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Abstract: Phagocytosis is crucial in tumor surveillance and immune function. The association
between phagocytosis and the outcomes of breast cancer patients has not been well-determined. In
this study, data were downloaded from the cancer genome atlas (TCGA) and gene expression omnibus
(GEO) databases to investigate the role of phagocytosis in breast cancer. Data from the TCGA and
GEO databases were used to investigate the prognostic role of phagocytosis in breast cancer. Then, we
performed pathway enrichment analysis, copy number variation (CNV) and single-nucleotide variant
(SNV) analyses, immune infiltration analysis, calculation of tumor purity, stromal score, and immune
score, and consistent clustering. We also constructed a phagocytosis-regulators-based signature
system to examine its association in survival and drug response. The genomic and expression
differences in the phagocytosis regulators in breast cancer were systematically analyzed, explaining
the widespread dysregulation of phagocytosis regulators. Using the investigated association of
phagocytosis regulators with the prognosis and tumor immune environment, we constructed a
prognostic model based on phagocytosis regulators. We discovered that patients with high risk
scores had a poor prognosis and were negatively associated with immune functions. The model had
preferential predictive performance and significantly consistent drug-resistance prediction results.
Our findings suggest that the phagocytosis-factors-based scoring system can be used as a novel
prognostic factor, serving as a powerful reference tool for predicting prognosis and developing
methods against drug resistance.
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1. Introduction

In the past ten years, the research on the heterogeneity of breast cancer has made
great progress, and a series of treatment methods has been proposed for breast cancer
with different molecular phenotypes [1].The classification of luminal A (hormone receptor
positive (HR+)/human epidermal growth factor receptor-2 (HER2)—, and low levels of pro-
tein Ki-67), luminal B (ER+, progesterone receptor (PR)+/— ,HER2—), luminal B-like(ER+,
PR+/—,HER2+), HER2-enriched (HR—/HER2+), and triple-negative breast cancer(TNBC)
(HR—/HER2-) has entered clinical guideline [2]. The different classification methods of
breast cancer are unsuitable for all treatment strategies. Therefore, more novel classification
methods have been proposed, but consensus has not yet been reached.

At the same time, the emergence of immunotherapy, especially immune checkpoint
inhibitors, has provided a new way of thinking for treating solid tumors [3]. Although
the clinical application of this therapy can bring significant curative effects to tumor pa-
tients and improve survival, a considerable number of patients still fail to benefit from
immunotherapy for some reason [4]. Moreover, there are currently no effective methods
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for the application and efficacy evaluation of immunotherapy [5]. Therefore, improving
the efficacy, reducing the threshold, and evaluating the timely efficacy and response of
immunotherapy remain significant issues.

The phagocytosis of macrophages is an important part of the immune regulation of
the immune system, and the severe dysfunction of macrophages also participates in the
occurrence and development of tumors. Here, by analyzing the phagocytosis regulators of
phagocytes, we constructed a signature that can predict patient prognosis and immunother-
apy efficacy, and we used unsupervised machine learning methods to verify the accuracy
and application value of this signature.

2. Results
The process of this study is presented in Supplementary Figure S1.

2.1. Phagocytosis Regulators

Here, we extracted 29 phagocytosis factors from two articles of PMID: 34497417 and
PMID: 30397336 [6,7]. In addition, we continued to select genes of two terms, GOBP-
REGULATION OF PHAGOCYTOSIS and G OBP MACROPHAGE ACTIVATION from
MSIGDB, as phagocytosis regulators. A total of 214 genes were obtained from the above
four sources (Supplementary Table S1).

2.2. Phagocytosis Regulators Regulate the Involvement of Macrophages in the Occurrence and
Development of Breast Cancer

First, we focused on phagocytosis regulators that regulate macrophage phagocyto-
sis. Using the immune cell signature genes in the literature PMID28052254, we extracted
macrophage signature genes [8]. Based on the macrophage gene set, we applied ssGSEA to
analyze the enrichment of TCGA-BRCA samples on the macrophage gene set. After obtain-
ing the macrophage enrichment score, using Pearson correlation analysis, we calculated
the correlation between phagocytosis factors and the macrophage enrichment score. At the
same time, the samples were grouped with high and low expression levels based on the
median expression of phagocytic factors, and the differences in enrichment scores between
high- and low-expression groups were counted. Among them, there were 28 genes with a
correlation coefficient>0.5 and p-value <0.001 (Table 1, Figures 1 and S2).

