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Abstract: Melanoma is considered a multifactorial disease etiologically divided into melanomas
related to sun exposure and those that are not, but also based on their mutational signatures, anatomic
site, and epidemiology. The incidence of melanoma skin cancer has been increasing over the past
decades with 132,000 cases occurring globally each year. Marine organisms have been shown to be
an excellent source of natural compounds with possible bioactivities for human health applications.
In this review, we report marine compounds from micro- and macro-organisms with activities
in vitro and in vivo against melanoma, including the compound Marizomib, isolated from a marine
bacterium, currently in phase III clinical trials for melanoma. When available, we also report active
concentrations, cellular targets and mechanisms of action of the mentioned molecules. In addition,
compounds used for UV protection and melanoma prevention from marine sources are discussed.
This paper gives an overview of promising marine molecules which can be studied more deeply
before clinical trials in the near future.
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1. Introduction

Around 70% of the planet’s surface is covered by water [1] and marine environments
have been shown to be characterized by a huge biological and chemical diversity. Over the
past 50 years, approximately 38,662 marine natural products (MNPs) have been reported
from marine species (https://marinlit.rsc.org/; accessed on 19 May 2022). Considering
the increasing number of human diseases and antibiotic resistant infections, the scientific
community has moved its attention to marine biodiversity to find new potential drugs.
This interest is confirmed by the increasing numbers of scientific publications on marine
natural products. Looking for “marine natural products” in the public database PubMed,
there are 13,073 resulting publications, with an increasing trend over the years (Figure 1a).
Looking for “melanoma” and “marine natural products” in the public database PubMed,
the same trend is observed (accessed on 14 May 2022; Figure 1b).

According to the World Health Organization (WHO), the incidence of melanoma skin
cancer has been increasing over the past decades with 132,000 cases occurring globally
each year (https://www.who.int/news-room/questions-and-answers/item/radiation-
ultraviolet-(uv)-radiation-and-skin-cancer; accessed on 16 May 2022). More solar UV
radiation is reaching the Earth’s surface due to ozone level depletion, and the WHO reports
an estimation of an additional 300,000 non-melanoma and 4500 melanoma skin cancer cases
for each 10% decrease in ozone levels, resulting in a health and socio-economic problem [2].

A study published in 2020 in the International Journal of Cancer reported that 91%
of all melanomas in United States and 97% in Hawaii were dependent on UV radiation,
and first of all the sun radiation. Melanomas are also caused by genetic predisposition ad
other phenotypic factors such as fair skin and many moles [3]. Another study published in
2020 in Nature Genetics, based on 37,000 melanoma cases in different world populations,
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demonstrated that there was an interaction of genetic predisposition and UV ray dam-
age [4] (https://www.airc.it/cancro/prevenzione-tumore/il-sole/rischi-del-sole, accessed
on 1 August 2022).
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As reported by the National Cancer Institute (https://seer.cancer.gov/statfacts/html/
melan.html; accessed on 16 May 2022), estimated new cases in 2022 are 99,780, with
7650 estimated deaths. According to the “Melanoma Tumors” section of the 4th edition
of the WHO classification of skin tumors [5,6], melanomas are divided into those related
to sun exposure and those that are not. As for sun-related melanomas, there are super-
ficial spreading melanomas, lentigo maligna and desmoplastic melanomas. Non-solar
malanomas are acral melanomas, melanomas in congenital nevi, melanomas in blue nevi,
Spitz melanomas, mucosal melanomas and uveal melanomas. For epidemiology, clinical
features, histopathology and differential diagnosis of each typology, please see the review
by Elder and co-workers [5]. At the time of the diagnosis, the patients are generally treated
by surgical excision of the primary tumor [2]. Unfortunately, very often patients develop
metastases [7].

Melanoma is considered a multi-factorial disease, and the most well-known contribut-
ing factors are genetic susceptibility, familiar history and external stimuli, mainly sun
exposure (due to its genotoxic effect) and a history of sunburn, as well as artificial UV
exposure with tanning beds or psoralen-UVA radiation photochemotherapy [2,8–10]. The
highest risk is often associated with histories of sunburn in childhood [11].

2. Marine Microorganisms
2.1. Bacteria

In 2012, Yang and collaborators isolated 131 strains of actinomycetes from deep waters,
collected from a depth of 800 m in Sagami Bay, Japan. They selected the AKA32 strain
as a producer of cytotoxic compounds against murine cancer cells. They isolated three
compounds from AKA32: the aromatic polychete akazamicin, actino-furanone C and N-
formilan-tranilic acid. All three compounds showed cytotoxicity against the murine cell line
of melanoma B16 with IC50 values of 1.7 µM, 1.2 µM and 25 µM, respectively [12]. In 2019,
Schneider et al. [13], discovered that two bacterial isolates from the Barents Sea, belonging to
the genus Algibacter, produced extracts with antibacterial and anticancer activity. They saw
that both extracts had the same active ingredient identified as lipid 430. The effects of lipid
430 were tested against three human cell lines, melanoma A2058 cell line, HT29 colon cancer
cell line and MRC5 lung fibroblast cell line. The compound was tested at concentrations
of 233 µM, 175 µM, 116 µM, 58 µM, 23 µM and 12 µM. For the melanoma cell line a dose-
dependent cytotoxic effect was observed, with IC50 175 µM but there was no significant
effect against the normal cell MRC5 [13]. In another work [14], anticancer and antimalarial
assay were performed on a Streptomyces species (S.4) isolated from the marine sponge
Xestospongia muta collected from Florida Keys. Active extracts from four Streptomyces
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isolates (S.1, S.2, S.3, S.4) were identified. The two extracts S.1 and S.2 have been found
to have anti-proliferative activity with an IC50 of 2 µg/mL and 3.5 µg/mL, respectively,
while the two extracts S.3 and S.4 showed antimalarial activity with an IC50 of between
2.5 µg/mL and 5 µg/mL for S.3 and an IC50 of 10 µg/mL for S.4. The S.3 extract showed
both antiproliferative activity with an IC50 of 3.4 µg/mL and antimalarial activity with an
IC50 of about 4 µg/mL. In particular, in the S.1 and S.2 extracts, the cytotoxic compounds
nonactin, monactin, dynactin, and toyocamycin were found, and identified as responsible
for the anti-proliferative activity. The compounds nonactin, monactin and dynactin were
found to inhibit the proliferation of A2058 melanoma cells with IC50 of 0.26 µM, 0.02 µM
and 0.02 µM, respectively, A2780 ovarian -cancer cells with IC50 of 0.2 µM, 0.02 µM and
0.02 µM, respectively, and H553-T non-small cell lung cancer cells with IC50 of 0.1 µM,
0.01 µM and 0.01 µM, respectively. Furthermore, the compounds monactin and dynactin
showed some selectivity in melanomas; in fact, they were 6.5–13 times more active against
the A2058 melanoma line than the A2780 ovarian cancer cell line [14]. Myxobacteria,
has recently been recognized as a potential source of new secondary metabolites such
as polyketides and ribosomal-free peptides, as well as their hybrid compounds [15,16].
Myxobacteria of marine origin are particularly attractive [17] because their gene sequences
of polyketide synthase are unique. From a marine myxobacteria, Enhygromyxa sp. three new
compounds were isolated: enigromic acid, deoxy-enigrolides A and deoxy-enigrolides B.
Of these, enhygromic acid showed cytotoxicity against melanoma B16 cells with IC50 of
46 µM, comparable to that of the chemotherapy agent paclitaxel (57 µM), but it did not
show activity against Hela-S3 cell (IC50 > 30 µM) [18].

