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Abstract: The present work proposes the use of a fast analytical platform for the mass spectrometric
(MS) profiling of canine mammary tissues in their native form for the building of a predictive statistical
model. The latter could be used as a novel diagnostic tool for the real-time identification of different
cellular alterations in order to improve tissue resection during veterinary surgery, as previously
validated in human oncology. Specifically, Rapid Evaporative Ionization Mass Spectrometry (REIMS)
coupled with surgical electrocautery (intelligent knife—iKnife) was used to collect MS data from
histologically processed mammary samples, classified into healthy, hyperplastic/dysplastic, mastitis
and tumors. Differences in the lipid composition enabled tissue discrimination with an accuracy
greater than 90%. The recognition capability of REIMS was tested on unknown mammary samples,
and all of them were correctly identified with a correctness score of 98–100%. Triglyceride identifica-
tion was increased in healthy mammary tissues, while the abundance of phospholipids was observed
in altered tissues, reflecting morpho-functional changes in cell membranes, and oxidized species
were also tentatively identified as discriminant features. The obtained lipidomic profiles represented
unique fingerprints of the samples, suggesting that the iKnife technique is capable of differentiating
mammary tissues following chemical changes in cellular metabolism.

Keywords: REIMS; iKnife; Rapid Evaporative Ionization Mass Spectrometry; lipidomic; canine
mammary pathology; CMT; canine mammary tumors; veterinary surgery

1. Introduction

Mammary gland pathology is a common health issue in intact female dogs, and careful
differentiation between neoplastic and non-neoplastic conditions is critical, influencing
patient treatment and prognosis. Most mammary gland specimens undergoing histolog-
ical examination are neoplastic, and canine mammary tumors (CMT) are increasingly
detected, reaching an incidence and malignant potential similar to those of breast cancer
in women [1–4]. However, non-neoplastic mammary enlargement and masses of benign
origin may also occur, including mastitis, hyperplasia and cystic lesions [1], and their
differentiation from cancer based on their macroscopic appearance has not been demon-
strated. Pathological examination (e.g., cytology and histology) is necessary to achieve
diagnosis [5,6], and histopathology still remains the gold standard diagnostic method for
accurate classification and grading of canine mammary tumors, also providing essential
prognostic information [2].
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Conservative surgery is considered the treatment of choice for canine mammary tu-
mors, occasionally in combination with chemotherapy and radiotherapy [3]. The veterinary
surgeon must precisely locate the tumor extent, merging macroscopic criteria, imaging stud-
ies and background knowledge concerning the type of malignancy. Histological assessment
of surgical margins is a useful routine approach to predict local tumor recurrence [2] and
requires multiple steps over several days. Furthermore, although the resected margins may
be histologically unsuspecting, up to 58% of dogs are referred with a new neoplasm in the
remaining mammary tissue after the first surgery [7], and re-operation is cost-inefficient and
leads to physical morbidity. Therefore, more accurate and less time-consuming diagnostic
methods are needed as supportive procedures in a clinical setting.

In recent years, numerous studies have been directed toward the characterization of
biological tissues, including an intensive search for new metabolic biomarkers [8,9]. Above
all, tissue lipidomics is gaining increasing interest as comprehensive profiling of lipids,
which allows for studying lipid pathways and a better understanding of their changes
under different pathological conditions [10–14]. Due to their biological functions in cellular
processes, lipids are closely involved in several organic disorders, including inflammation
and cancer, reflecting essential morpho-functional cellular adaptations [10,12,15]. Signifi-
cant advances have been made in mass spectrometric-based methods for the identification
of biological tissues, and new technologies capable of accurately profiling and quanti-
fying lipid species for use as metabolic markers in the biomedical field are of growing
scientific interest.

Rapid Evaporative Ionization Mass Spectrometry (REIMS) was developed for real-
time detection of metabolites useful for intraoperative tissue identification, merging clas-
sic surgical electrocautery and mass spectrometry (MS), resulting in the so-called iKnife
technique [16–21], which means intelligent knife. Such an approach exploits the concept
of machine learning since MS data are collected in a database, usable for the rapid identi-
fication of unknown samples through the employment of statistical tools. During tissue
dissection, the aerosols produced by the iKnife are analyzed by an MS system, which
provides information on the lipid composition of biological tissues and investigates the
differences in lipid species and relative concentrations between different tissues [22]. To
date, the REIMS technology has been successfully employed for metabolic phenotyping
tumors and to discriminate from healthy tissues in different anatomical sites, including
the brain, breast, uterus and colon, exhibiting high diagnostic accuracy, with the rapid
availability of the data as a major resource [20,23–26]. Of note, REIMS technology has
been validated in clinical research for the diagnosis of biological tissue intraoperatively
in human surgical oncology, significantly improving intraoperative margin control and
surgical outcomes [25–29].