Table 1. Macrophage enrichment score was correlated with phagocyte factor.

Gene Rho p-Value

FCERIG 0.74895132 7.40 x 107197
ITGB?2 0.73940791 2.53 x 107187
CD300LF 0.73874914 8.16 x 1018
NCKAPIL 0.71075865 1.44 x 10168
HAVCR2 0.7035216 1.01 x 10163
CD74 0.69829577 2.59 x 107160
AIF1 0.69692323 1.98 x 10~1%
CIQA 0.68336001 5.75 x 10151
IL2RG 0.68100437 1.52 x 10~14°
DOCK?2 0.66931193 1.13 x 107142
TYROBP 0.66309895 3.77 x 107139
CST7 0.645747 9.63 x 107130
FGR 0.64426929 5.71 x 10~129
IL15RA 0.64193309 9.33 x 10128
SIRPG 0.62837445 6.41 x 107121
GFI1 0.61166452 6.03 x 107113
CTSC 0.60386822 2.19 x 107109
PTPRC 0.60132084 3.03 x 10108

HCK 0.59651545 4.05 x 10106
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Table 1. Cont.

Gene Rho p-Value

CD300A 0.58598236 1.39 x 10101
NMI 0.58263075 3.57 x 10~100
IL10 0.56451739 7.77 x 10~
FCN1 0.55325685 1.69 x 1088
FCGR2B 0.54762828 2.16 x 10786
SIRPBI 0.52573722 1.44 x 1078
C5AR1 0.52253377 1.80 x 10~77
C3 0.51378244 1.57 x 1074
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Figure 1. The correlation of expression of macrophage and macrophage enrichment score with

top 10 phagocytic factors. (A) DOCK2; (B) CD74; (C) CD300LF; (D) HAVCR?2; (E) AIF1; (F) ITGB2;

(G) C1QA; (H) NCKAP1L; (I) FCERIG; (J) IL2RG. (**** p < 0.0001).
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Next, we focused on the functions of phagocytosis regulators. Using the R package
clusterProfiler to carry out the enrichment analysis of GO and KEGG, we found that
the phagocytosis factors were not only in GOBP (Figure 2A), GOCC (Figure 2B), GOMF
(Figure 2C), or KEGG (Figure 2D). The pathway was not only significantly associated with
cell membrane surface related components, but also involved in numerous immune-related
gene sets. Enrichment analysis showed that phagocytosis factors were strongly correlated
with T cells and monocytes (Figure 2E).
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Figure 2. Functional enrichment analysis of phagocytic factors. (A) GOBP, gene ontology biological
process; (B) GOCC, gene ontology cellular component; (C) GOMF, gene ontology molecular function;
(D) KEGG, Kyoto Encyclopedia of Genes and Genomes; (E): set of immune-related genes.
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We focused on the expression of phagocytosis regulators in breast cancer versus
standard samples. We used the Wilcoxon test to assess the differences in the expression
of phagocytosis factors between tumor and normal samples. We found that 167 phago-
cytosis factors significantly differed in expression between tumor and normal samples
(Supplementary Table S2). Among them, 74 genes were highly expressed (Figure 3A) and
93 genes were lowly expressed (Figure 3B) in tumors. Furthermore, we found that both
the total phagocytosis factors and the differential phagocytosis factors between tumor and
normal could distinguish normal samples from tumor samples (Figure 3C,D).
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Figure 3. Differences in phagocytic factor expression between normal and tumor samples. (A) The
expression level was higher in tumors than in normal tissues, (B) the expression level in normal
tissues was higher than that in tumor samples, (C) PCA of all phagocytosis factors, and (D) PCA of
normal and tumor differentially expressed phagocytic factors. Note, “e ™ ™Per represents 10~ "umber”
(*p <0.05,** p <0.01,*** p < 0.001, **** p < 0.0001).