Phenazine-1-carboxylic acid (PCA) has been produced, purified and characterized
by the marine bacterium Pseudomonas aeruginosa GS-33 [19]. This compound showed
a potent dose-dependent anticancer activity on SK-MEL-2 melanoma cells with a GI50
(growth inhibition of 50%) of 2.30 µg/mL (since a GI50 value of 10 µg/mL is considered to
demonstrate anticancer activity in the case of pure compounds [20]). PCA has also been
shown to have a protective effect against UV-B rays in evaluating its role in the enhancement
of SPF (sun protection factor). The SPF of the PCA solution in ethanol at concentration
25 ppm, 50 ppm and 100 ppm were 1.43, 2.55 and 4.73, respectively. The addition of PCA
(25 ppm, 50 ppm and 100 ppm) in the solution of two commercial sunscreens caused a
synergistic increase of 10–30% in their SPF [19]. Two new lyso-ornithine lipids have recently
been isolated from an arctic marine bacterium belonging to the genus Lacinutrix isolated
from the sponge Halichondria sp. collected in the Barents Sea. The bacterial extract was
fractionated into six fractions of which cytotoxic and antibacterial activities were tested
at a concentration of 50 µg/mL. Fraction 5 was active against the Gram-positive bacteria
Streptococcus agalactiae, Enterococcus faecalis and Staphylococcus aureus. Two lyso-ornithine
lipids were found in this fraction. The cytotoxicity of these two lyso-ornithine lipids was
evaluated against the human melanoma line A2058 at a concentration of 10 µM, 25 µM,
50 µM, 100 µM and 150 µM. A certain cytotoxic activity has been observed for one of
the two lipids against the melanoma cell line A2058, with a cellular survival of 23% at
50 µM and a cell survival of about 0% at 100 µM and 150 µM, while the other lipid showed
no activity against melanoma cells. The isolated compounds were tested on the normal
lung-fibroblast MRC-5 cells and neither of them were active against normal cells [21].

2.2. Fungi

In 2014, Zhang et al. [22] isolated a derivative of sansalvamide A, the H-10, from the
marine fungus belonging to the genus Fusarum. H-10 is a cyclic depsi-peptide that has
shown a dose-dependent antiproliferative effect on B16 murine melanoma cells. The latter,
treated with 50 µM of H-10, underwent morphological changes typical of the apoptotic
process [22]. An alkaloid isolated in 2015, Penicitrinine A, from the marine fungus Penicilium
citrinum was tested on A735 human malignant melanoma cells. Twenty-three tumor
cell lines were treated with increasing concentrations of penicitrinine A for 48h, and the
treatment showed inhibition of proliferation. The most sensitive cell lines were those
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of malignant melanoma A735 with an IC50 of 20.12 µM. They then evaluated with the
Real-Time Cell Analysis (RTCA) test the inhibition of the specific proliferation of A735 and
showed that this inhibition was related to the induction of apoptosis because, following
treatment with 5 µM, 10 µM, 20 µM penicitrinine A, the cells began to shrink, round
and fractionate, typical signs of apoptosis. The phenomenon was further confirmed by
the staining test Annexin V-PI. The authors concluded that this alkaloid could favor the
inhibition of the metastatic process in cancer cells [23].

Very recently, another compound Chlovalicin B was isolated from the marine fungus
Digiratispora marina, taken from driftwood harvested in Vannoya in Norway in 2010 [24].
This compound exhibited mild cytotoxic activity against human A2058 melanoma cells with
approximately 50% survival at 50 µM. No activity was observed against human normal
lung fibroblasts MRC-5 at 50 µM, while mild activity was also seen in mouse melanoma cells
B16 with an IC50 of 37 µM. The latter data may indicate that chlovalicins affect a common
molecular target in melanoma cells [25]. In 2021, Jenssen et al. [26] discovered and isolated
a new secondary metabolite, lulworthinone, from a slow-growing marine mushroom
extract belonging to the Lulworthiaceae family. The compound was tested on A2058
melanoma cells, HepG2 hepatocellular carcinoma cells and normal lung fibroblast MRC-5
cells to evaluate its antiproliferative activity at concentrations ranging from 6.25 µg/mL
to 100 µg/mL. The antiproliferative activity was observed against all cell lines tested. At
concentrations of 20 µg/mL, 15 µg/mL, and 12.5 µg/mL the lulworthinone did not display
toxic effect, with 100% cell survival. In the same year, Fan et al. [27], tested the fungal crude
extract of Pyrenochaetopsis sp. FVE-001 on different tumor cell lines. This is an endophytic
fungus isolated from thallus of brown seaweed Fucus vesiculosus. Three new compounds
have been isolated from this fungus: pyrenosetin A, pyrenosetin B and pyrenosetin C,
as well as a fourth compound already known, phomasetin. These three pyrenosetins
show unique structures of decalinoylspyrotetramic acid characterized by a trans-decalinic
ring, a spiro system fused with a carbonyl unit (cyclopentanone) and a terminal part
of tetramic acid. The first two both showed antitumor activity, although pyrenosetin A
had higher antitumor activity and lower cellular toxicity then pyrenosetin B. The third
compound, pyrenosetin C, showed a low IC50 in A375 cells, being inactive [27]. The natural
bioactive products with trans-decalinic ring are common in fungi (e.g., Fusarium, Penicillium
and Alternaria) [28]. The crude extracts were tested at a concentration of 100 µg/mL on
5 human tumor cell lines: HT29, A374, A549, HCT116, MDA-MB231 in addition to the
HaCaT immortalized human keratinocyte line used as a control. Regarding results on the
human melanoma cell line A375, the pyrenosetic A had an antitumor activity with an IC50
of 2.8 µM, pyrenosetic B also showed an antitumor activity with an IC50 of 6.3 µM, while
pyrenosetic C and phomasetin had lower IC50 values of 140.3 µM and 37.3 µM, respectively.
Toxicity was evaluated on HaCaT cells, where they noted that the IC50 of pyrenosetic A,
pyrenosetic C and phomasetin compounds on the normal cells, were similar to those of
melanoma cells, indicating that the compounds are not selectively toxic. On the other hand,
the pyrenosetic B showed a lower toxicity value on HaCaT with IC50 of 35.0 µM, indicating
a slightly better selectivity than the other three metabolites of around 5.6 (value calculated
by dividing the IC50 against HaCaT cells by the IC50 against melanoma cells A375).

