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Abstract: Flooding impairs wheat growth and considerably affects yield productivity worldwide.
On the other hand, irradiation with millimeter waves enhanced the growth of chickpea and soybean
under flooding stress. In the current work, millimeter-wave irradiation notably enhanced wheat
growth, even under flooding stress. To explore the protective mechanisms of millimeter-wave irra-
diation on wheat under flooding, quantitative proteomics was performed. According to functional
categorization, proteins whose abundances were changed significantly with and without irradiation
under flooding stress were correlated to glycolysis, reactive-oxygen species scavenging, cell organiza-
tion, and hormonal metabolism. Immunoblot analysis confirmed that fructose-bisphosphate aldolase
and B tubulin accumulated in root and leaf under flooding; however, even in such condition, their
accumulations were recovered to the control level in irradiated wheat. The abundance of ascorbate
peroxidase increased in leaf under flooding and recovered to the control level in irradiated wheat.
Because the abundance of auxin-related proteins changed with millimeter-wave irradiation, auxin
was applied to wheat under flooding, resulting in the application of auxin improving its growth, even
in such condition. These results suggest that millimeter-wave irradiation on wheat seeds improves
the recovery of plant growth from flooding via the regulation of glycolysis, reactive-oxygen species
scavenging, and cell organization. Additionally, millimeter-wave irradiation could promote tolerance
against flooding through the regulation of auxin contents in wheat.

Keywords: proteomics; wheat; flooding; millimeter-wave irradiation

1. Introduction

Wheat is an important staple crop, and its availability affects the livelihoods of nearly
every family in the world [1]. An estimated 15-20% of its cultivating area faces flooding
each year [2,3], resulting in waterlogging reducing average grain yield by 43% [4]. In
addition to climate changes, flooding is expected to increasingly cause severe crop declines
in terms of both yield and quality worldwide [5]. Flooding is classified into two forms
depending on water depth, which are submergence and waterlogging [6]. Submergence
is the condition in which the whole plant is completely or partially immersed in water,
while waterlogging is the state where water exists on the soil surface and crop roots are
surrounded by water [3]. Flooding threatens to drastically reduce crop yield and is expected
to be even more severe in many parts of the world due to climatic anomalies in the future [7].
Understanding the mechanisms of wheat coping with unexpected flooding is important for
developing new flooding-tolerant wheat cultivars.
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In the electromagnetic spectrum, millimeter waves lie at the intersection of microwaves
and infrared. The radio frequency of millimeter waves extends from 30 to 300 GHz,
corresponding to wavelengths from 10 to 1 mm [8]. Millimeter-wave irradiation with
long wavelengths and minimal risks to human health is an appropriate technology for
the environment, which have dynamic effects on organisms [9]. Wheat seeds treated with
millimeter waves grew into higher plants with better biological harvest compared to those
without treatment [10]. Millimeter-wave irradiation on wheat seed at the initial stage
improved not only seed germination [11,12], but also shoot growth and grain yield [13].
On the other hand, millimeter-wave irradiation improved the growth of seedling and the
flooding tolerance of soybean [14], and chickpea [15]. These findings indicated that the
millimeter-wave irradiation may be an effective approach to promote plant growth and
stress tolerance in crops; however, the effects on wheat growth under flooding have not
been investigated.

In brown rice, millimeter-wave irradiation, which improved germination ratio, in-
creased polyphenol content and decreased y-aminobutyric acid [16]. In soybean, millimeter-
wave irradiation promoted the recovery of seedlings under oxidative stress, which posi-
tively regulated glycolysis and redox-related pathways [14]. In chickpea, millimeter-wave
irradiation promoted the recovery of plant growth under flooding by regulating photo-
synthesis in leaf and fermentation in roots via cell death [15]. To determine the effects of
millimeter-wave irradiation on wheat growth under flooding stress, which is submergence
stress, morphological analysis was performed through comparisons among treatments in
different ranges of dose and various durations of irradiation. Based on the morphological
results, proteomic analysis was carried out to explore the responsible mechanisms for the
positive effects of millimeter waves on wheat growth under flooding. Proteomic results
were subsequently confirmed by immunoblot, enzyme activity, and physiological analyses.