The ability to rapidly identify and classify biological tissues based on their metabolic
phenotypes using a REIMS approach could represent an important advantage over rou-
tine methods in monitoring tissue resection in the field of veterinary surgical oncology.
Therefore, this study aimed to investigate the performance of the iKnife technology in
metabolic profiling pathological canine mammary tissues and differentiate them from
healthy mammary gland samples based on different metabolic phenotypes using histo-
logically validated ex vivo samples. To the best of the authors’ knowledge, no studies
have previously investigated ambient mass spectrometry-based analysis of lipids for rapid
identification of canine mammary pathology.

2. Results
2.1. Mammary Samples

A total of thirty-nine mammary samples from 23 female dogs were collected and
used for mass spectrometric investigations. The histopathological diagnosis classified our
samples in normal (n = 12), hyperplastic/dysplastic (n = 6), inflammatory (n = 7) and
cancerous (n = 14). In more detail, hyperplastic/dysplastic mammary samples included
one regular lobular hyperplasia, four lobular hyperplasias with fibrosis and three cystic
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dilations of mammary ducts. A moderate to severe, chronic, multifocal to coalescing
lymphoplasmacytic and histiocytic mastitis was observed in all inflamed mammary gland
samples included in the study. Canine mammary tumors included six benign neoplasms
(n = 2 tubulopapillary adenoma; n = 3 complex adenoma; n = 1 intraductal papillary
adenoma) and eight malignant tumors (n = 2 complex carcinoma, grade 1; n = 2 tubular
carcinoma, grade 1; n = 2 tubulopapillary carcinoma; grade 2; n = 2 comedocarcinoma,
grade 3).

2.2. Database Building and Generation of a Classification Model

Mass spectrometric data generated from histologically validated samples (n = 20;
training samples) and representative for each histological type were employed to build the
internal database and the four classes classification model, further validated by performing
two in silico tests. In particular, the classification model reflects the histopathological classi-
fication of mammary samples (normal; hyperplastic/dysplastic; inflammatory; tumors).
Initially, principal component analysis (PCA) was applied to point out similarities and
differences in the data set, considering the mass range of 200–1000 m/z. The first two
principal components (PCs) explain 53.1% of the total variance. An appropriate separation
was observed between the scores of healthy mammary samples (blue) vs. other groups
(green, yellow and red) relating to PC1 (30% of variance), as depicted in Figure 1.
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Figure 1. PCA score plot of healthy and pathological status included in the model.

Then, a supervised Linear Discriminant Analysis (LDA) analysis was applied to “force”
the same pathological conditions to occupy closer positions in the multidimensional statis-
tical space while maximizing the distance between different conditions. Three-dimensional
(3D) visualization of the resulting PCA/LDA model clearly shows the net demarcation
between healthy (blue) and other classes of mammary samples (Figure 2A). In particu-
lar, the 2D visualizations highlight the well-defined separation between inflamed tissues
(green), normal (blue) and other conditions (i.e., hyperplasia/dysplasia; tumors) along LD2
(Figure 2B), as well as between neoplasms (red) and hyperplastic/dysplastic mammary
tissues (yellow) along LD3 (Figure 2C), which are quite overlapped along LD1 and LD2 as
shown in Figure 2B.
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The model was validated by applying two different in silico approaches. Specifically,
the 5-fold cross-validation showed an overall classification accuracy of 94.76% and a very
low percentage of failures and outliers (Figure S1).

Noteworthy, tumors were never wrongly identified as healthy mammary glands or
inflammatory samples; only in three cases were they identified as hyperplasia/dysplasia,
while all healthy tissue and hyperplastic/dysplastic tissues were correctly identified,
demonstrating the specificity of 100%. Similarly, one file-out validation showed an overall
incorrect rate of about 10%, which mostly regarded misidentification of pathological states
but never misclassification of neoplasms as healthy tissue or inflammation (Figure S2).

Moreover, in this case, no failures were registered for healthy tissues. In order to test
the recognition capability of REIMS technology, a number of mammary samples (n = 19)
with known histological diagnoses that were representative of each class and not previously
included in the statistical model were submitted to the recognition step in real-time. The
software returned, in a few seconds, the output of the analysis performed, revealing that
all tested samples were correctly identified with a similarity rate above 98%. In particular,
all healthy mammary samples were recognized with 100% similarity (Figure 3A), and
supervised analysis reduced differences among neoplastic samples, allowing for properly
identifying the tumors reflecting histopathological diagnosis (Figure 3B). Finally, also in
cases of inflammatory (Figure 3C) and hyperplastic/dysplastic tissues, the model returned
proper feedback (Figure 3D).
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2.3. Determination of Discriminant Features

All REIMS-TOF spectra acquired in the mass range 100–2000 m/z were processed
as reported in paragraph 4.3.3. for background subtraction and lock mass correction
(255.233 m/z). The negative ionization mode was chosen for data acquisition considering
rich molecular information and high intensities signals observed in the spectra of biological
tissues, consisting of deprotonated lipid molecules or sodium adduct ([M-H]−, [M-2H]−,
[M+Na-2H]−), as well as demethylated ([M-CH3]−) and dehydrated ([M-H2O-H]−) lipid
molecules and chloride adducts ([M+Cl]−), as in Tables 1 and 2.