2.3. Microalgae

Although the use of microalgae is very promising, in some cases a problem is that
the rigid cell walls of microalgae need to be destroyed for the extraction of their bioactive
compounds. Jabeen et al. [29], have evaluated the effect of enzymatic destruction of cell
walls with cellulase and lysozyme, which was shown to be more advantageous than other
conventional pre-treatment techniques, on the anti-tumor activity of microalgal extracts.
They have evaluated the anticancer effect of the extract in the common cancer cell lines
including the melanoma cell line MDA MB-435. The samples treated with lysozyme per-
formed slightly better than cellulase-treatment on MDA MB-435 tumor cells [29]. However,
other methods are also used for cell breakage, such as the use of sonication [30–33].
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Oxylipins are metabolites derived from the lipid peroxidation [34]. The oxylip-
ins 13-HOTE and 15-HEPE, derived from the microalga Chlamydomonas debaryana and
Nannochloropsis gaditana, respectively, have been investigated for their activity on melanoma
cancer cell line UACC-62. They showed high cytotoxicity on UACC-62 cells with IC50 val-
ues of 71.9 ± 3.6 µM for 13-HOTE and 53.9 ± 6.4 µM for 15-HEPE. In particular, the oxylipin
treatment decreased the level of ATP in UACC-62 in a dose-dependent manner. These ef-
fects were magnified when oxylipins were combined with the glycolysis inhibitor 2-DG [35].
Lauritano and collaborators [30] found that raw extracts of the diatom Skeletonema marinoi
(clone FE60) were active against A2058 melanoma cells when tested at 25–100 µg/mL.
In particular, they cultivated the algae in replete medium and phosphate and nitrogen
starvation, and found that only the pellets deriving from the nitrogen-starvation condi-
tion showed anti-melanoma activity, suggesting that in this condition the algae were able
to produce, or produce more of, an amount of potential bioactive compound/s. At the
same time, the nitrogen-starvation derived extracts were not toxic on normal human lung
fibroblast MRC-5 or human hepatocellular liver carcinoma HepG2. Riccio et al. [31] also
found activity against A2058 melanoma cells by raw extracts and fractions of the flagellate
Isochrysis galbana cultured for 6 or 12 days, mainly at 100 µg/mL. However, some fractions
also showed activity on MRC-5 cells.

The anticancer effect of the Amphidinol 22 isolated from the dinoflagellate Amphi-
dinium carterae has been tested on the human skin melanoma cell line A2058. To test the
antitumor activity, a MTT assay was conducted. The compound showed cytotoxicity with
an IC50 of 16.4 µM [36]. Other Amphidinium spp. compounds have been previously reported
to have an antitumor activity, such as the cytotoxic macrolides amphinolide G and am-
phinolide H. These two compounds exhibited extremely strong cytotoxic activities on KB
human epidermoid carcinoma cells with IC50 values of 0.0059 and 0.00052 µg/mL, respec-
tively [37]. In a work of 2019 [38], four new cytotoxic compounds have been characterized,
three of them members of the macrolide amphidinolide family. Amphidinolides (AMPs)
and related compounds are a diverse class of more than 40 macrolides with extremely
high cytotoxicity against several carcinoma cell lines [39–41]. These were produced by
symbiotic unicellular microalgae of the genus Amphidinium. The four new compounds,
isolated from the invertebrate Stragulum bicolor, are: 5-membered macrolide amphidinolide
PX1 (AMP-PX1), amphidinolide PX2 (AMP-PX2), amphidinolide PX3 (AMP-PX3) and
the linear polyketide stragulin A. These compounds were tested between 8 µM to 8 nM
against the A2058 cells derived from the metastatic site (lymphonode). Among these, the
linear polyketide stragulin A was strongly and selectively active on the highly invasive
melanoma cell lines A2058, with an IC50 of 0.18 µM after 48 h of treatment [38]. Water
soluble polysaccharides have been isolated and purified from the biomass of the green
alga Parachlorella kessleri HY1, and their immunomodulatory activities were evaluated
on splenocytes from homogenized spleens of healthy and melanoma bearing C57Bl/6
mice. The polysaccharide tested with immuno-spot assay increased the production of
INF-γ in the melanoma cells [42]. In another study, the sulpho-glycolipidic fraction of
the red microalgae Porphiridium cruentum has been tested [43]. This fraction had large
amounts of palmitic acid (26.1%), arachidonic acid (C20: 4ω-6, 36.8%), and eicopentaenoic
(C20:5ω-3, 16.6%) acids, and noticeable amounts of 16:1n-9 fatty acid (10.5%). These could
have a chemotherapeutic or chemoprotective potential, because they inhibited the growth
of human malignant melanoma cells M4 Beu. They clearly showed a strong efficacy of
the sulpho-glycolipidic fraction on all tested cell-lines, as demonstrated by IC50 values for
growth inhibition in the range of 20–46 µg/mL. The sulpho-glycolipidic fraction inhibited
growth-rates of both cytotoxic and cytostatic effects and blocked the cell cycle at a step
corresponding to a transient increase of cell metabolism [43]. Another compound that
showed anticancer activity on different human cutaneous melanoma cell lines is euplotin C,
a secondary metabolite isolated from the marine ciliate Euplotes crassus [44]. At molecular
levels, inhibition of ERK (extracellular signal-regulated kinase) and Akt (protein kinase B)
pathway was shown to be induced in melanoma A375 cells by euplotin C. In particular, ERK
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1/2 and Akt signaling pathways are often aberrantly activated in melanoma, inducing a
complex network involved in melanoma cell proliferation and metastasis formation [44–46].

Euplotins are a group of compounds isolated from the marine ciliate Euplotes crassus.
Subsequently, Carpi et al. [47] observed that euplotin C exerted cytotoxic effects on human
melanoma cells A375, MeWo and 501Mel with an efficacy on these cells 30 times stronger
than on normal cells’ HDF. Furthermore, euplotin C down-regulated the levels of B-Raf,
ERK1/2 and p-Akt, promoting apoptosis by activating the ryanodine promoter (RyR) [48],
and suppressed cell migration by inhibiting the ERK and AKT pathways [49]. Therefore, the
authors suggested that euplotin C could be used in the treatment of melanoma as a selective
activator of RyR, thus inducing apoptosis [47]. Finally, marine derived carbohydrates have
potential skin health benefits. The skin barrier function of microalgae extract was assessed in
anti-melanoma in vitro and in vivo studies [50]. These carbohydrates have been previously
reported in the review by Kim et al. in 2018 [51].

Compounds with activity against melanoma isolated from bacteria, fungi and microal-
gae reported in the current review are summarized in Table 1.

Table 1. Marine microorganism derived compounds or extracts with activity in vitro or in vivo
against melanoma. Pre-clinical studies showing marine-derived compounds with anti-melanoma
activity in vitro/in vivo, mechanism of action (when known), marine organisms and experimental
conditions are reported for each compound. Inhibitory concentration of 50% (IC50); growth inhibition
of 50% (IG50); extracellular signal-regulated protein kinase (ERK1/2); Phosphorylated protein-kinase
B (p-Akt); adenosine triphosphate (ATP); Ryanodine promoter (RyR); Not available (N/A); B-cell
lymphoma 2 (Bcl-2); bcl-2-like protein 4 (Bax).

Compound Marine Organism In Vitro/In Vivo
IC50/GI50/LC50

or Tested
Concentration

Administration Mechanism of Action Ref.

Bacteria

Aromatic polychete
akazamicin

Actinofuranone C
N-formilantranilic acid

AKA32 strain of
actinomycetes
Nonomuraea sp.

In vitro on
melanoma cell B16

IC50 1.7 µM
IC50 1.2 µM
IC50 25 µM,

In cell-culture media N/A [12]

Lipid 430 Genus Algibacter
In vitro on
melanoma
cell A2058

IC50 175 µM In cell-culture media Inhibition of
cell proliferation [13]

Enigromic acid
Deoxyenigrolides A
Deoxyenigrolides B

Mixobacteria
Enhygromyxa sp.

In vitro on
melanoma cell B16 IC50 46 µM In cell-culture media N/A [18]

Phenazine-1-carboxylic
acid (PCA)

Pseudomonas
aeruginosa GS-33.

In vitro SK-MEL-2
melanoma cells

GI50 of 2.30 µg/mL
since GI50 value of

10 µg/mL
In cell-culture media Reduced cell density

Induction of apoptosis [19]

Lyso-ornithine lipids Genus Lacinutrix
In vitro on
melanoma
cells A2058

50 µM, 100 µM,
150 µM In cell-culture media N/A [21]

Fungi

H-10 Genus Fusarum
In vitro in
melanoma
model H10

50 µM In cell-culture media

Induction of the
apoptosis of cells via a
mitochondrial pathway.