2. Results
2.1. Morphological Changes of Wheat Irradiated with Millimeter Waves under Flooding Stress

To clarify the effect of millimeter-wave irradiation on wheat under flooding stress,
morphological changes of wheat treated with a variety of irradiation were analyzed. Wheat
seeds were irradiated with 0, 10, 20, and 40 mW of millimeter waves for 0, 10, 20, and 40 min
using a Gunn oscillator (Figures S1 and 52). Without flooding stress, the length and weight
of root and leaf of wheat did not change significantly (Figure S3). Under flooding stress, the
duration of 20 min was most effective in promoting wheat growth (Figure 1). Additionally,
wheat growth was improved with 20 mW millimeter-wave irradiation (Figure 1). Although
the growth of wheat seedlings was suppressed by flooding (Figure 1) compared with
non-flooding conditions (Figure S3), its growth was enhanced by the irradiation of 20 mW
of millimeter waves for 20 min, even under flooding conditions. (Figure 1). These results
indicated that the irradiation of 20 mW of millimeter waves for 20 min was more effective
in root growth. Based on morphological results, the condition of 20 mW of millimeter-wave
irradiation for 20 min was used for the seed treatment for proteomic analysis.

2.2. Protein Identification and Functional Categorization in Wheat Irradiated with Millimeter
Waves under Flooding Stress

To clarify the cellular mechanism on plant growth of wheat seeds irradiated with
millimeter waves, a gel- and label-free proteomics was conducted using root (Table S1).
Four kinds of treatments, which are irradiated /unirradiated and flooding/non-flooding,
were performed (Figure S2). Proteins were extracted from root, whose seeds were irradiated
with or without 20 mW of millimeter waves for 20 min, under non-flooded or flooded
conditions. Proteins extracted were enriched, reduced, alkylated, digested, and analyzed
using nano-liquid chromatography (LC) combined with mass spectrometry (MS). The
relative protein abundance of irradiated wheat was compared with that of unirradiated
wheat under non-flooding (Table S2) or flooding (Table S3) conditions. Furthermore,
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relative protein abundance of non-flooded wheat was compared with that of flooded wheat
with unirradiation (Table S4) or irradiation (Table S5).

The abundance of 254 and 784 proteins differentially changed with fold change >1.5
and <2/3 in the roots of millimeter-wave irradiated wheat compared with unirradiated
wheat under non-flooding condition and flooding condition, respectively (Tables S2 and S3).
Functional category of identified proteins was obtained using MapMan bin codes (Figure 2).
Among the 254 proteins, 165 proteins increased, and 89 proteins decreased with irradiation
compared with unirradiation under non-flooding (Figure 2 left). This indicated that the
proteins were not largely changed between irradiation and unirradiation without flooding
stress. Among the 784 proteins, 361 proteins increased, and 423 proteins decreased with
irradiation compared with unirradiation under flooding (Figure 2 right). Compared to
unirradiation under flooding, irradiation significantly changed functional categories, which
were glycolysis, minor CHO, hormonal metabolism, and redox, which is reactive-oxygen
species (ROS) scavenging.

11 cm 11 cm
f L \ / -
i L i - b % L
0 10 20 40mw 0 10 20 40 min
20 r 20 r xE
- 1008 __ - 4 008
Ehs ?||E]1s | e
o 1006|=||= .. 1 008|ZL
£ o —_
£ PL b e = w - o
210 || 210 t S
= 1 004|0| |5 4 0.04|E
- 2| |5 =
m
g% r {oo2|s||8]5 T H 0o2|2
LiF] m
£ e
o U 40 0 - b ge
15 = - 006 15 7 - 7 006
= % = B % = (]
o s ] il B
< Sl 2 S0 | A2 ] o0l
10 % 1 0.04= n 04—
£ = RE= 1 o
EJ ."‘ wx xE = Ej il x= =
I g 5 |3 g IE
G5 r {o002T| B 5T 1 002D
s} | O =
i E =@ E =
=) o
¢ 4
(= 40 E a - 1o L=
0 10 20 40mwW 0 10 20 40 min
20 min 20 m\Ww
flooding flonding