Moreover, the REIMS ionization mechanism was already reported to favor the de-
tection of lipid molecules against other macromolecules present in the biological tissues
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(e.g., proteins) [30]. As a consequence, the totality of identified compounds belongs to the
lipid class.

Table 1. List of discriminant features according to the PC1 loading plot, along with the calculation of
the mass error (∆) resulting from the difference between the theoretical mass (Exact Mass) and the
observed m/z value, and a note about the statistical class in which it was mainly detected and/or
quantitative comparison. * oxidized species; # confirmed by the literature [31]; + confirmed by the
literature [24]; † confirmed by the literature [26,28]; $ confirmed by the literature [32]. The assigned
compounds indicated with symbols (#,+,†,$) were already reported in previous studies dealing with
cancer in both animal and human tissues.

Assigned
Compound Lipid Class Detected Ion m/z Exact Mass ∆ Note

Palmitoleic acid
(C16:1) Fatty acid [M-H]− 253.2167 253.2173 2.37 Healthy

Palmitic acid
(C16:0) Fatty acid [M-H]− 255.2324 255.2324 0.00 Tumor/Hyperplasia/Dysplasia >

Healthy/Mastitis

Oleic acid (C18:1) Fatty acid [M-H]− 281.2480 281.2480 0.00 Healthy > Hyperplasia/Dysplasia >
Tumor > Mastitis

Stearic acid
(C18:0) Fatty acid [M-H]− 283.2636 283.2643 2.47 Tumor/Hyperplasia/Dysplasia >

Healthy/Mastitis

Arachidonic acid
(C20:4) Fatty acid [M-H]− 303.2333 303.2330 0.99 Hyperplasia/Dysplasia/

Tumor > Mastitis

Docosatetraenoic
acid (C22:4) Fatty acid [M-H]− 331.2646 331.2643 0.91 Tumor

Lyso-PA(C16:0) Phospholipid [M-H2O-H]− 391.2240 391.2250 2.56 Tumor > Hyperplasia/
Dysplasia/Mastitis

PG(C36:1-2OH) * Phospholipid [M-2H]2− 403.2597 403.2660 15.62 Mastitis > Tumor/
Hyperplasia/Dysplasia

Lyso-PA(C18:1) Phospholipid [M-H2O-H]− 417.2397 417.2406 2.16 Tumor/Hyperplasia/Dysplasia/Mastitis

Lyso-PA(C18:0) Phospholipid [M-H2O-H]− 419.2555 419.2563 1.91 Tumor/Mastitis >
Hyperplasia/Dysplasia/Healthy

Lyso-PA(C20:4) Phospholipid [M-H2O-H]− 439.2247 439.2250 0.68 Tumor/Hyperplasia/Dysplasia/Mastitis

Cer(C34:1) # Sphingolipid [M+Cl]− 572.4811 572.4815 0.70 Hyperplasia/Dysplasia >
Tumor/Mastitis > Healthy

PA(C34:1) +† Phospholipid [M-H]− 673.4815 673.4814 0.15 Tumor/Mastitis

SM(d18:1/16:0) + Sphingolipid [M-CH3]− 687.5432 687.5334 3.35 Tumor/Hyperplasia/Dysplasia >
Mastitis > Healthy

PA(C36:2) +† Phospholipid [M-H]− 699.4948 699.4970 3.15 Tumor/Mastitis >
Hyperplasia/Dysplasia > Healthy

PE(C34:0)
PE(O-C34:1)
PC(C32:0)

Phospholipid
[M-H]−
[M-H]−

[M-CH3]−
718.5389 718.5392 0.42 Tumor/Hyperplasia/Dysplasia/Mastitis

PA(C38:4) Phospholipid [M-H]− 723.4965 723.4970 0.69 Mastitis > Tumor/
Hyperplasia/Dysplasia

PE(O-C36:3) Phospholipid [M-H]− 726.5252 726.5443 13.90 Healthy > Tumor/
Hyperplasia/Dysplasia/Mastitis

PG 32:0;O * Phospholipid [M-H]− 737.4964 737.4974 1.36 Tumor/Mastitis >
Hyperplasia/Dysplasia

PE(C36:1) $†

PC(C34:1) +† Phospholipid [M-H]−
[M-CH3]−

744.5546 744.5549 0.40 Tumor > Hyperplasia/
Dysplasia > Mastitis

PE(O-C38:6) Phospholipid [M-H]− 748.5208 748.5287 10.55 Mastitis > Tumor

PE(O-C38:5)
PC(O-36:5)

PE(P-38:4) +$
Phospholipid

[M-H]−
[M-CH3]−

[M-H]−
750.5417 750.5443 3.46 Tumor/Hyperplasia/Dysplasia/

Mastitis > Healthy

PA(C40:4) Phospholipid [M-H]− 751.5316 751.5283 4.39 Tumor/ Hyperplasia/Dysplasia/
Mastitis > Healthy

PE(C38:4) †$

PC(C36:4) † Phospholipid [M-H]−

[M-CH3]−
766.5389 766.5392 0.39 Tumor/Hyperplasia/Dysplasia/Mastitis

PE(C40:4) Phospholipid [M-H]− 794.5692 794.5705 1.64 Tumor/Hyperplasia/Dysplasia

PI(C38:4) #+$ Phospholipid [M-H]− 885.5492 885.5499 0.79 Tumor/Mastitis
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Table 1. Cont.