Increased activity of
caspases 3.

Inhibition of cell growth.

[22]

Penicitrinine A Penicilium citrinum
In vitro on
melanoma
cells A735

IC50 20.12 µM In cell-culture media

Induction of apoptosis
by decreasing of the

expression of Bcl-2 and
increasing of the

expression of Bax.
Anti-metastatic effects.

Inhibition of
proliferation

[23]

Chlovalicin B Digiratispora marina
In vitro on
melanoma
cells A2058

IC50 37 µM In cell-culture media N/A [24]

Lulworthinone Lulworthiaceae family
In vitro on
melanoma
cells A2058

From 6.25 µg/mL
to 100 µg/mL In cell-culture media Inhibition of cell

proliferation. [25]

Pyrenosetin A
Pyrenosetin B
Pyrenosetin C
Phomasetin

crude extract of
Pyrenochaetopsis sp.

FVE-001

In vitro on
melanoma
cells A375

IC50 2.8 µM
IC50 6.3 µM

IC50 140.3 µM
IC50 37.3 µM.

In cell-culture media N/A [27]
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Table 1. Cont.

Compound Marine Organism In Vitro/In Vivo
IC50/GI50/LC50

or Tested
Concentration

Administration Mechanism of Action Ref.

Microalgae

Oxylipin 13-HOTE Chlamydomonas
debaryana

In vitro on
melanoma cancer
cell line UACC-62

IC50 71.9 ± 3.6 µM In cell-culture media
Decreased the level of
ATP in UACC-62 in

dose-dependent manner
[52]

Oxylipin 15-HEPE Nannochloropsis
gaditana

In vitro on
mela-noma cancer
cell line UACC-62

IC50 53.9 ± 6.4 µM In cell-culture media
Decreased the level of
ATP in UACC-62 in

dose-dependent manner
[52]

Raw extracts Skeletonema marinoi
(clone FE60)

In vitro on
melanoma
A2058 cells

25-100 µg/mL In cell-culture media N/A [30]

Raw extracts
and fractions Isochrysis galbana

In vitro on
melanoma
A2058 cells

100 µg/mL In cell-culture media N/A [31]

Amphidinol 22 Amphidinium carterae
In vitro on
melanoma
cells A2058

IC50 16.4 µM In cell-culture media N/A [36]

Linear polyketide
stragulin A

genus Amphi-
dinium/Stragulum

bicolor

In vitro on
melanoma cell

A2058 derived from
metastatic site.

IC50 0.18 µM In cell-culture media N/A [37]

Euplotin C Euplotes crassus
In vitro on
melanoma
cells A2058

N/A In the cell-culture
media

Down-regulation of the
levels of B-Raf, ERK1/2
and p-Akt, promotion of

the apoptosis by
activation of the RyR

[44]

3. Marine Macro-Organisms

Marine macro-organisms are a rich and precious source of anticancer active com-
pounds. Many have been studied in several in vivo/in vitro/ex vivo experiments pro-
viding many compounds (listed in Table 2) with great in vitro/in vivo efficacy as anti-
melanoma compounds. Each of them showed particular features as discussed below.

3.1. Macroalgae

Spatane diterpenes from the marine brown alga Stoechospermum marginatum have
been deeply investigated for their capability to selectively induce apoptosis in melanoma
cells [53,54]. In more detail, spatane diterpenes induced apoptosis in in vitro experiments
on melanoma murine cell lines [53,54] and also efficiently suppressed tumor development
in vivo C57BL/6 mice engrafted with B16F10 melanoma cell line without apparent tox-
icity [54]. According to their findings, Spatane diterpenes stimulated the production of
reactive oxygen species (ROS) leading to change in the Bax/Bcl-2 ratio and disruption of the
inner mitochondrial transmembrane potential, cytochrome c redistribution, and activation
of the caspase-mediated apoptotic pathway [54]. Moreover, they induced cell cycle arrest in
“S-phase” and also caused apoptosis by disrupting the PI3K/AKT signaling pathway [54].

Fucoidan CF isolated from the alga Chordaria flagelliformis is a compound known to
have anti-melanoma activity [55]. A combination of in vivo/ex vivo/in vitro experiments
on murine animal model and melanoma cell lines elucidated the mechanism of action [55].
In particular, it has been demonstrated that Fucoidan CF stimulates the innate immune
system via stimulation of CD11c integrins [55]. Fucoxanthin, found in the alga Undaria
pinnatifida, showed specific in vitro cytotoxicity versus melanoma MALME-3M [56]. In vivo
studies and further investigations are needed to explain the mechanism of action and
validate the efficacy of this peculiar alga’s fucoxanthin as a candidate for melanoma therapy.
Fucoxanthin derived from another alga, Ishige okamurae, has been used to unravel the
molecular mechanisms of fucoxanthin’s protection, both in in vitro melanoma cell lines
(B16F10 cells) and in vivo in Balb/c mice engrafted with B16F10 cells [51]. Apoptosis and
cell cycle arrest during the G0/G1 phase were induced in B16F10 cells by fucoxanthin. Bcl-
xL and IAP (inhibitor of apoptosis proteins) were down-regulated leading to the activation
of caspase-9, caspase-3, and PARP [51]. Intraperitoneal fucoxanthin administration in
Balb/c mice implanted with B16F10 cells considerably confirmed its in vivo anti-tumor
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efficacy [51]. Fucoxanthin (FX) derived from ethanol extracts of the brown alga Fucus
evanescens was tested on human melanoma (SKMEL-28) cell lines [57]. Its antitumor efficacy
was evaluated confirming inhibition in the growth of human melanoma cells perfectly
in line with the previous above-mentioned studies [57]. One of the pharmacological
effects of fucoxanthin is its anti-cancer action as an anti-metastatic action [58]. The anti-
metastatic action of fucoxanthin, isolated from the brown alga Saccharina japonica has
been demonstrated in in vitro experiments in B16F10 melanoma cell lines [58]. This effect
could be due to the reduced expression of molecules involved in migration, invasion
and adhesion: CD44, CXCR4 (CXC chemokine receptor-4) and MMP9 [58]. Fucoxanthin
significantly reduced cell migration and decreased tumor nodules in experimental lung
metastasis in an in vivo assay [58].

Two sulfated polysaccharide fractions (L.s.-1.0 and L.s.-P), obtained from the brown
seaweed Saccharina latissima, were studied for possible activity against melanoma [59].
Mice subcutaneously inoculated with B16F10 cells were treated with both L.s.-1.0 and
L.s.-P fraction. Hemoglobin content, the number of tumor-associated blood vessels, and
tumor growth were significantly decreased, confirming the antiangiogenic and anticancer
properties of these compounds [59]. In vitro studies analyzed the ability to prevent the pro-
liferation of tumor cells of fucose-containing sulfated polysaccharides (FCSPs) from brown
macroalgae Sargassum henslowianum (FSAR) and Fucus vesiculosus (FVES) to unravel the un-
derlying apoptosis-inducing mechanisms [49]. Both FCSPs—FSAR and FVES—decreased
the proliferation of melanoma cells and promoted apoptosis by FCSP’ mediated activation
of caspase-3 [49]. Ale and colleagues also tested crude fucoidan isolated from Sargassum sp.
(MTA) and Fucus vesiculosus (SIG) an in vivo melanoma murine model. They demonstrated
that crude fucoidan increased natural killer cell activity in mice in vivo and had bioactive
effects on melanoma model cells in vitro [60]. Polysaccharide fractions (SPPs), SPP-0.3,
SPP-0.5, SPP-0.7, SPP-1, and SPP-2, purified from brown alga Sargassum pallidum, have
been tested for their anticancer and immune-enhancing effects [61]. Chemical composition
has been characterized using infrared spectroscopy [61] determining for each fraction the
ratio of total saccharides, monosaccharide composition, and sulfated contents. Anti-tumor
experiments showed that all SPPs lead to cancer cell death and have high anticancer activity
against B16 melanoma cell lines [61]. SPP-0.7 was the most active against B16 cells (at 25
µg/mL) and as immune-enhancing fraction, and selected for further purification, which
showed that it is a homogeneous polysaccharide. Its mechanism of action was further
investigated showing that it can significantly induce cell apoptosis, cytokine secretion, and
cellular stress response. It increased serum cytokines interleukin-6 and interleukin-1 beta,
inducible nitric oxide synthase and tumor necrosis factor-α [61].