After that, we focused on genomic alterations in phagocytosis regulators. Based on
TCGA mutation and CNV data, we obtained the overall mutation (Figure 4A) and CNV
(Figure 4C,D) profiles of phagocytosis factors. Among all 235 phagocytosis factors, SNV
occurred in 167 genes (Figure 4A, the top 20 genes with mutation rate). In terms of CNV,
206 genes showed CNV (Figure 4D). All mutated genes also developed CNV (Figure 4C).

Next, we performed unsupervised clustering of TCGA-BRCA samples using the
factors used for phagocytosis. We found that the samples could be divided into two
categories (Figure 5A). There were significant differences between the different classes
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(Figure 5D). Phagocytosis factor expression was generally higher in cluster 2 than in
cluster 1, while there were no significant differences in the clinical characteristics between
the two classes (Table 2). However, there were significant prognostic differences between
the two subgroups (Figure 5F). In normal-like samples, cluster 1 occupied the majority, and

in the immune subtype of C1, cluster 1 occupied the majority (Figure 5G).
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Figure 5. Sample clustering based on phagocytic factors. (A—C) Clustering results and parameters
of unsupervised clustering, (D) PCA of phagocytosis factors, (E) expression of phagocytic factors
and distribution of related clinical information among different clusters, (F) prognostic differences
between the two groups, and (G) association of phagocytic subsets with related clinical features.

Table 2. Statistical test of clinical characteristics among subgroups.

Clinical Traits p-Value
Stage_T 0.91681495
Stage_N 0.75402253
Stage_M 0.82725935

Stage 0.60040185
Age 1
ER 0.77282999
PR 0.88454944
HER2 0.91681495
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Survival probability (%)

2.3. Identification and Characterization of Prognostic-Related Phagocytosis Regulators

First, based on TCGA expression data and survival information, a univariate Cox
screening of prognosis-related phagocytosis regulators was performed using the phagocy-
tosis regulators. Sixteen regulators of phagocytosis were identified that were significantly
associated with prognosis in univariate Cox analysis (Figure 6). Among the 16 regulators,
10 genes with significant prognostic values were selected to group the patients. The survival
outcomes based on ten of these factors were presented (Figure 7).

Univariate Cox Regression

Risk_factors HR p-value Significant
NR1H3 0.73(0.57-0.94) 0.012949 =
GFI1 - | 0.74(0.59-0.92) 0.007914 -
IFNG - | 0.74(0.58-0.94) 0.013446 "
SFTPD g 0.75(0.61-0.92) 0.007079 -
JUND - 0.78(0.64-0.96) 0.017797 *
JAK2 - 0.81(0.65-0.99) 0.042522 *
CS8T7 - 0.83(0.74-0.95) 0.005281 -
CD74 — 0.84(0.72-0.97) 0.015746 *
JUN - 0.85(0.72-0.99) 0.041116 *
IL2RG — 0.88(0.79-0.99) 0.033847 -
L33 — 0.89(0.8-0.99) 0.034772 *
ALOX15 - 1.2(1.07-1.36) 0.002823 -
GPR137B - 1.24(1.01-1.51) 0.036944 =
HSPD1 —_ 1.29(1.02-1.63) 0.030182 *
ATGS 1.29(1.01-1.65) 0.039643 *
SNX3 - 1.6(1.21-2.12) 0.000969 i
05 | s 2

Hazard ratio

Figure 6. Univariate Cox analysis of phagocytosis regulatory factors. (* p < 0.05, ** p < 0.01, *** p < 0.001).
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Figure 7. Of the 16 phagocytosis regulators, 10 genes had significant prognostic differences between
the samples grouped by the median expression level of high and low expression. (A) NR1H3; (B) GFI1;
(C) IENG; (D) SETPD; (E) JUND; (F) JAK2; (G) CST7; (H) CD74; (I) JUN; (J) IL2RG.