Figure 1. Morphological effect of millimeter-wave irradiation with the various power and time on
wheat under flooding stress. Wheat seeds were irradiated with 0, 10, 20, and 40 mW of millimeter
waves for 0, 10, 20, and 40 min and sowed (Figures S1 and S2). For non-flooded group, samples
were collected at 6 days after sowing (Figure S3). For flooded group, wheat seedlings were treated
with 3-day flooding after 3-day germination and samples were collected. Leaf length (green column),
leaf-fresh weight (black solid line graph), main-root length (orange column), and total-root fresh
weight (black dotted line graph) were measured as morphological parameters. Bar indicates 1 cm.
The data are given as the mean + SD from three independent biological replicates. Asterisks indicate
significant changes of irradiated groups compared with unirradiated group according to Student’s
t-test (** p < 0.01; * p < 0.05).
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Figure 2. Functional categories of proteins with differential abundance in wheat irradiated with
millimeter waves with or without flooding stress. Wheat seeds were irradiated without (unirradiated)
or with (irradiated) 20 mW of millimeter waves for 20 min and exposed without (non-flooded)
or with (flooded) flooding stress. Non-flooded and flooded samples were collected from both
the unirradiated group and the irradiated group. After proteomic analysis, functional categories
of significantly changed proteins (p < 0.05) from irradiated /unirradiated wheat without or with
flooding stress were determined using MapMan bin codes (Tables S2 and S3). Orange color indicates
“increased proteins” and blue color indicates “decreased proteins” in irrigated wheat compared
with unirradiated wheat. Abbreviations: mitoETC, mitochondrial-electron transport chain; TCA,
tricarboxylic-acid cycle; PTM, post-translational modification; and AA, amino acids. “not assigned”
indicates proteins without ontology or characterized functions.

Furthermore, the abundance of 2678 and 704 proteins differentially changed with fold
change >1.5 and <2/3 in the roots of millimeter-wave unirradiated wheat and irradiated
wheat, respectively, under flooding conditions compared with under non-flooding condi-
tions (Tables S4 and S5). Among the 2678 proteins, 1609 proteins increased, and 1069 pro-
teins decreased without irradiation under flooding stress compared with non-flooding
condition (Figure 3 left). Among the 704 proteins, 425 proteins increased, and 279 proteins
decreased with irradiation under flooding stress compared with non-flooding condition
(Figure 3 right). Functional category of identified proteins was obtained using MapMan
bin codes (Figure 3). Cell organization and hormonal metabolism were oppositely changed
between irradiation and unirradiation under flooding conditions. Based on proteomic
results, proteins related to glycolysis, ROS scavenging, cell organization, and hormonal
metabolism were further confirmed using biochemical and physiological techniques.
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Figure 3. Functional categories of proteins with differential abundance in wheat irradiated with or
without millimeter waves under flooding stress. Wheat seeds were irradiated without (unirradiated)
or with (irradiated) 20 mW millimeter waves for 20 min and exposed without (non-flooded) or with
(flooded) flooding stress. Non-flooded and flooded samples were collected from both unirradiated
group and irradiated group. After proteomic analysis, functional categories of significantly changed
proteins (p < 0.05) from flooding /non-flooding wheat without or with irradiation were determined
using MapMan bin codes (Tables S4 and S5). Orange color indicates “increased proteins” and
blue color indicates “decreased proteins” under flooding stress compared with non-flooding stress.
Abbreviations: mitoETC, mitochondrial electron transport chain; TCA, tricarboxylic acid cycle; PTM,
post-translational modification; and AA, amino acids. “not assigned” indicates proteins without
ontology or characterized functions.

2.3. Activity of Alcohol Dehydrogenase (ADH) in Wheat Irradiated with Millimeter Waves under
Flooding Stress

Because the abundance of ADH was not clearly changed in wheat with millimeter
wave-irradiation under flooding based on proteomic results (Figures 2 and 3), ADH activity
was analyzed (Figure 4). Proteins were extracted from root and leaf of wheat, whose seeds
were irradiated with or without 20 mW of millimeter waves for 20 min, under non-flooded
or flooded conditions. Although ADH activity was markedly increased in root and leaf of
wheat under flooding stress, its activity was the same in wheat with and without millimeter-
wave irradiation (Figure 4). These results indicated that the fermentation increased by
flooding was not changed with millimeter-wave irradiation.

2.4. Abundance of Proteins Related to Glycolysis in Wheat Irradiated with Millimeter Waves under
Flooding Stress

To further reveal the change of accumulation of proteins from various treatments, im-
munoblot analysis of proteins related to glycolysis was carried out (Figure 5). Proteins were
extracted from root and leaf of wheat, whose seeds were irradiated with or without 20 mW
of millimeter waves for 20 min, under non-flooded or flooded conditions. The staining
pattern of Coomassie-brilliant blue was used as a loading control (Figure S4). For confirma-
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tion of the change of glycolysis related proteins, the abundance of fructose-bisphosphate
aldolase (FBA), triose-phosphate isomerase (TPI), and glyceraldehyde-3-phosphate de-
hydrogenase (GAPDH) was analyzed using immunoblot analysis (Figures S5-57). FBA
accumulated in root and leaf under flooding; however, its accumulation was recovered to
control level in irradiated wheat, even if it was this condition (Figure 5). The abundance
of GAPDH increased in root and decreased in leaf of irradiated wheat under flooding
(Figure 5). The abundance of TPI was not changed with any treatments (Figure 5). These
results indicated that glycolysis was improved by millimeter-wave irradiation, even under
flooding condition.