3.2. Sponges

Monanchocidin-A is a novel compound derived from sponges closely related to Mo-
nanchora species [62]. It has been tested in vitro using the NCI-60 Human Tumor Cell
Lines Screen to investigate its potential anti-cancer activity. The NCI-60 screen provided
60 cell cancer lines to evaluate the dose-response created by a particular drug, thus com-
paring and selecting compounds that are most selectively for cancer lines (https://dtp.
cancer.gov/discovery_development/nci-60/; accessed on 14 July 2022). The melanoma
cell lines used for the screening were LOX IMVI, MALME-3M, M14, MDA-MB-435, SK-
MEL-2, SK-MEL-28, SK-MEL-5, UACC257, and UACC-62 [62]. This research demonstrated
Monanchocidin-A anticancer potential, indicating a peculiar activity against melanoma cell
lines [62]. Further investigations are needed to understand the mechanism of action of this
compound in melanoma cancer cells.

The anticancer properties of bengamides, sponge-derived natural chemicals that
have been identified as inhibitors of methionine aminopeptidases (MetAPs), have been
extensively studied for their anticancer activity [63–65]. The inhibition of methionine
aminopeptidases (MetAPs) leads to cell cycle arrest [66]. Starting from this evidence,
Wenzel and colleagues set up a method to produce, and enhance bengamides’ characteristics
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from the terrestrial myxobacterium Myxococcus virescens [16]. The efficacy of derived and
modified versions of bengamides was tested in a murine animal model affected by an
early stage B16 melanoma [16]. The greatest safe dose antitumor activity in vivo was
60 mg/kg [16]. The anti-melanoma activity was significant, but moderate when compared
with Docetaxel, used as a reference to test in vivo efficacy [16]. Despite antitumor efficacy
being limited, the approach proved the benefits of combining genetic engineering and
synthetic techniques for the cost-effective manufacture of optimized bengamides [16].

Jaspine-B is a pro-apoptotic compound, isolated from the marine sponge Jaspis sp.
extract, identified for its ability to selectively kill in vitro experiment murine B16 and human
SK-Mel28 melanoma cells [67]. The pro-apoptotic mechanism of action of Jaspine-B was
exerted via inhibition of sphingomyelin synthase with disruption in ceramide metabolism
that in turn leads to cell death [67]. Ascophyllan sulfated polysaccharide from brown
seaweed Ascophyllum nodosum [68] has been found to inhibit the migration and adhesion of
B16 melanoma cells by reducing the expression of N-cadherin and enhancing the expression
of E-cadherin [69]. The exerted mechanism of action is due to the inhibition of the expression
of matrix metalloprotease-9 (MMP9), thus affecting its secretion and the extracellular matrix
environment. This peculiar activity has been proved in the in vivo murine melanoma
model B16, where treated animals showed significantly reduced metastasis compared to
the control group [69].

Halichondrin-B, is a potent cytotoxin isolated in the 1980s from two marine sponges:
Halichondria okadai and Lissodendoryx sp. [70], with great cytotoxicity in the B-16 melanoma
cancer cell line. An analogue of Halicondrin-B, eribulin mesylate, has been FDA approved
(as Halaven®) in 2010 for the treatment of patients with metastatic breast cancer who have
previously received at least two chemotherapeutic regimens for the treatment of metastatic
disease, and in 2016, for the treatment of inoperable liposarcoma for patients who received
prior chemotherapy that contained an anthracycline drug (from https://techtransfer.cancer.
gov/aboutttc/successstories/eribulin-mesylate; accessed on 3 August 2022).

Cytotoxic bioassays were performed on arenosclerins A-C and haliclona-cyclamine-E,
two novel tetracyclic alkyl-piperidine alkaloids isolated from the marine sponge Arenosclera
brasiliensis [71]. The above-mentioned alkaloids have been reported to have cytotoxic action
against B16 melanoma cancer cell lines at doses ranging from 1.5 to 7.0 mg/mL, showing
that they had significant melanoma toxic activity [71].

3.3. Mollusks, Cnidarians and Echinoderms

A group of marine compounds, belonging to the family of lamellar alkaloids, have
been isolated from the mollusk Lamellaria sp. and found, for the first time, to induce cancer
death [72]. Ballot et al. tested lamellarin D on HBL skin melanoma cells showing that
this compound induced senescence by arresting them in the G2 phase of the cellular cycle.
The growth arrest due to senescence, induced by lamellarin D, is due to its effect on DNA
Topoisomerase I [73].

Holothuria parva, popularly known as the sea cucumber, is an important aquatic marine
organism with a variety of active pharmacological compounds. Sea cucumber compounds
have been proven to have anticancer properties via inducing the pro-apoptotic pathway [74].
One of the primary factors that contribute to drug resistance in melanoma is a deficiency in
apoptosis [75]. The specific toxicity and apoptotic effect of three sea cucumber extracts at
different concentrations (250, 500, and 1000 mg/mL) on skin mitochondria isolated from
melanoma mice animal models were proved to both increase the formation of reactive
oxygen species (ROS) and the release of cytochrome c from the mitochondria only in the
melanoma group [74]. Further investigation is needed to identify the potentially bioactive
chemicals discovered in H. parva to confirm the selective pro-apoptotic melanoma effects.
Sarcophine, (+)-7,8-dihydroxydeepoxysarcophine and Sarcophytolide, natural compounds
derived from the Red Sea soft coral Sarcophyton glaucum, were tested for their possible
inhibitory effects on the growth of murine-derived melanoma B16F10 cells [76]. Sarcophine
and (+)-7,8-dihydroxydeepoxysarcophine selectively reduced melanoma cell growth after
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48 h and 72 h treatment at concentrations which did not show cytotoxicity on monkey
kidney CV-1 cells. The proposed mechanism of action for these compounds is the inhibition
of de novo DNA synthesis and the increased PARP activity leading to cell death [76]. These
features give a potential role for these compounds as melanoma anticancer drugs [76].