Assigned
Compound Lipid Class Detected Ion m/z Exact Mass ∆ Note

TG(C52:3) † Triglycerid [M+Cl]− 891.7150 891.7214 7.83 Healthy

TG(C52:2) † Triglycerid [M+Cl]− 893.7300 893.7370 6.76 Healthy

TG(C54:4) † Triglycerid [M+Cl]− 917.7308 917.7370 9.57 Healthy

TG(C54:3) † Triglycerid [M+Cl]− 919.7439 919.7527 17.14 Healthy

TG(C54:2) † Triglycerid [M+Cl]− 921.7525 921.7683 0.79 Healthy

Table 2. List of discriminant features according to the PC2 loading plot, along with the calculation of
the mass error (∆) resulting from the difference between the theoretical mass (Exact Mass) and the
observed m/z value, and a note about the statistical class in which it was mainly detected and/or
quantitative comparison. * oxidized species. For the m/z value 389.1940, different compounds (keto,
hydroxyl, epoxy), characterized by the same exact mass and all belonging to the prostaglandin class,
were generated into the humane metabolome database. Similarly, the oxidized phosphatidylglycerol
phosphate (PGP) species can contain different oxidation products of arachidonic acid, including
prostaglandins. + confirmed by the literature [24]; † confirmed by the literature [26,28].

Assigned
Compound Lipid Class Detected Ion m/z Exact Mass ∆ Note

Linoleic acid
(C18:2) Fatty acid [M-H]− 279.2326 279.2330 1.43 Tumor/Hyperplasia/Dysplasia >

Healthy/Mastitis

Prostaglandin * Fatty acid
derivative [M+Na-2H]− 389.1940 389.1946 1.54 Hyperplasia/Dysplasia > Tumor

PGP(C32:4-OH) * Phospholipid [M-2H]2− 404.1968 404.1969 0.25 Tumor/Mastitis >
Hyperplasia/Dysplasia

NAT 20:4 Fatty acid
derivative [M+Cl]− 446.2122 446.2137 3.36 Hyperplasia/Dysplasia > Tumor

PGP(C38:6-3OH) * Phospholipid [M-2H]2− 460.2281 460.2341 13.04 Tumor/Hyperplasia/Dysplasia/Mastitis

CerP(d18:1/18:1) Sphingolipid [M-H]− 642.4850 642.4868 2.80 Mastitis

PA(C38:3) + Phospholipid [M-H]− 725.5099 725.5127 3.86 Healthy > Tumor/
Hyperplasia/Dysplasia/Mastitis

PE(C36:2) †

PC(C34:2) † Phospholipid [M-H]−

[M-CH3]− 742.5387 742.5392 0.67 Tumor > Healthy >
Hyperplasia/Dysplasia/Mastitis

PE(C38:2) †

PC(C36:2) † Phospholipid [M-H]−

[M-CH3]− 770. 5705 770.5705 0.00 Healthy > Tumor/
Hyperplasia/Dysplasia/Mastitis

The lipidomic profiles obtained represent univocal fingerprints of the analyzed tissues,
and relative ion intensities were strictly connected to tissue type and correlated features.
A comparison between healthy and pathological tissues (Figure 4) revealed the presence of
key lipid species responsible for their differentiation.

Of note, relevant in normal mammary tissues are signals imputable to triglyceride
(TG) species, detected in the range 890–950 m/z and identified on the basis of previous
studies about cancer in both animals and humans [26,29] and confirmed by entering the
molecular ions of more abundant isotopes into the online LipidMaps [33] and Human
Metabolome Database [34] within a maximum mass error of 20 ppm, according to previous
considerations about the mass accuracy of the iKnife instrumental setup [35].

The TG abundance in healthy tissues is noticeably counterbalanced by the low presence
of certain glycerophospholipid (PLs) species (390–890 m/z range), which are predominant
in neoplastic samples. Fatty acids (FA) and derived compounds, detected as deprotonated
forms [M-H]− in the mass range 250–350 m/z, are responsible for the most intense signals
revealed in all spectra.
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In order to reveal possible biomarkers of specific pathological conditions, the loading
plots of the first two principal components (PC1 and PC2) were carefully examined and
shown in Figures 5 and 6, respectively. Therefore, Tables 1 and 2, which list the tentatively
identified compounds for the ion species reported in these loading plots, contain the major
compounds responsible for sample differentiation, also named discriminant features.