2.4. Signature Construction of Phagocytosis Regulators

Next, based on 16 prognostic-related genes, we used lasso Cox to remove redundant
genes and constructed a phagocytosis-regulation-related signature (Figure 8). Figure 8C
shows the screened genes and their coefficients. The details are displayed in Table 3.
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Figure 8. Lasso regression analysis. (A) The LASSO coefficient profile of OS-related genes, and an
imaginary perpendicular line was drawn at the value chosen by 10-fold cross-validation. It reflects
the association between coefficients and the L1 norm. (B) The tuning parameters (log A) of OS-related
proteins were selected to cross-verify the error curve. According to the minimal and 1-se criterion,
imaginary perpendicular lines were drawn at the optimal value (C) Lasso coefficients for 9 genes.

Table 3. Lasso coefficient.

Symbol Coefficient
JAK2 —0.1728154
IFNG —0.1576737

SFTPD —0.1945068
SNX3 0.46774561

ALOX15 0.18521293
GFI1 —0.1071469
JUND —0.1352052

IL33 —0.0164065

NR1H3 —0.0237538

2.5. The Phagocytosis Regulator Signature Is Related to the Prognosis and Clinical Characteristics
of Patients

For the nine significant prognostic genes reported by the lasso regression analysis
outlined above, we performed energy efficiency analysis and prognostic power analysis on
the training and validation sets. The samples were divided into high- and low-risk groups
based on the median cutoff of the signature, and we found that in the TCGA dataset, these
nine genes had significant prognostic power (Figure 9A), and the AUC at 1-3 years were all
higher than 0.698 (Figure 9B). In the GSE20685, GSE21653, GSE25066, GSE96058 datasets,
all nine of these genes had significant prognostic power (Figure 9F-V).

Based on the clinical features of the training set TCGA (Figure 10A-N) and the vali-
dation set GSE20685 (Figure 100-R), the differences in the signatures of different clinical
features are shown in Figure 10.

The signature was validated as an independent prognostic factor using univariate and
multivariate Cox analyses (Figure 11).
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Figure 9. Identification of 9 genes with prognostic ability. (A-E) TCGA; (F-J), GSE20685; (K-O),
GSE21653; (P-T), GSE25066; (U-Y), GSE96058; (A,F K,P,U), OS analysis; (B,G,L,Q,V), 1, 2, and 3 year
AUC; (CHM,R,W), sample risk core statistics (top), survival time and sample risk core statistics
(bottom). (D,I,N,S,X) Expression heat map of 9 genes; (E,J,O,T,Y) expression difference between
high and low-risk core groups of 9 genes. (* p < 0.05, ** p < 0.01, *** p < 0.001, **** p < 0.0001, and ns
p value > 0.05).
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Figure 10. Clinical feature signature differences: (A-N) TCGA dataset; (O-R), G SE20685 dataset.
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Figure 11. Signature is an independent prognostic factor of survival.
For the clinical features that were significant in both univariate and multivariate Cox
analyses in the above analysis, the clinical features were grouped in the TCGA dataset to
explore the prognostic efficacy of the signature (Figure 12).
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Figure 12. Predictive efficacy analysis of the signature.
The results showed that the nomogram had high precision in the calibration analysis.
In the training (Figure 13A) and validation (Figure 13F) cohorts, the nomograms showed
the strongest survival predictor compared with the other clinicopathological features
(Figure 13B,G).
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Figure 13. Nomogram and model performance. (A-E) TCGA dataset; (F-J) GSE20685 dataset.
(A,F) Nomogram analysis of the predictive power of different clinical indicators and risk score;
(B,G) ROC curves of different clinical features and risks core predicting OS. Model calibration curves
for 1 year (C,H), 3 years (D,I), and 5 years (E,J).

2.6. The Phagocytosis Regulator Signature Is Related to the Patient’s Immune Microenvironment
and Immunotherapy

We first focused on the association of phagocytosis regulator signatures with immune
scores and immune infiltrating cells. Using the estimate package, we calculated the immune,
matrix, and estimate scores for TCGA-BRCA samples. For the matrix, immune, or estimate
score, there was a significant negative correlation with the risk score of the phagocytosis
regulator signature (Figure 14A). We used six methods, i.e., timer, cibersort, quantiseq,
MCP counter, XCell, and EPIC analysis, to assess immune cell infiltration in TCGA-BRCA
samples. We found significant infiltration differences with regard to macrophages between
samples grouped with high and low phagocytosis regulator signatures in all four methods,
and the trends in immune infiltration analyzed by all methods were consistent with the
trend in immune scores reported by the estimate algorithm (Figure 14B).
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Figure 14. Immune correlates of phagocytosis factor signatures. (A) Correlation between risk score,