2.5. Abundance of Proteins Related to ROS Scavenging in Wheat Irradiated with Millimeter Waves
under Flooding Stress

To further reveal the change of accumulation of proteins from various treatments,
immunoblot analysis of proteins related to ROS scavenging was carried out (Figure 6). For
confirmation of the change of ROS scavenging related proteins, the abundance of ascorbate
peroxidase (APX), glutathione reductase (GR), and peroxiredoxin (PRX) was analyzed using
immunoblot analysis (Figures S8-510). The abundances of APX, GR, and PRX increased in
root under flooding stress; however, their abundances did not change with and without
millimeter-wave irradiation (Figure 6). The abundance of APX increased in leaves under
flooding stress and its accumulation was recovered to control level in irradiated wheat,
even under flooding conditions (Figure 6). These results indicated that ROS scavenging
was improved by millimeter-wave irradiation, even under flooding conditions.
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Figure 4. Activity assay of ADH involved in fermentation in wheat irradiated with millimeter waves
under flooding stress. Wheat seeds were irradiated with (+) or without (—) 20 mW millimeter waves
for 20 min and exposed with (+) or without (—) flooding stress. ADH activity was analyzed in
protein extracted from root and leaf of wheat. The data are given as the mean + SD from three
independent biological replicates. Mean values in each point with different letters are significantly
different according to one-way ANOVA followed by Tukey’s multiple comparisons (p < 0.05).
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Figure 5. Inmunoblot analysis of proteins involved in glycolysis in wheat irradiated with millimeter
waves under flooding stress. Proteins extracted from the roots and leaves of wheat seedlings were
separated on SDS-polyacrylamide gel by electrophoresis and transferred onto membranes. The
membranes were cross-reacted with anti-FBA, TPI, and GAPDH antibodies. Staining pattern with
Coomassie-brilliant blue was used as a loading control (Figure S4). The integrated densities of bands
were calculated using Image] software. The data are given as the mean & SD from three independent
biological replicates (Figures S5-S7). The statistical analysis is same as Figure 4.
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2.6. Abundance of Proteins Related to Cell Organization in Wheat Irradiated with Millimeter
Waves under Flooding Stress

To further reveal the change of accumulation of proteins from various treatments,
immunoblot analysis of proteins related to cell organization was carried out (Figure 7).
For confirmation of the change of cell organization related proteins, the abundance of
B actin and (3 tubulin was analyzed using immunoblot analysis (Figures S11 and S12).
The abundances of 3 actin increased in root under flooding stress; however, their abun-
dances did not change with and without millimeter-wave irradiation (Figure 7). 3 tubulin
accumulated in root and leaf under flooding; however, its accumulation was recovered
to control level in irradiated wheat, even under this condition (Figure 7). These results
indicated that cell organization was improved by millimeter-wave irradiation, even under
flooding conditions.
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Figure 7. Immunoblot analysis of proteins involved in cell organization in wheat irradiated with
millimeter waves under flooding stress. Proteins extracted from root and leaf of wheat seedlings
were separated on SDS-polyacrylamide gel by electrophoresis and transferred onto membranes. The
membranes were cross-reacted with anti-$ actin and 3 tubulin antibodies. Staining pattern with
Coomassie-brilliant blue was used as loading control (Figure S4). The integrated densities of bands
were calculated using Image]J software. The data are given as the mean + SD from three independent
biological replicates (Figures S11 and S12). The statistical analysis is same as Figure 4.

2.7. Morphological Changes of Wheat after Auxin Application under Flooding Stress

Because protein abundance related to the metabolism of phytohormone, which is auxin,
was changed by millimeter-wave irradiation (Figures 2 and 3), morphological changes of
wheat treated with a variety of treatments were analyzed (Figure 8). The length/fresh
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weight of leaf/root of wheat were suppressed under flooding condition; however, they
were improved with millimeter-wave irradiation, even under flooding condition (Figure 8).
Furthermore, wheat growth was improved by the application of auxin under flooding
stress compared with flooding only (Figure 8). This result indicated that auxin, among
phytohormone, was one of the candidates for escaping from flooding stress.
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Figure 8. Morphological effect of auxin application on wheat under flooding stress. For the non-
flooded group, samples were collected at 6 days after sowing. For flooded group, 3-day-old wheat
seedlings were treated with 3-day flooding and samples were collected. For auxin treated group,
3-day-old wheat seedlings were treated with auxin under flooding stress for 3 days and samples were
collected. Leaf length (green column), leaf-fresh weight (black solid line graph), main-root length
(orange column), and total-root weight (black dotted line graph) were measured as morphological
parameters. Bar indicates 1 cm. The data are given as the mean + SD from three independent
biological replicates. The statistical analysis is same as Figure 4.