As shown in Figure 1, PC1 is responsible for the differentiation between healthy and
pathological conditions and explains 30.02% of the total variance of the model. In Figure 5,
the main compounds identified in normal mammary tissues were reported at negative val-
ues, corresponding to chloride adducts [M+Cl]− of polyunsaturated TG, including ions m/z
891.71 (TG(C52:3)), m/z 893.73 (TG(C52:2)), m/z 917.73 (TG(C54:4)), m/z 919.74 (TG(C54:3)),
921.75 (TG(C54:2)); deprotonated form [M-H]− of phosphatidylethanolamine plasmalogen
m/z 726.52 (PE(O-C36:3); and the FAs m/z 253.21 (C16:1) and m/z 281.24 (C18:1). Con-
versely, molecular species detected in other classes of mammary samples were observed
in two main distinct mass regions at positive values of PC1. In the range 250–450 m/z,
relevant signals were registered for deprotonated palmitic acid (m/z 255.23), the main fatty
acid synthase (FASN) product in de novo synthesis chain also used for internal lockmass
correction, and m/z 283.26, m/z 303.23 ions imputable to stearic (C18:0) and arachidonic
(C20:4) acids, respectively. The saturated FA C18:0 is the first product of elongase ELOVL1,
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the enzyme involved in the generation of long chain saturated FAs, while the omega-6
arachidonic acid is the most commonly identified FA in PL species expressed in several
neoplasms [36,37], and a key intermediate in prostaglandins synthesis, promoter substances
of inflammatory processes [38]. In the same mass region, another polyunsaturated FA,
which is docosatetraenoic acid (C22:4) at m/z 331.26, was detected, as well as the ions at
m/z 391.22, m/z 417.23, m/z 419.25 and m/z 439.22, putatively identified by matching
with Human Metabolome Database as dehydrate species of the lysophosphatidic acids
Lyso-PA(C16:0), Lyso-PA(C18:1), Lyso-PA(C18:0) and Lyso-PA(C20:4). In the mass range
570–890 m/z, a huge number of signals were ascribable to pathological status, being them at
positive values of PC1. All of them were identified as PLs, with the exception of the signal at
m/z 572.48, tentatively identified by Zhang et al. [31] in human papillary thyroid carcinoma
as Cer(C34:1) and peak at m/z 687.54 attributed to sphingomyelin SM(d18:1/16:0). Then,
PA(C34:1), PA(C36:2), PA(C38:4) and PA(C40:4) were tentatively assigned to m/z 673.48,
699.49, 723.49 and 751.53, respectively. They are more clearly visible from the expansion
in the insert of Figure 5. The other PL species, presumably derived from PA, found at
positive values of PC1 and enlarged in the same insert, mainly belong to the classes of
phosphatidylcholines (PC) and PE, with the exception of a peak at m/z 403.25 and 737.49,
identified as oxidized phosphatidylglycerol PG(C36:1-2OH) and PG(C32:0;O). The first one
was detected as a double-charged (double-deprotonated) ion, probably due to the presence
of two hydroxyl groups on the FA chains. Finally, the PC1 loading plot shows high signals
for m/z 766.53, 794.56 and 885.54 were identified as PE(C38:4)/PC(36:4), PE(C40:4) and
PI(C38:4), respectively, further confirmed by the literature works dealing with the molec-
ular characterization of human breast cancer tissues through the iKnife equipment [28].
Like PC1, PC2 also enabled a net demarcation between physiological and other conditions.
Furthermore, the PCA plot in Figure 1 highlights that both hyperplastic/dysplastic and
neoplastic tissues are mainly placed at positive PC2 values, while samples of inflammatory
tissues are quite spread along PC2. The loading plot in Figure 6 reports the molecular
species responsible for this differentiation. Apart from some lipid components discussed
above, as they are already relevant in the PC1 loading plot, additional compounds were
identified in the PC2 plot and reported in Table 2.
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Specifically, at negative values of PC2, where healthy tissues are located, FAs can be
identified in the range 250–305 m/z, and among them, the polyunsaturated linoleic acid
(C18:2) at m/z 279.23 was not present within PC1 features, thus playing a minor role in the
discrimination compared to saturated and monounsaturated FAs, as well as with respect
to arachidonic acid. At negative PC2 values, a signal at m/z 642.48 also appeared, and it
was putatively assigned to CerP(d18:1/18:1) (ceramide phosphate class) by matching the
accurate mass to the Lipid Maps database. In agreement with the PCA plot in Figure 1 and
the spectral comparison in Figure 6, it was mainly identified in inflamed tissue samples.
Some less abundant PLs at m/z 725.50, 742.53 and 770.57 were also present among the
PC2 discriminant features (Figure 6 and Table 2), while they were not visible in the PC1
loading plot. They were present in the MS spectra of all the samples, but differences in
their ratio can represent a discriminant factor. On the other hand, at positive PC2 values,
two FA derivates were mainly detected in hyperplastic/dysplastic tissues. Specifically, the
signal at m/z 389.19 was tentatively identified as oxidation products of arachidonic acid,
known as prostaglandins, and clearly related to disease conditions. The signal at m/z 446.21
was also identified as an arachidonic acid derivate, i.e., N-arachidonoyl taurine (NAT).
Finally, two oxidized PG species were assigned for m/z 404.19 and 460.22. As the oxidized
PG(C36:1-2OH) identified in the PC1 loading plot, they represent signaling molecules in
the inflammatory process. Compared to PG(C36:1-2OH), they are polyunsaturated lipids,
which presumably contain oxidized products of the arachidonic acid.