3.4. Tunicates

Recently, the antimicrobial peptides turgencin-A and turgencin-B, as well as their
oxidized counterparts, were isolated from the Arctic maritime colonial ascidian Synoicum
turgens by Hansen and colleagues [77]. Turgencin-A showed stronger cytotoxicity activity
than Turgenicin-B in melanoma cell line A2058 with IC50 of 1.4 µM [77]. Cytotoxic activity
was evaluated using AqueousOne cytotoxic reagent (Promega, Madison, WI, USA) [77].
Ecteinascidin-743 (ET743) is a new antitumor agent derived from Ecteinascidia turbinata,
a Caribbean tunicate [78]. It exhibits strong cytotoxic and antitumor properties due to
its alkylating properties [79]. Jimeno and colleagues proved in vitro the specific DNA
minor groove’s guanine-specific alkylating feature of ET743 [79]. The antitumor efficacy of
ET743 was then assessed in human melanoma tumor xenografts. ET743 (0.1 mg/kg) was
extremely active in the chemo-sensitive melanoma MEXF 989 and tumor regression was
detected in the first week after the start of treatment [80]. Palmerolide-A was identified
from the tunicate Synoicum adareanum isolated from the Antarctic area. It has been shown
to inhibit V-ATPase resulting in strong and specific cytotoxicity on melanoma cell line
UACC-66 [81]. Many years later (2020), Murray and colleagues investigated the Synoicum
adareanum microbiome composition to increase knowledge of the palmerolide-A biosyn-
thetic pathway [82] and opened a new perspective on this precious marine natural product
(MNP). Further in vivo investigations are needed to confirm Palmerolide-A as a potential
candidate for melanoma treatment.

Thiaplidiaquinones A and B, marine meroterpenoid alkaloids derived by Aplidium
conicum, have been investigated for their anti-tumoral properties [83] and the mechanism of
cell death has been elucidated [83]. The natural products were found to be modest inducers
of ROS but the dioxo-thiazine regio-isomer of thiaplidiaquinone A and a synthetic precursor
of thiaplidiaquinone B were discovered to be moderately powerful inducers of ROS [83].
In addition, in vitro experiments on NCI sub-panel selectivity for melanoma cell lines
demonstrated that the synthetic dioxo-thiazine regio-isomer of thiaplidiaquinone A is more
effective in inhibiting melanoma cell growth compared with their natural products [83],
emphasizing the crucial role that natural product total synthesis may play in new drug
discovery. Compounds with anti-melanoma activity from marine macro-organisms are
summarized in Table 2.
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Table 2. Marine macro-organism derived compounds or extracts with activity in vitro or in vivo
against melanoma. Pre-clinical studies showing marine-derived compounds with anti-melanoma
activity in vitro/in vivo, mechanism of action (when known), marine organisms and experimental
conditions are reported for each compound. Extract (ex); N/A (Not Available); Inhibitory concentra-
tion of 50% (IC50); growth inhibition of 50% (IG50); Lethal Concentration (LC50); Phosphoinositide
3-kinase (PI3K); Protein-kinase B (Akt); C-X-C chemokine receptor type 4 (CXCR4); Matrix met-
allopeptidase 9 (MMP9); Poly ADP-ribose polymerase (PARP); Vacuolar-type ATPase (V-ATPase);
every four days (q4d).

Compound Marine Organism In Vitro/In Vivo
IC50/GI50/LC50

or Tested
Concentration

Administration Mechanism of Action Ref.

Macroalgae

Ascophyllan Ascophyllum Nodosum In vivo mel animal
model B16 25 mg/kg Intraperitoneal

Injection
Inhibition of matrix
metallo-protease-9 [69]

Spatane diterpinoids Stoechospermum
marginatum

In vitro on
melanoma cell
lines:B16F10

In vivo animal
model C57BL/6

grafted with B16F10
melanoma cell line

IC50 3.95 µM
4, 10, 15 mg/Kg

In cell culture media
Intraperitoneal

injection

Apoptosis via activation
of the caspase-mediated
apoptotic pathway and

PI3K/Akt pathway

[54]

Fucoidan CF Chordaria flagelliformis

In vivo/ex vivo
murine model

grafted with B16
melanoma cell line

0.01 mg/mouse Intravenous injection
Stimulation of the innate

immune system via
CD11c integrins

[55]

Fucoxanthin containing
extracts Undaria pinnatifida Melanoma cell line

Malme-3M

IC50 (48 h)
27.96 ± 1.36 µM

IC50 (72 h)
17.33 ± 2.65 µM

In cell culture media N/A [56]

Fucoxanthin (FX) Fucus evanescens Human melanoma
SKMEL-28 cell line IC50 114 µM In cell culture media Inhibition of the growth

of human cell melanoma [57]

Fucoxanthin Ishige okamurae B16F10 melanoma
cell line 30 µM In cell culture media

CD44,
CXCR4 and

MMP9 reduction
[58]

L.s.-1.0 fr.
(O-sulfated

mannoglucuronofucans)
L.s.-P fr.
(sulfated

polysaccharides)

Saccharina latissima
B6 mice inoculated

with B16F10
melanoma cell line

50 mg/kg Intraperitoneal
injection Anti-angiogenesis [59]

FSAR(fucoidanfr)
FVES(fucoidan fr)
Crude Fucoidan

Sargassum
henslowianum

Fucusvesiculosus

B16 melanoma cell
line

C57BL/6JJCL mice

0.2–0.8 mg/mL
50 mg/kg body wt

In cell culture media
In vivo injection

Apoptosis mediated by
activation of caspase-3

[49,
60]

Polysaccharide fractions
(SPPs) Sargassum pallidum B16 melanoma

cell line
25, 100, and
400 µg/mL In cell culture media immune stimulation [61]

Sponges

Monanchocidin-A Monanchora sp.

In vitro on
melanoma cell lines:

-LOX IMVI
-MALME-3M

-M14
-MDA-MB435

-SK-MEL-2
-SK-MEL-28
-SK-MEL-5
-UACC257
-UACC-62

GI50 0.022 µM
GI50 0.095 µM
GI50 0.018 µM
GI50 0.023 µM
GI50 0.13 µM
GI50 0.063 µM
GI50 0.034 µM
GI50 0.035 µM
GI50 0.024 µM

In cell culture media N/A [62]

Bengamides Myxococcus virescens B16 melanoma
murine model 60 mg/kg Mice injection Inhibition of methionine

amino peptidases [66] [16]

Jaspine-B Jaspis sp.

In vitro on
melanoma cell lines:
Human SK-Mel28;

Murine B16

IC50 0.5 µM In cell culture media
Cell death via inhibition

of sphingomyelin
synthase

[67]

Halichondrin B Halicondria okadai
Lissodendoryx sp.

In vitro on B-16
melanoma cancer

cells
IC50 0.09 ng/mL In cell culture media N/A [70]

Arenosclerin-A
Arenosclerin-C

Haliclonacyclamine E
Arenosclera brasiliensis In vitro on B16

melanoma cell line 1.5–7.0 mg/mL In cell culture media N/A [71]
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Table 2. Cont.

Compound Marine Organism In Vitro/In Vivo
IC50/GI50/LC50

or Tested
Concentration

Administration Mechanism of Action Ref.