3. Discussion
3.1. Millimeter-Wave Irradiation Has a Positive Effect on Wheat Growth under Flooding Stress

Due to the characteristics of millimeter-wave irradiation, it is an environmentally
compatible technology with minimal risks to human health, which is important for sustain-
able development and deserves research on its impact [17]. The effective mechanism of
millimeter waves was the induction of thermal energy into the biological system through
incident irradiation, resulting in localized heating of water molecules on the surface of
cell membranes [18]. Additionally, several non-thermal effects of millimeter-wave irradi-
ation were discovered, revealing that optimum millimeter-wave irradiation stimulated
cell division, enzyme synthesis, growth rate, and biomass yield of a variety of micro-
organisms [19]. These physiological and biochemical effects of millimeter-wave irradiation
on micro-organisms facilitate the investigation of wheat irradiation for improving produc-
tivity in the agricultural industry.

In this study, the Japanese bread wheat cultivar Nourin 61 was used. Nourin 61 is a
representative Japanese cultivar of bread wheat, which is characterized by broad adaptation
and environmental robustness [20]. It was utilized for a broad range of physiological and
molecular studies, such as mutant screening and transgenic experiments [21]. It is indicated
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that the features of Nourin 61 might be established as the reference genotype for adaptation
and breeding research. In this study, this wheat seeds were irradiated with millimeter
waves, to determine the effect of millimeter-wave irradiation on wheat growth under
flooding stress. Millimeter-wave irradiation significantly improved wheat growth, even
under flooding (Figure 1). Millimeter-wave irradiation improved the growth of seedling
and the flooding tolerance of soybean [14], and chickpea [15]. The morphological effects on
wheat introduced by millimeter-wave irradiation are similar to the cases of soybean and
chickpea. Current results with previous findings indicate that the irradiation of millimeter
waves may be a potential tool to ensure wheat growth under flood stress.

3.2. Millimeter-Wave Irradiation Suppresses Glycolysis in Wheat under Flooding Stress

Oxygen deficiency in plant cells leads to the enhancement of metabolic processes such
as sucrose catabolism, glycolysis, and fermentation pathways, which are important for
energy conservation [22,23]. In flooding conditions, the energy to maintain plant vitality
mainly relies on the ethanol-metabolic pathway in glycolysis to degrade glucose and
glycogen accompanied by ATP generation [24]. Under flooding stress, a plant-derived
smoke solution enhanced wheat growth; and FBA/GAPDH among glycolysis, which
increased under flooding, decreased with its application under the same condition [25].
In this study, FBA was accumulated in root/leaf under flooding; and its accumulation
was recovered to the control level in irradiated wheat (Figure 5). Furthermore, GAPDH
was suppressed in wheat by millimeter-wave irradiation, even under flooding conditions
(Figure 5). Millimeter-wave irradiation as well as the application of plant-derived smoke
solution suppresses the glycolysis pathway in wheat, which could mildly generate the
energy for surviving for a long-term period under flooding stress.

ADH is a key enzyme in the ethanol-fermentation pathway and subsequently in the
adaptive anaerobic metabolism of plant tissue [24]. ADH activity significantly increased and
mildly increased in the wild type and flooding-tolerant mutant soybeans, respectively, un-
der flooding conditions compared with the non-flooding [26]. Furthermore, the application
of silver nanoparticles enhanced flooding tolerance in soybeans; and fermentation-related
proteins, which increased under flooding, decreased in response to silver nanoparticles,
even under flooding [27]. The flooding tolerance of plants was proportional to the change
in ADH activity in response to flooding. In chickpeas, ADH accumulation and activity
increased under flooding; however, they were recovered with millimeter-wave irradiation
through the formation of lateral roots [15]. On the other hand, fermentation-related pro-
teins did not change in irradiated soybeans compared with unirradiated soybeans under
flooding conditions [14]. Present results also indicated that fermentation was not changed
with millimeter-wave irradiation (Figure 4). This result in previous reports suggests that
wheat irradiated with millimeter waves might have other mechanisms to survive flooding
stress compared with chickpeas.