matrix score, immune score, and estimate score; (B) differences in immune cell infiltration between

risk score groups; (C) immune checkpoints; (D) correlated expression of proinflammatory factors,

phagocytosis factors, and risk score; (E) correlation of phagocytosis factor risk score with drug
treatment response in the immunotherapy cohort. (* p < 0.05, ** p < 0.01, *** p < 0.001, *** p < 0.0001,

and ns p value > 0.05).
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Subsequently, using the immune checkpoint genes, PDCD1, PD-L1 (CD274), and
C TLA-4 and proinflammatory factors, interleukin-1 alpha (IL-1 alpha), IL-1 3, IL-6,
IL-8/CXCLS, and IL-18, we explored the high and low expression of genes included
in the signature based on the high and low groups of signatures. We also analyzed the
differences in the expression of immune checkpoints (Figure 14C) and the expression of
pro-inflammatory factors (Figure 14C,D). We found that there were significant differences
in the expression of the above genes between the high and low signature groups and the
groups with high versus low gene expression.

Furthermore, in clear cell renal cell carcinoma (PMID32472114) [9], we analyzed the
differences between the high and low signature groups and the drug response before and
after treatment. We found that there were significant differences in the risk scores among
different groups in response to the drug, and the risk scores in the nonresponse group
were significantly higher than that in the responsive group (Figure 14E left). In the high-
and low-risk score groups, the number of patients with different drug responses was also
significantly different (Figure 14E right, chi-square test, p < 0.0001).

2.7. Genomic Alteration of the Phagocytosis Requlator Signature and Drug Response

Based on the mutation data of TCGA-BRCA, we analyzed the mutation differences in
the high- and low-risk score groups. We observed that the mutation rate of the TP53 gene
was significantly higher in the high-risk group than in the low-risk group (Figure S3A).
After analyzing CNV data, we found that the incidence of CNV was significantly higher
in the high-risk group than in the low-risk group (Figure S3B,C). In the statistical analysis
using TMB, there was no significant prognostic difference between the high- and low-risk
groups divided by the median TMB (Figure S3D). Still, there was a significant difference
in the risk score between the two groups. The risk score of the high TMB group was
significantly higher than that of the group with a low TMB (Figure S3E).

Next, we explored the relationship between risk score and drug tolerance using GDSC
and CCLE data. We performed Spearman correlation analysis on risk score and IC50 values
in GDSC and CCLE data, respectively. By counting the Spearman correlations between
risk score and IC50 values in both databases >0.2 or <—0.2, and the p for drugs < 0.05,
we finally identified 27 drugs associated with THE risk score. Notably, none of the drugs
showed a negative correlation between IC50 and risk score, suggesting that risk scores
have consistent universality in predicting chemotherapeutic drug resistance (Figure S3F).

3. Discussion

The classical adaptive response of macrophages includes tolerance, initiation, and a
wide range of activation states, including M1 or M2 [10,11]. Macrophages produce key
immunosuppressive mediators, including cytokines (IL-10), enzymes involved in amino
acid metabolism (arginase), prostaglandins, and triggers of immune checkpoint blockade
in T and NK cells (e.g., PD-L1,VISTA) [12-14]. Macrophage phagocytic factor is an essential
component of the complex gene network that controls macrophage polarization, activa-
tion, and plasticity [15-17]. The combination of macrophage phagocytic factor and novel
immunotherapeutic regimens shows great promise for treating breast cancer [18,19]. There-
fore, it may be advantageous to identify macrophage phagocytic-factor-related biomarkers
that help distinguish breast cancer patients premised on the benefits they derive from
immunotherapy. Here, we demonstrated that the expression of macrophage phagocytic
factors is closely associated with the prognosis and tumor microenvironment of breast
cancer. We classified two macrophage phagocytic factor subgroups by unsupervised cluster
analysis, and found that the high expression of macrophage phagocytic factor was associ-
ated with favorable clinical outcomes and a high level of immune cell infiltration. Moreover,
we constructed and validated a prognostic risk signature with nine selected macrophage
phagocytic factor genes, stratifying breast cancer patients into high- and low-risk cohorts.
In addition, this risk signature showed a high predictive value in terms of OS and drug
resistance to chemotherapy as an independent prognostic indicator for breast cancer. The
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macrophage phagocytic factor gene involved in this study was identified through an ex-
tensive literature survey, and a total of 214 related genes were extracted. In our analysis,
28 genes were related to macrophage enrichment, and the other 167 phagocytic factors
showed significant expression differences between tumor and normal samples.