Mollusks, Cnidarians
and

Ehinoderms

Lamellarin D Lamellaria sp. HBL skin
melanoma cells 5 µM In cell culture media

Arresting cells in the G2
phase of the cellular

cycle due to its effect on
DNA Topoisomerase I

[73]

Metanolic, ex
Diethyl ether ex

n-hexane ex
Holothuria parva In vitro/Ex vivo 250, 500, and 1000

µg/mL In cell culture media Pro-apoptotic [74]

Sarcophine
(+)-7α,8β

dihydroxydeepoxysar-
cophine

Sarcophyton glaucum B16F10 melanoma
cell line 500 µM In cell culture media Inhibit DNA synthesis

and PARP activity [76]

Tunicates

Turgencin-A Synoicum turgens
In vitro on

melanoma cell lines:
A2058

IC50 1.4 µM In cell culture media N/A [77]

Ecteinascidin-74 Ecteinascidia turbinata Ex vivo q4d x 3—0.2, 0.1,
0.05 mg/kg Intravenous

Double-strand breaks
(DBSs)
[84,85]

[80]

Palmerolide-A Synoicum adareanum
In vitro on

melanoma cell line:
UACC-66

LC50 0.018 µM In cell culture media Inhibition of V-ATPase [81]

Thiaplidiaquinones A
and B Aplidium conicum In Vitro on

NCI panel 10 µM In cell culture media Pro-apoptosis [83]

4. Prevention of Damage Induced by UV Solar Radiation

Inflammation induced by UVB rays and the formation of reactive oxygen species (ROS)
are involved in the development of melanoma; in fact, UV radiation is an environmental
carcinogen that in high doses can cause damage to the skin and induce cancer [5] (Figure 2).
UVB increases the cutaneous activity of ornithine decarboxylase (ODC), the first enzyme in
the polyamine biosynthesis pathway. This may cause excessive proliferation and clonal
expansion of the cells initiated, leading to tumorigenesis [86,87].
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Marine organisms have developed a wide variety of adaptive strategies to obviate the
effects of UV radiation and the best known photoprotective response is the production or
accumulation of compounds that absorb UV. Among these compounds are myco-sporine-
like amino acids (MAA), scytonemin, 3-hydroxyquinurenine, melanin, various secondary
metabolites and fluorescent pigments [83–85]. The MAAs are commonly known as “micro-
bial sunscreens” [88,89]. MAAs have the ability to absorb light between 309 and 362 nm
by dissipating radiation in the form of heat without producing reactive oxygen species
(ROS) [90]. MAAs have been found in a large variety of marine organisms, including
bacteria, cyanobacteria [91,92], fungi [93] and microalgae [94].The MAA content varies
seasonally, peaking in the summer, in the various organisms [95]. They have many ad-
vantages, as they protect cells from mutations caused by UVR rays and free radicals and
are effective antioxidant molecules [92]. Thanks to their multiple roles, MAAs are well
regarded for applications in the pharmaceutical and cosmetic industries as natural sun-
screens, cell proliferation activators, anticancer agents, anti-photoaging molecules and
skin renewal stimulators [96]. An example of a product containing MAA and marketed
as Helioguard® 365 sunscreen, is porphyra-334 from the red alga Porphyra umbilicalis asso-
ciated with shinorine, which has protective properties against the loss of cellular vitality
and DNA damage induced by UVA rays [97,98]. Helionori® sunscreen is another product
containing MAAs, palitin, porphyria-334 (Figure 3) and shinorine as active ingredients, ex-
tracted from Porphyra umbilicalis, which protects from UV-A rays, preserving the membrane
lipids of keratinocytes and fibroblasts, in addition to DNA protection [98,99].
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from https://pubchem.ncbi.nlm.nih.gov/compound/Porphyra-334#section=2D-Structure&fullscreen=
true and https://pubchem.ncbi.nlm.nih.gov/compound/Porphyra-334#section=3D-Conformer&
fullscreen=true, respectively (accessed on 13 July 2022) [100].

Scytonemin is a pigment produced mainly by cyanobacteria [101,102]; thanks to its
multiple roles as UV sunscreen and antioxidant with strong radical scavenging activity,
it is a very interesting natural product for the formulation of sunscreens destined for the
market [103,104]. It also exhibits antiproliferative and anti-inflammatory activities in hu-
man fibroblasts and endothelial cells [101,105,106]. Scytonemin inhibits a serine/threonine
kinase, named Polo-like Kinase 1, which plays a key role in regulating the G2/M tran-
sition in the cell cycle [106]. Carotenoids are also excellent allies for the prevention of
diseases due to UV solar radiation and have applications in the healthcare and nutraceu-
tical industry, for skin protection, anti-aging and as sunscreens, as they are powerful
antioxidants and scavenging agents [107–109]. Microalgae are known as a valuable source
of carotenoids [110]. An example of the most innovative skin care products from microalgae
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is Dermochlorella® by CODIF Recherche et Nature (Brittany, France), an extract from the
green microalgae Chlorella vulgaris containing oligopeptides that increase skin firmness and
tone (http://www.codif-tn.com/en?s=dermochlorella; accessed on 11 July 2022) [109].

Among the various pigments currently used in cosmetics produced by marine organ-
isms, such as macro and microalgae, there is fucoxanthin (FX) which is able to counteract
the oxidative stress caused by UVR [87,98,111–113]. Its photoprotective action is more
effective when it is used in topical preparation [87]. For example, UV solar radiation
exposure can cause hyper-pigmentary disturbances (HD). A common example of HD are
freckles, which are real skin lesions and indicators of risk for skin cancer (melanoma and
non-melanoma). HDs are the consequence of increased production of pro-melanogenic
factors and altered expression or activity of melanocyte receptors [87,114]. There are many
studies showing that FX is an excellent candidate for the treatment and prevention of HDs.
In guinea pigs irradiated for 14 days with incremental UVB doses, FX applied after UVB
irradiation in form of food (10 mg/kg) or ointment (50 µL of white petrolatum containing
0.01–1% of FX) blocked cellular melanogenesis for six to ten days after the last irradiation
session [115]. Another work showed that the application of a 0.5% FX Vaseline-based cream
on day five after four days of UVB chronic irradiation (1 h per day, 2.7 J/cm2) on female
ddY strain mice efficiently cured the sunburn [116]. A 2020 study showed that FX enhanced
the antioxidant properties of a standard sunscreen containing avobenzone and ethylhexyl
methoxycinnamate in a reconstructed skin model [117].

α-tocopherol is the most biologically active form of vitamin E, found in the thylakoid
membranes of photosynthetic organisms, where it counteracts the effects of ROS by removing
oxidized substrates or by blocking the lipid peroxidation chains initiated by ROS [118]. α-
tocopherol has been shown to reduce inflammation and act as an antioxidant by reducing UV
and ROS-induced damage in human and mouse skin cells [119–123]. α-tocopherol is produced
by many marine organisms: it has been found in the microalga Dunaliella salina (where it
represented 37.5–46.9 mg/100 g dry weight) [124], in Chondrus yendoi (9.34 mg/100 g), Sargasso
fusiforme (3.56 mg/100g) and Sargassum horneri (3.65 mg/100 g) [125].

The application of marine natural products has been shown to be effective in reducing
inflammation and oxidative stress [120]. For example, natural products such as 5β-scymnol
and CO(2)-supercritical fluid extract (CO(2)-SFE) of mussel oil contain antioxidant and
anti-inflammatory properties and they can help reduce the harmful effects of UV solar radi-
ation [126]. In fact, a study was conducted to evaluate the anti-inflammatory effect of these
compounds on normal cells derived from human epidermal melanocytes (HEM) in relation
to α-tocopherol. HEM cells were irradiated with UVB and treated with IL-1 alpha. When
α-tocopherol, CO(2)-SFE mussel oil, and 5β-scymnol were added, TNF-α levels decreased,
respectively, by 53%, 65% and 76%, which was not observed in malignant melanoma cells
MM96L. The pro-inflammatory cytokine TNF-α has been shown to be involved in the
progression of melanoma through the inhibition of apoptosis [127,128]. Therefore, these
compounds can be used in the prevention of inflammation-induced damage of normal
melanocytes. Both UVA and UVB can trigger oxidative responses that may persist after the
end of exposure to UV radiation sources [129]. DNA oxidative damage caused by melanin
sensibility to UVA radiation is involved in melanogenesis [130] (Figure 4). UV radiation
is known to trigger multiple signaling cascades such as mitogen-activated protein kinase
P38 (MAPK), terminal kinase c-Jun (JNK), extracellular kinase regulated by signal 1/2
(ERK1/2) and nuclear factor pathways κB (NFκB) in the skin cells [126,131–133]. A strategy
to mediate the effects of UV radiation on the skin can act on these pathways. As reported
by Sample and He [134], research studies have shown that sunscreen is often ineffective at
reducing melanoma risk; hence, melanoma prevention can be improved by further research
and trials of sunscreen products, as well as optimization of their design.
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5. Discussion