3. Discussion

In the present study, a lipidomics-based method was applied to metabolic phenotyp-
ing canine mammary tissues, investigating lipid profiles in the normal mammary gland
and comparing changes in lipid species in hyperplastic/dysplastic, inflammatory and
cancerous mammary tissues. The obtained lipidomic profiles represented unique finger-
prints of the analyzed tissues, and the relative ion intensities were closely related to the
type of tissue, reflecting the different histological classifications of samples. Furthermore,
the main discriminating molecules were identified to distinguish between healthy and
neoplastic tissues, making these molecules promising diagnostic biomarkers. The data
obtained suggest that REIMS technology may be useful to accurately differentiate canine
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mammary tissues based on cellular lipid constituents, allowing comparing changes in
cellular metabolism with alterations in tissue morphology.

First, the purpose of the iKnife application was the construction of an internal database
with spectra obtained by analyzing a representative number of histologically classified
mammary samples. Starting from the concept of machine learning, the collection of mass
spectra and, therefore, the construction of an extensive database is a mandatory step
that makes the system able to learn from the acquired data and subsequently identify
specific patterns, returning prediction results about unknown samples. Therefore, an
adequate number of samples is required for a meaningful statistical analysis, viz., to
compare typical lipid profiles of physiological and major pathological conditions affecting
the canine mammary gland.

In this study, with the exception of the normal mammary gland tissues, all included
samples appeared as neoformations on clinical examination and, therefore, surgically
removed. The different diagnostic and prognostic significance for mammary masses were
further established based on histological examination.

Acquired MS spectra were used to build a classification model able to discriminate
between mammary samples based on different histopathological diagnoses, using two
different mathematical approaches, and the model was further validated for classification
accuracy by performing two different in silico tests. The REIMS profiles were classified
with an overall accuracy of 94.76% and 90.05% using PCA-LDA analyses, with a very
low percentage of failures and outliers. Furthermore, tumors were never misidentified
as healthy mammary tissue or inflammatory samples, and significant differences in lipid
profiles were mainly observed between normal tissues and CMT, reflecting significant
differences in lipid metabolism. Furthermore, although the group of CMT represented the
one with the highest variability in terms of morphology, as this group included both benign
and malignant tumors with different grades of malignancy, the supervised LDA analysis
reduced the differences among samples, allowing identifying all neoplastic tissues in the
same class correctly. Interestingly, the recognition capability of REIMS was further tested
on unknown mammary samples with known histological diagnoses, allowing obtaining
the output of the analysis in near real-time, and all samples were correctly identified with
a 98% similarity rate with spectra present in the database.

The identification of lipid species in our samples, based on correspondence with
those available in the LipidMaps online library, revealed significant differences, especially
between normal and cancerous mammary samples, allowing us to further identify the main
“discriminant molecules”. Notably, triglyceride identification was increased in normal
mammary samples, while the abundance of ions associated with PL species was increased
in both benign and malignant tumors, in which the intensity of ions associated with
triglyceride species was reduced.

Interestingly, lipid analyses of breast cancer tissue samples showed an increase in
PL content compared to non-cancerous healthy breast tissue [39], demonstrated using
ambient MS-based lipidomic in breast cancer [26]. PLs are essential components of all cell
membranes, and their content has been shown to increase with tumor cell transformation
and tumor progression [40]. Furthermore, the high content of PLs in tumors was inversely
correlated with patient survival and also related to resistance to chemotherapies [41].

Cancer cell metabolism promotes lipid synthesis of FAs by anaerobic glycolysis, pro-
ducing energy and pyruvate (the so-called “Warburg effect”), and the activation of lipid
metabolism has been recognized as a hallmark of tumorigenesis in breast cancer cells [40].
Of note, the involvement of de novo FAs in the PL biosynthesis rather than TGs is a key
point responsible for cell proliferation since PLs represent the main constituents of cell
membranes [42]. In particular, one of the first steps in the lipidomic pathway is the for-
mation of PAs from Lyso-PAs, and FAs are incorporated into complex lipids via PAs as
intermediate metabolites [43]. Evidence of the role of Lyso-PLs on the growth regulation
of neoplastic cells and the manipulation of the immune system supports their presence,
while PAs also act as precursors for de novo generated PLs or those existing and can serve
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as cell survival signaling molecules [43]. Although de novo FAs synthesis incorporated into
membrane PLs usually increases during cancer progression, few healthy tissues as adipose
tissue, which is an important component of the breast tissue, use the same mechanism to
generate FAs as reported elsewhere [32]. However, differences in lipid saturation between
healthy and cancerous mammary tissues were observed in our study. In particular, a greater
expression of saturated FAs was observed in mammary tumors, while unsaturated FAs
were identified in the healthy mammary gland. One of the advantages of the high rate
of de novo lipogenesis in cancer cells is the synthesis of saturated and monounsaturated
FAs, which are more stable than polyunsaturated FAs; consequently, cancer cells are less
susceptible to chemotherapy-induced oxidative stress [44].