TME includes immune system components such as macrophages and lymphocytes,
blood-vessel-forming cells, fibroblasts, myofibroblasts, mesenchymal stem cells, adipocytes,
and the extracellular matrix (ECM) [20]. Among these cells, tumor-associated macrophages
(TAM) are the main components of TME in breast cancer [21]. Macrophages show a high
degree of plasticity in response to various external signals and are involved in congenital
and adaptive immune responses to control numerous factors of the TME [22]. Clinico-
pathological studies have shown that TAM accumulation in tumors is associated with poor
clinical outcomes. In human breast cancer, a high TAM density is associated with poor
prognosis [23,24]. Over the years, studies on the role of TAM in the progression of breast
cancer have determined that TAM can induce angiogenesis, reshape the tumor extracellular
matrix to aid invasion, mimic breast cancer cells to evade the host immune system, and
recruit immunosuppressive white blood cells into the tumor microenvironment [25,26].
These observations make TAM an attractive target for therapeutic interventions by target-
ing various aspects of its function. In line with this evidence, our study identified two
macrophage phagocytic factor subgroups by consensus clustering, and the MPPF-high
subgroup was associated with the immune-hot phenotype. In contrast, the MPPF-low
subgroup was referred to as the immune-cold phenotype.

4. Methods and Materials
4.1. Data Download

This project involved two parts: a training set and a validation set. The training set
included the TCGA-BRCA dataset, and the validation set contained data from four GEO
datasets: GSE20685, GSE21653, GSE25066, and GSE96058. In addition, the immunotherapy
dataset EGAS00001004353 was prepared for later analysis.

We used the TCGA-BRCA dataset to collect transcriptomic, mutational, copy number
variation, and informative clinical data. The data source was Xena [27], and the download
address was https:/ /portal.gdc.cancer.gov/ (accessed on 16 March 2022). Log2 (TPM + 1)
was used for all analyses involving TCGA transcript data. GEO data were downloaded
from https://www.ncbinlm.nih.gov/geo/ (accessed on 16 March 2022) [28]. Dataset
EGAS00001004353 was downloaded from sub.ega-archive.org/datasets/ (accessed on
16 March 2022) [29].

4.2. Data Overview

The data are summarized in Table 4.

Table 4. The details of database and survival outcomes in this study.

Platform Access Total Overall

GEO Database Platform Number Number Survival
Alive:891

TCGA-BRCA RNA-Seq 1211 Dead:135
GSE20685 Affymetrix Human Genome U133 Plus 2.0 Array GPL570 327 %:;3%@4

. Alive:169

GSE21653 Affymetrix Human Genome U133 Plus 2.0 Array GPL570 266 Dead:83
GSE25066 Affymetrix Human Genome U133A Array GPL9Y% 508 glel:deﬁi
. . Alive:2937

GSE96058 MNlumina HiSeq 2000 3409 Dead:336
EGAS00001004353 RNA-Seq - 726 Alive:422

Dead:463
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4.3. Pathway Enrichment Analysis

Pathway enrichment analysis was performed using the R package clusterProfiler [30],
and ssGSEA enrichment was performed using the GSVA package [31] with default parameters.

4.4. Analysis of CNV and SNV

SNV analysis was performed based on the R package maftools package [32]. The
mutation situation of the TCGA-BRCA dataset was analyzed using the default parameters,
and the statistics of the mutation results were directly generated by the oncoplot function
of the maftools package.

