetic patients.

3.2.1. Famotidine

Famotidine is a competitive inhibitor of the histamine receptor, which is the dominant
receptor involved in gastric acid secretion. This binding prevents the activation of adenylate
cyclase normally induced by histamines. Many studies have investigated the Famotidine
potential anti GSK3 effect. It seems that this inhibiting role could be attributed to the hypo-
glycemic aspect. Indeed, H2-receptor inhibitors could affect glucose metabolism and its role
in the decrease in the glycemic response curve in vivo through binging with GSK3β [67]. Its
biocompatibility and low cytotoxicity have also been demonstrated on progenitors’ murine
cells [35]. Its effects on DPSC could be studied in a context of glucose exposition.

3.2.2. Olanzapine

Olanzapine used to be a particular pharmacological psychiatric drug used for the
treatment of schizophrenia. Its potential anti GSK3 effect has been sought by many authors.
As Famotidine, it seems that this inhibiting role could be due to the hypoglycemic effect. Its
biocompatibility and low cytotoxicity have also been demonstrated on progenitors’ murine
cells [35]. This molecule could also be studied in glucose exposition condition of DPSC.

4. Conclusions

The Wnt/b catenin pathway is a very complex intra cellular pathway.
Several studies have shown that Wnt signals are necessary for pulp dentin complex

formation and repair, and in other studies, some research groups have succeeded in
demonstrating that a Wnt stimulus is sufficient to induce tissue regeneration. Small-
molecule drugs that stimulate Wnt/β-catenin have shown promise as a novel biological
therapy for treating exposed pulpal lesions. It is necessary to consider the need of local
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application to avoid systemic side effects of the highly potent small molecules acting as
Wnt agonists at very tiny concentrations. Interestingly, they are very cheap to make. Strong
proof-of-concept data are still needed, however, along with well-crafted safety plans, to
make regenerative dental medicine a reality.

After pulp exposure, molecules enhancing Wnt/β-catenin can be applied in contact
with the pulp on different supports such as hydrogels or sponges (Figure 2). These materials
must be sealed tightly with restorative material. The release of molecules stimulates the
regeneration of the pulp-dentin complex.
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