In agreement with other studies, the PLs identified and most expressed in compro-
mised tissues were PEs (PCs) and PAs, particularly in tumors [21,45]. Concentrations of
the two major PL components, phosphatidylethanolamine (PE) and phosphatidylcholine
(PC), increased with increasing breast cancer grade, indicating that the rate of PL synthesis
increases with oncogenesis and tumor progression compared to normal tissue [40]. In par-
ticular, high PEs synthesis was demonstrated as a common metabolic adaptation strategy
to the stress of breast cancer cells [46]. Of note, PC is one of the main lipids in mitochondria,
which represent crucial organelles for cellular adaptation to metabolic insults [47]. In par-
ticular, PCs are generally the most abundant PL species in mammalian cells. PC synthesis
and metabolism in cancer progression have been investigated and PC species have been
proposed as putative diagnostic markers and therapeutic agents in breast cancer [32,48].

Signals related to sphingolipids, including sphingomyelin and ceramide, as well as
oxidized lipids, including oxidized PG, were also identified in pathological tissues analyzed
here. Sphingolipids are essential constituents of cell membranes and play crucial roles in
cell homeostasis, as well as in the onset and progression of several diseases [49]. In particu-
lar, sphingomyelin is a known regulator of cell proliferation and apoptosis in neoplastic
and inflammatory processes [24,50], while ceramide induces cell cycle arrest, regulating cell
survival and promoting apoptosis, and plays a central role in the regulation of inflamma-
tory responses [49]. The phosphorylation of ceramide produces ceramide 1-phosphate, an
important metabolite with mitogenic and prosurvival properties, also involved in the stim-
ulation of the inflammatory response, the release of arachidonic acid and in the formation
of prostaglandins through the activation of phospholipase enzymes [49,51]. In our study,
the identification of sphingomyelin and ceramide in the PC1 loading plot further validates
the presence of ceramide phosphates since the latter are biosynthetic products of the former.
Finally, the identification of oxidized lipids here may be related to the presence of possible
cellular alterations responsible for the apoptotic mechanism [52], although it was recently
shown that the oxidation of FAs protects neoplastic cells from apoptosis in triple-negative
breast cancer by increasing the synthesis of PLs and lipids of the mitochondrial membranes,
thus, counteracting the mitochondrial apoptotic pathways [53].

Finally, regarding the NAT detected in hyperplastic/dysplastic mammary tissues, it
was probably derived from an endogenous synthesis activated in the presence of high levels
of arachidonic acid, released from PLs by the action of phospholipase activated under stress
conditions [54]. Such compounds have been shown to exert an anti-proliferative action
against cancer cells [55]. Furthermore, omega-6 arachidonic acid is the most commonly
identified FA in PL species expressed in several neoplasms [36,37] and a key intermediate
in the synthesis of prostaglandins, substances that promote inflammatory processes [38].

4. Materials and Methods
4.1. Samples and Sample Treatment

Mammary tissue samples analyzed in this study were surgically removed from
a cohort of female dogs referred to private veterinary clinics in the province of Messina and
Catania (Sicily; Southern Italy). Dogs underwent conservative surgery (i.e., partial or radical
mastectomy) as the only treatment, and the owners provided consent with curative intent.
Healthy mammary tissues were sampled from dogs that underwent routine necropsies at
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the Department of Veterinary Sciences of the University of Messina. All collected samples
were specularly sectioned and either fixed in 10% neutral buffered formalin to be routinely
processed for histology and stored at −80 ◦C for iKnife analyses at the Department of
Chemical, Biological, Pharmaceutical and Environmental Sciences of the University of
Messina. The intrinsic hydration of some tissues allowed performing their direct sampling
by the electrosurgical unit without any sample pretreatment or modification.

4.2. Histopathology

Three-micrometer thick sections from formalin-fixed, paraffin-embedded tissues were
stained with haematoxylin-eosin (HE) for histological examination. Histological classi-
fication was based on criteria defined by Zappulli et al. [56], and histological grading
was performed according to Peña et al. [57], based on the histological features of tubule
formation, nuclear pleomorphism and mitotic count.

4.3. iKnife Analysis
4.3.1. Chemicals

HPLC-MS grade methanol, water and 2-propanol (IPA) were purchased from Merck
life Science (Merck KGaA, Darmstadt, Germany) and employed for Venturi pump cleaning
and MS analysis. LC-MS grade formic acid, sodium hydroxide and Leucine encephalin
standard (LeuEnk) were provided by Waters Corporation (Wilmslow, UK) and used to
perform the setup and calibration of a high-resolution Q-TOF detector.