Malignant melanoma is among the most dangerous tumors due to its high probability
of metastasizing and its increasing incidence year after year [136]. Currently, 75% of skin
cancer deaths are due to melanoma [137]. There are three types of skin tumors: Melanoma,
Basal Cell Carcinoma (BCC) and Squamous Cell Carcinoma (SCC). BCC and SCC are not
fatal and can be treated surgically. Melanoma skin cancer develops when the melanocytes
(cells that normally make melanin pigment) start to grow out of control. Melanomas are
fatal and the victims are eight times greater in number than those with non-melanoma
skin cancers, because it is much more likely to spread to other parts of the body if not
treated early. Melanomas are etiologically divided into melanomas related to sun exposure
and those which are not, but also based on their mutational signatures, anatomic site,
and epidemiology [138]. Bobos, in a review of 2021, gives an overview of the latest news
concerning the histopathologic classification of various types of skin cancer [139]. What is
similar between the various types of melanoma is the final stage of development which
consists in the formation of local and/or distant metastases [139].

Understanding more deeply the molecular mechanism of action that leads to the onset
of melanoma may allow the identification of possible molecular targets. There are already
eight molecular subtypes of melanoma identified [140], thanks to the study of the different
types of molecular anomalies. Knowing the molecular mechanism underlying the onset
of melanoma can also make it easier to identify and discriminate the natural substances
that can act in a specific way on these molecular targets, which implies the possibility of
developing targeted therapies.

Prolonged and incorrect exposure to UV rays is one of the main causes of the onset of
melanoma. Sun exposure without sunscreen, sun exposure in the hottest hours, sunburn
and underestimating the harmfulness of UV rays, even when it is cloudy, are behaviors
that can lead to an increased risk of skin cancer. Not everyone is genetically predisposed
to tan; this is due to the presence of two different types of melanin which are expressed
with varying percentages in each individual [141]. A darker complexion is characterized by
increased production of the eumelanin pigment (brown/black) which gives a brown color
and protects against UV damage [141]. A fair complexion is determined by the increased
production of the pheomelanin pigment (red/yellow) which is responsible for the redness

https://pubchem.ncbi.nlm.nih.gov/compound/11347535#section=2D-Structure&fullscreen=true
https://pubchem.ncbi.nlm.nih.gov/compound/11347535#section=3D-Conformer&fullscreen=true


Int. J. Mol. Sci. 2022, 23, 10284 16 of 23

of the skin and does not protect from UV rays [141]. For this reason, individuals with fair
complexions are more prone to skin cancers than individuals with a dark complexion, but
this does not exclude that latter, who are not immune from damages caused by UV rays. In
some countries, there is a misconception that more tanned or colored skin is a sign of good
health and beauty [142]. It is therefore essential also to focus on the production of creams
with specific SPFs for each skin type, suitable for skin protection and the prevention of
skin tumors.

Melanoma has also been found in marine species. For instance, Sweet and co-
workers [143] found melanosis and melanoma in wild populations of the coral trout
Plectropomus leopardus, which is a commercially important marine fish. The presence of
melanoma not only in humans suggests new potential market sectors for compounds
with anti-melanoma activity, not only for human application but also, for instance, for the
aquaculture sector.

Marine organisms are a rich source of bioactive compounds that have been shown
to exert various bioactivities, including anticancer, anti-inflammatory and immunomodu-
latory properties. To date, there are 14 marine derived drugs on the market, and several
in clinical trials I, II and III, having great potential to increase the number of natural
marine products in clinical use [136]. Among these, Marizomib (Salinosporamide A;
NPI-0052) is currently in clinical trial III for melanoma treatment. It is a beta-lactone-
gamma lactam, first isolated from a marine bacterium of the genus Salinospora [144]
(https://www.midwestern.edu/departments/marinepharmacology/clinical-pipeline; ac-
cessed on 13 July 2022). The molecular target of Salinosporamide A (Figure 4) is 20S
proteasome. Millward et al. [145] tested Marizomib, with or without combination with
vorinostat on low metastatic cell lines (including SB2, DM4 and TXM13), intermediate
metastatic cell lines (including Mel526, Me1624, Me1888, Me1938 and MeWo) and highly
metastatic cell lines (including WM2664, WM293, WM793, WM35, A375SM, A375 and
C8161). They observed that the combination Marizomib and vorinostat had the strongest
activity on highly metastatic melanoma cell lines. In the current review, we report com-
pounds deriving from marine micro- and macro-organisms with activity on melanoma cells.
The most active, considering the lowest active concentrations, are Actinofuranone C from
AKA32 strain of actinomycetes Nonomuraea sp. with an IC50 of 1.2 µM and Monanchocidin-
A, isolated from the sponge Monanchora sp. with activity on M14 melanoma cell line with
GI50 of 0.018 µM.

Considering the increasing market demand for new drugs against drug-resistant
pathologies, and the search for compounds with reduced side effects, the attention of re-
searchers is increasingly focused on natural substances and/or modification/conjugation of
natural lead compounds in order to direct specific cell lines and cellular targets. According
to the database MarinLit (https://marinlit.rsc.org/; accessed on 3 August 2022), which is
specifically dedicated to marine natural products research, there are actually 38,990 marine
compounds and about 38,713 published articles. According to the World Register of Marine
Species (WORMS; https://www.marinespcies.org/news.php?p=show&id=4099, accessed
on 3 August 2022), currently 228,450 species are known and every day new species are
discovered and described. In addition to great biodiversity in terms of species, the oceans
are characterized by huge chemical diversity and it was shown that approximately 70% of
structural scaffolds identified at sea are only found in marine organisms, without any terres-
trial counterpart [146,147]. Extreme environments, such as deep and cold, are less explored
compared to more accessible sites and worth further investigation for new species and chem-
icals [148]. Marine microorganisms, being easy to handle, are considered an eco-sustainable
and eco-friendly source of bioactive compounds for marine biotechnology [149]. In fact,
almost 60% of new marine natural products today derive from microorganisms [2,150].
Marine microorganisms have also attracted great attention because they have developed
metabolic and physiological capacities that guarantee their survival in extreme habitats and
offer the potential to produce compounds with possible pharmacological activity [151,152].
In addition, for cultivable microorganisms, such as fungi, bacteria and microalgae, there
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also is the possibility of inducing the production of bioactive compounds by applying
stressful exposure, such as changing culturing parameters (light, nutrient, temperature and
others). This approach, known as “one strain–many compounds” or OSMAC, allows easier
identification of new bioactive molecules [153]. For this reason, strategies to increase the
probability of discovering new bioactive compounds, consist in searching less explored
places [154–156], such as deep and cold waters, or focusing on cultivable species and induc-
ing the production of other metabolites. Overall, the data reported in this review show that
marine organisms may produce various chemical structures with activities against different
melanoma cell lines, but also in in vivo models. The molecular mechanisms activated
can be variable, ranging from immune-activation to apoptosis induction. In addition, for
several compounds the mechanism of action is not completely clarified yet and, hence, are
worth additional investigation in order to proceed with clinical trials.
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