CNV was performed using Gistic2 [33]. The specific parameters used were set as
follows: ta:0.1, armpeel:1, brlen:0.7, cap:1.5, conf:0.75, td:0.1, enegistic:1, gcm:extreme, js:4,
maxseg:2000, qvt:0.25, rx:0, savegene:1.

4.5. Immune Infiltration Analysis

Samples were subjected to immune infiltration analysis using the R packages C IBER-
SORT [34], Quantiseq [35], Xcell [36], EPIC and MCPCounter [37]. All analysed parameters
are default parameters. The timer was performed using the online tool Timer 2.0.

4.6. Calculation of Tumor Purity, Stromalscore, Immunescore

Tumor purity, stromal score, and immune score were calculated using the R package
estimate [38]. Here, we ran it with the parameter platform = “illumine”.

4.7. Consistent Clustering

Hub-based mRNA consensus clustering of tumor samples in the TCGA-BRCA dataset
was performed using the consensusClusterPlus package [39]. For the TCGA-BRCA data, we
used the R package GeoTcgaData to perform TPM conversion on the count data. Consistent
clustering was performed using the pam method, Canberra distance and seed =1, and k.
max = 5 parameters.

4.8. Construction of Immune Infiltrating Cell Marker Scoring System Is Capable of
Evaluating Prognosis

We used the cv.glmnet function of the glmnet package [40] to perform lasso analysis
on the samples and the corresponding genes. The parameter used in Lasso analysis was
family = “cox”, and the level of significance was based on p < 0.05. Genes with coefficients
not equal to 0 were screened and included in the final model. We defined the risk score as
the sum of the product of the lasso coefficient and the gene expression level.

4.9. KM Survival Analysis

KM survival analysis and plotting were performed using the R packages survival and
ggsurvplot (https:/ /CRAN.R-project.org/package=survminer (accessed on 16 March 2022)).
Analysis was performed using default parameters. AUC was analyzed using the R package
timeROC (https://CRAN.R-project.org/package=timeROC (accessed on 16 March 2022)).

4.10. Correlation Analysis between Risk Score and Drug Sensitivity

We downloaded the drug sensitivity data for approximately 1000 cancer cell lines from
Genomics of Cancer Drug Sensitivity (GDSC) (cancerrxgene.org). Taking the antitumor
drug IC50 in cancer cell lines as the drug response index, we used Spearman correlation anal-
ysis to calculate the correlation between drug sensitivity and the risk score and considered
the absolute value of Rs > 0.2 and p-value < 0.05 as significantly related. The same approach
was also performed on the CCLE data (https://sites.broadinstitute.org/ccle/datasets
(accessed on 16 March 2022)).

4.11. Principal Component Analysis (PCA) Analysis

PCA analysis was performed using the R built-in function prcomp.
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4.12. Drawing

Circus diagrams were drawn using the R package circlize (https://CRAN.R-project.
org/package=circlize (accessed on 16 March 2022)). Sankey diagrams were drawn using
the R package ggalluvial. Nomograms were made using the R package nomogram [41].

4.13. Model Calibration Curve

Calibration curves were analyzed using the R package rms [42].

4.14. Statistical Tests

The Wilcoxon test was used for comparison between groups. The validity of the model
was verified with the receiver operating characteristic (ROC) curve. We divided the samples
by the median risk score. Survival curves were drawn using the Kaplan—-Meier method
for predictive analysis, and the log-rank test was used to determine the significance of
differences. To assess whether the risk score was an independent predictor, we performed a
multivariate cox regression model analysis with age, sex, and stage as variables. Correlation
analysis was performed using Spearman or Pearson correlation. All statistical analyses
were two-sided, and p < 0.05 was considered statistically significant (* p < 0.05, ** p < 0.01,
***p <0.001, *** p < 0.0001, and ns p value > 0.05).

5. Conclusions

In conclusion, in our study, we constructed a meaningful signature based on the
macrophage phagocytic factor genes for breast cancer patients, which showed significant
value in predicting the OS of breast cancer patients. These results indicate the need for
future research on and immune-therapy-based interventions for breast cancer patients.
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