3.3. Millimeter-Wave Irradiation Suppresses ROS Scavenging and Cell Organization in Wheat
under Flooding Stress

Flooding stress triggered the production of ROS [28], which increased cell-membrane
permeability, lipid peroxidation, and electrolyte leakage [29]; however, the enzymatic
defense system composed of different antioxidant enzymes. The activities of several ROS-
scavenging enzymes, including catalase, APX, GR, and superoxide dismutase, increased
during flooding stress [30]. Meanwhile, ROS accumulation triggers the expression of
downstream genes of fermentation required for hypoxia acclimation and survival [31]. For
example, compared with waterlogging-tolerant wheat cultivar, the gene expressions and
activities of catalase and Mn-superoxide dismutase decreased in waterlogging-susceptible
wheat cultivar [32]. In this study, among ROS-scavenging enzymes, APX increased in
leaf under flooding and recovered to the control level in irradiated wheat (Figure 6).
On the other hand, in wheat leaf, the abundance of GR and PRX did not change with
flooding stress (Figure 6). In wheat root, the abundance of APX, GR, and PRX increased
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under flooding stress; however, this accumulation did not recover with millimeter-wave
irradiation. These results indicate that APX via the regulation of ROS production could be
considered an important component of adaptive responses to flooding for wheat irradiated
with millimeter waves compared with other ROS-scavenging enzymes.

ROS act as signaling molecules during plant-cell division, but their imbalance affects
the tubulin cytoskeleton of dividing root cells of wheat and A. thaliana [33]. Experimental
disturbance of ROS homeostasis rapidly stimulates microtubule disruption, leading to
the assembly of resistant atypical tubulin polymers, microtubules, and tubulin paracrys-
tals [34]. ROS imbalance is a stressful condition for plant cells with dramatic changes in the
tubulin cytoskeleton [35]. Microtubules are regarded as emerging components of sensory
mechanisms in plants, as various types of stress induce reorganization of the microtubule
cytoskeleton [36]. In this study, 3 tubulin among cell-organization-related proteins accu-
mulated in root/leaf under flooding; and its accumulation was recovered to the control
level in irradiated wheat, even under flooding conditions (Figure 7). This present result
is consistent with previous findings which suggest that 3 tubulin might function through
ROS signaling during the early stage of wheat growth.

3.4. Millimeter-Wave Irradiation Regulates Auxin Metabolism in Wheat under Flooding Stress

Phytohormones were demonstrated to play significant roles in flooding stress (7).
Among them, ethylene is a primary signaling molecule, which is accumulated in plants to
adapt to flooding stress [37]. Auxin, abscisic acid, gibberellic acid, cytokinin, and salicylic
acid protected plants against flooding stress by regulating adventitious root formation
or by controlling carbohydrate consumption [38]. Additionally, ethylene interacted with
a hormonal cascade of auxin, abscisic acid, and gibberellic acid to promote adventitious
root growth upon flooding in rice, tomato, and bitterzoet [39]. Application of spermidine
alleviated plant-growth inhibition and reduced oxidative damage from hypoxic stress [40].
Spermidine upregulated the expression of auxin-related genes, which were auxin respon-
sive factorl and auxinl/auxin2/auxin3/auxin4 proteins; but downregulated the expression
of ethylene-related 1-aminocyclopropane-1-carboxylic acid oxidase and synthase genes
during flooding [40].

Abscisic acid and ethylene responses were activated under both submergence and
drought stresses, whereas the auxin response was stimulated under submergence-specific
stress; suggesting that auxin may be a signaling component, which distinguishes submergence-
specific regulation [41]. Additionally, root growth cessation via ethylene and auxin rapidly
occurred; and this quiescence behavior contributed to enhance hypoxia tolerance [42].
On the other hand, out of four auxins, which are indole-3-acetic acid, indole-3-propionic
acid, indole-3-butyric acid, and 1-naphthylacetic acid, treatment with indole-3-butyric acid
resulted in a high rooting rate and beneficial root morphology [43]. Additionally, 1.5 mg/L
indole-3-butyric acid exhibited the highest rooting responses and 1.0 mg/L indole-3-butyric
acid improved fruit yield and biomass [44]. In this study, auxin-metabolism-related proteins
were identified with the irradiation of millimeter waves; and the application of auxin
improved wheat growth under flooding conditions although its growth was suppressed by
flooding (Figure 8). These results are consistent with previous reports which indicate that
millimeter-wave irradiation might promote wheat tolerance under flooding through the
regulation of auxin contents.