4.3.2. iKnife Instrumentation and Analytical Conditions

A surgical diathermy system (Erbe VIO 50 C, Tuebingen, Germany) composed of
an electric current generator and coupled to a monopolar handpiece was employed to
perform tissue sampling, which involves the vaporization of cellular constituents by the
Joule effect. Particularly, dry-cut (DC) mode and 30 W frequency were applied to power the
electrosurgical knife, thus heating its metal end; then, the cutting led to the release of very
informative molecular vapors. These products were aspirated via a 4 m × 4.11 mm o.d.,
2.53 mm i.d., PTFE tube to the inlet of the REIMS (Rapid Evaporative Ionization Mass
Spectrometry) source (Waters Corporation, Wilmslow, UK) for the ion formation as a result
of a collision with a helically coiled surface heated by a constant electric current set to
4.5 A and 4.2 V (Kanthal D 1.0 × 0.1 mm). In order to avoid carryover phenomena between
subsequent analyses, the source cleanup and promotion of molecular ionization were
guaranteed by introducing a constant flow of IPA (0.05 mL/min) into the source through an
automated Harvard Apparatus equipped with a syringe pump (Trajan Scientific, Crownhill,
UK, 10 mL). The REIMS source was installed on a Xevo G2 XS Q-Tof (Waters Corporation,
Wilmslow, UK). All tissues were analyzed in sensitivity mode at a resolution of about
20,000 FWHM (Full Width at Half Maximum). The MS spectra were acquired in negative
ionization mode in the mass range 100–1200 m/z at a scan rate of 0.5 s. The electrosurgical
knife blade, the PTFE evacuation transfer tube and the individual components of the
Venturi tube were cleaned in methanol MS grade after every 10 analyses.

4.3.3. Data Processing and Statistical Analysis

Acquisition of REIMS-Tof-MS analyses and data pretreatment were performed by
using the software package Masslynx version. 4.1 (Waters Corporation, Wilmslow, UK).
Raw files were processed for background subtraction (e.g., removal of electronic noise),
normalization and accurate mass correction of acquired ions using the endogenous matrix
255.233 m/z that corresponds to the deprotonated molecule of palmitic acid (C16H31O2).
This process is necessary to make different analyses, even performing in different periods,
fully comparable. The processed MS data were imported into a spectral library through
the LiveID™ software version 1.2 (Waters Corporation, Wilmslow, UK) to be used for
chemometric analysis in order to reveal similarities and differences between individual
tissues. In particular, a multivariate statistical model was built to achieve discrimination
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between the samples. Hence, the model was validated and tested for the recognition of
unknown samples. Specifically, the statistical analysis implied the use of two different
mathematical approaches applied sequentially by the software and consisting of PCA
and LDA. The first method, defined as “unsupervised”, places each MS spectrum into
a well-defined position within a multidimensional space, regardless of tissue type (or class)
to which it belongs. On the other hand, LDA or “supervised” approach was employed
as a classification technique useful for the building of predictive models (maximizing the
inter-class variance and minimizing the intra-class one) [58], which allows classifying MS
spectra of unknown samples as belonging to a specific tissue type during the recognition
step. In order to evaluate the robustness of the resulting PCA/LDA statistical model and
define its predictive capability, a 5-fold stratified validation test was performed. It works
by dividing the data set used for the statistical model into five different partitions, each
of which contains a representative proportion of each class. Four of these partitions are
used to build a statistical model with the same parameters as the original one and used
to classify the remaining portion of data not included. This approach is repeated for the
other 5 cycles, and the excluded partition every time undergoes the classification process of
the new model built with the remaining four. LiveID software returns a detailed report
at the end of the validation test that includes data classified as correct, incorrect (failures)
and those defined as anomalous (outliers). The validated model was finally used for the
recognition in playback (in a phase subsequent to the acquisition of the MS spectra), and in
real-time (at the same time), of unknown data not included in the statistical model.

5. Conclusions

In conclusion, the present work aimed to determine the discriminant features be-
tween normal mammary glands and mammary samples with different pathological lesions.
Compared to most of the previous work related to the differentiation of biological tissues,
a more in-depth elucidation of these discriminating features was carried out since a wider
mass range was investigated. In particular, only the PL region (600–900 m/z) was normally
monitored, while the present research highlighted the possibility of detecting additional
marker compounds, such as FA derivatives, oxidized lipids and Lyso-PA, here tentatively
identified for the first time in this type of samples. The data obtained here suggest that the
iKnife technique is able to accurately profile mammary tissues based on cellular chemical
constituents, allowing to compare chemical changes in cellular metabolism with tissue
morphology, suggesting that the iKnife could be used as an accessory diagnostic tool intra-
operatively in the future. However, further larger research cohorts of ex vivo samples, as
well as adequate translation of the ex vivo recognition software for intraoperative use, are
required to validate this technique and before conclusions can be drawn on intraoperative
diagnostic accuracy
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