4. Materials and Methods
4.1. Plant Material, Millimeter-Wave Irradiation, and Treatment

As a millimeter-wave source, a Gunn oscillator (J. E. Caristrom, Chicago, IL, USA) was
used as a millimeter-wave source (Figure S1). The frequency range of the Gunn oscillator is
79 to 115 GHz. The output power is 7 to 80 mW, depending on the output frequency. The
Gunn oscillator was used in free running mode at 110 GHz. The electromagnetic waves
emitted from the Gunn oscillator pass through an isolator, after adjusting the output power
by an attenuator, then the electromagnetic wave is output to the free space via the horn
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antenna. The antenna pattern of the horn antenna has an aperture angle of 17 degrees
on each side [14,15]. By placing a 5 cm diameter petri dish containing the seeds of wheat
(Triticum aestivum L. cultivar Nourin 61) at 15 cm from the horn antenna, the millimeter-
wave radiation area fully covers the dish. To investigate the dependence of millimeter-wave
irradiation on intensity, the irradiation time was fixed at 20 min and 4 patterns of oscillation
power were used: 0, 10, 20, and 40 mW. The average intensity of the electromagnetic waves
irradiated to the seeds is 0, 0.13, 0.25, and 0.51 mW/cm?, respectively. The irradiated
electromagnetic waves have a Gaussian distribution, with the maximum intensity at the
center of the beam being 2.38 times of the average intensity, and the minimum intensity at
the rim of the beam being 0.32 times of the average intensity. For the investigation of the
irradiation-time dependence, the irradiation was performed with a fixed power of 20 mW
for 0, 10, 20, and 40 min. The temperature rise of wheat was estimated to be well below 1 K
with even the maximume-irradiation intensity and irradiation-time.

After irradiation, seeds were sterilized with 2% sodium hypochlorite solution, rinsed
twice in water, and sown in 400 mL of silica sand in a seedling case. A total of 20 seeds were
sown evenly in each seedling case. Wheats were grown at 25 °C and 60% humidity under
white fluorescent light (160 umol m~2 s~1, 16 h light period/day). To induce flooding
stress, water was added to 5 cm above the sand surface to immerse 3-day-old wheats
for 3 days. Irradiated /unirradiated and flooded /non-flooded wheats were collected. For
morphological analysis, roots, and leaves of 6-day-old wheats were collected. For proteomic
analysis, roots of 6-day-old wheats were collected. Three independent experiments were
performed as biological replications for all experiments, meaning that the seeds were sown
on different days (Figure S2).

4.2. Protein Extraction

A portion (500 mg) of samples was clipped into small pieces and put into a mortar
and pestle. It was ground in 500 uL of lysis buffer, which contains 7 M urea, 2 M thiourea,
5% CHAPS, and 2 mM tributylphosphine. The suspension was centrifuged twice with
16,000 < g for 10 min at 4 °C. The detergents from the supernatant were removed using the
Pierce Detergent Removal Spin Column (Pierce Biotechnology, Rockford, IL, USA). The
protein concentration was determined with bovine-serum albumin as the standard [45].

4.3. Protein Enrichment, Reduction, Alkylation, and Digestion

Extracted proteins (100 pg) were adjusted to a final volume of 100 pL. The protocol
of protein enrichment, reduction, alkylation, and digestion are described in the previous
study [46] (Table S1).

4.4. Protein Identification Using Nano-Liquid Chromatography (LC) Mass Spectrometry (MS)

The LC (EASY-nLC 1000; Thermo Fisher Scientific, San Jose, CA, USA) conditions as
well as the MS (Orbitrap Fusion ETD MS; Thermo Fisher Scientific) acquisition settings are
described in the previous study [47] (Table S1).

4.5. MS Data Analysis

The MS/MS searches were carried out using MASCOT (version 2.6.1, Matrix Sci-
ence, London, UK) and SEQUEST HT search algorithms against the Arabidopsis Thaliana
(UniProtKB TaxID = 3702) (version 2021-02) and Triticum aestivum (SwissProt TaxID = 4565)
(version 2021-02) using Proteome Discoverer (version 2.4; Thermo Fisher Scientific, Waltham,
MA, USA). The settings of MASCOT are described in the previous study [15] (Table S1).

4.6. Differential Analysis of Proteins Using MS Data

Label-free quantification was also performed with Proteome Discoverer using precur-
sor ions quantifiler nodes. For the differential analysis of the relative abundance of peptides
and proteins between samples, the free software Perseus (version 1.6.15.0; Max Planck
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Institute of Biochemistry, Martinsried, Germany) [48] was used. Differential analysis is
described in the previous study [15] (Table S1).

4.7. Immunoblot Analysis

Extracted proteins (10 ng) were adjusted to a final volume of 10 pL and mixed with
SDS-sample buffer, which contains 60 mM Tris-HCI (pH 6.8), 2% SDS, 10% glycerol, and
5% dithiothreitol [49]. Proteins (10 ug) were separated by electrophoresis on a 10% SDS-
polyacrylamide gel and transferred onto a polyvinylidene difluoride membrane using a
semidry transfer blotter (Nippon Eido, Tokyo, Japan). The blotted membrane was blocked
for 5 min in Bullet Blocking One regent (Nacalai Tesque, Kyoto, Japan). After blocking, the
membrane was cross-reacted with a 1: 1000 dilution of the primary antibodies for 30 min
at room temperature. As the primary antibodies, the following were used: anti-ascorbate
peroxidase (APX) [50], glutathione reductase (GR) (Agrisera, Vannds, Sweden), peroxire-
doxin (PRX) [51], fructose-bisphosphate aldolase (FBA) [52], triose-phosphate isomerase
(TPI) [14], glyceraldehyde-3-phosphate dehydrogenase (GAPDH) [14], § actin (Proteintech,
Rosemont, IL, USA), and (3 tubulin (Proteintech) antibodies. As the secondary antibody;,
anti-rabbit IgG conjugated with horseradish peroxidase (Bio-Rad, Hercules, CA, USA)
was used with 30 min incubation. After 30 min incubation, signals were detected using
TMB Membrane Peroxidase Substrate Kit (Seracare, Milford, MA, USA). The integrated
densities of bands were calculated using Image J software (version 1.53e with Java 1.8.0_172;
National Institutes of Health, Bethesda, MD, USA). Coomassie brilliant blue staining was
used as a loading control.

4.8. Measurement of Alcohol Dehydrogenase (ADH) Activity

ADHe-activity assay was performed using Alcohol Dehydrogenase Activity Colori-
metric Assay Kit (BioVision, Milpitas, CA, USA). A portion (50 mg) of samples was ho-
mogenized in 200 uL of ADH assay buffer and centrifuged at 13,000 x g for 10 min at 4 °C
to remove insoluble material. Extracts (50 uL) were added in 100 uL of reaction mixture
containing 82 uL of ADH assay buffer, 10 puL of substrate, and 8 uL of developer. After
mixing, the mixture was incubated for 2 and 10 min at 37 °C and the absorbance of mixture
was measured at 450 nm.

4.9. Morphological Analysis after Auxin Application

As auxin, indole-3-butyric acid (Wako, Osaka, Japan) was used. For the auxin treated
group, wheat seedlings were treated with 1 mg/L 4-(3-Indolyl) butyric acid under flooding
stress for 3 days after 3-day germination and samples were collected. Leaf length, leaf-fresh
weight, main-root length, and total-root weigh were measured as morphological parameters.

4.10. Statistical Analysis

Data were analyzed by one-way ANOVA followed by Tukey’s multiple comparison
among multiple groups using SPSS (IBM, Chicago, IL, USA). The statistical significance
of the 2 groups was evaluated by the Student’s t-test. A p-value of less than 0.05 was
considered as statistically significant.

5. Conclusions

Millimeter-wave irradiation improved wheat growth [13], which is the most important
staple crop, and its availability can impact the livelihoods of nearly every family globally.
Additionally, irradiation with millimeter waves was a potential approach for promoting
the flooding tolerance of soybeans [14], and chickpeas [15]. In this study, millimeter-
wave irradiation also improved wheat growth, even under flooding stress. To clarify the
dynamic effects of millimeter-wave irradiation on wheat under flooding, a gel- and label-
free proteomic analysis and its confirmation analysis were conducted. The key findings
were as follows: (i) FBA among glycolysis accumulated in root/leaf under flooding and
its accumulation was recovered to the control level in irradiated wheat; (ii) APX among
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ROS scavenging increased in leaf under flooding and recovered to the control level in
irradiated wheat; (iii) § tubulin among cell organization accumulated in root/leaf under
flooding and its accumulation was recovered to the control level in irradiated wheat; and
(iv) the application of auxin improved wheat growth under flooding conditions, although
its growth was suppressed by flooding. These findings suggest that irradiation with
millimeter waves on wheat seeds improves the recovery of plant growth from flooding
through regulation of glycolysis, ROS scavenging, and cell organization. In addition,
millimeter-wave irradiation may promote tolerance against flooding through the regulation
of auxin contents in wheat.

Supplementary Materials: The following supporting information can be downloaded at: https:
/ /www.mdpi.com/article/10.3390/ijms231810360/s1.
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