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Simple Summary: In the present study, we provided evidence that TGFβ signaling regulated the
expression of the microglia activation marker CD74. Our data demonstrated that TGFβ1 inhibited
LPS-induced upregulation of CD74. Moreover, inhibition of microglial TGFβ signaling in vitro
and silencing of TGFβ signaling by deletion of Tgfbr2 in vivo resulted in marked upregulation of
microglial CD74.

Abstract: Microglia play important roles during physiological and pathological situations in the CNS.
Several reports have described the expression of Cd74 in disease-associated and aged microglia. Here,
we demonstrated that TGFβ1 controled the expression of Cd74 in microglia in vitro and in vivo. Using
BV2 cells, primary microglia cultures as well as Cx3cr1CreERT2:R26-YFP:Tgfbr2fl/fl in combination with
qPCR, flow cytometry, and immunohistochemistry, we were able to provide evidence that TGFβ1
inhibited LPS-induced upregulation of Cd74 in microglia. Interestingly, TGFβ1 alone was able to
mediate downregulation of CD74 in vitro. Moreover, silencing of TGFβ signaling in vivo resulted
in marked upregulation of CD74, further underlining the importance of microglial TGFβ signaling
during regulation of microglia activation. Taken together, our data indicated that CD74 is a marker
for activated microglia and further demonstrated that microglial TGFβ signaling is important for
regulation of Cd74 expression during microglia activation.
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1. Introduction

As the resident immune cells of the central nervous system (CNS), microglia are
involved in a plethora of pathological as well as physiological processes [1,2]. Microglia
constantly scan their local microenvironment sensing impairments triggered by endoge-
nous and/or exogenous factors [3]. Damage-associated molecular patterns (DAMPs)
and pathogen-associated molecular patterns (PAMPs) have been described and are recog-
nized by Toll-like receptors (TLRs) or NOD-like receptors (NLRs), subsequently inducing
microglia activation [4]. Recent sophisticated in vivo studies using (single cell) RNA-
sequencing have defined a highly conserved transcriptional profile under neurodegener-
ative conditions including upregulation of ApoE, Axl, Clec7a, Cst7, Cybb, Ctsd, Il1b, Itgax,
Lgals, Lilrb4, Lpl, Nos2, Spp1, Trem2, as well as Tyrobp [5–7]. These data lead to the concept
that microglia exist as homeostatic cells under basal conditions and adopt an activation
profile under pathological conditions that defines them as disease-associated microglia
(DAM). Noteworthy, DAMs can also shift toward a neurodegenerative microglia phenotype
(MGnDs), depending on the nature of the neuropathology and the severity of the disease [8].
Interestingly, recent reports have described that DAMs as well as aged microglia display a
partially overlapping transcriptional profile which also includes increased expression of
Cd74 [7,9,10].

Transforming growth factor β1 (TGFβ1) has been shown to be an essential endogenous
cue for postnatal microglia maturation by induction of a unique transcriptional signature
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including upregulation of genes such as as Transmembrane protein 119 (Tmem119), Purinergic
Receptor P2Y12 (P2ry12), Olfactomedin-like 3 (Olf mL3), Sal-like 1 (Sall1), G protein receptor 34
(Gpr34), Hexosaminidase Beta (Hexb), and Fc receptor-like S (Fcrls) [5,11,12]. Moreover, TGFβ1
is able to abrogate microglia activation induced by lipopolysaccharide (LPS) and interferon-
γ (IFNγ) in vitro [13,14]. Silencing of microglial TGFβ signaling or lack of extracellular
TGFβ binding and processing in vivo results in loss of microglia maturation, and enhanced
microglia activation has been demonstrated underlining the importance of TGFβ1 as a
potent immunosuppressive factor for microglia [12,15,16].

CD74 is a MHC class II-associated invariant chain and regulates trafficking of MHCII
molecules in antigen-presenting cells [17]. However, CD74 has been demonstrated to be
involved in several signaling pathways. For instance, CD74 serves as a receptor for the
cytokine macrophage migration inhibitory factor (MIF), which regulates a broad range of
immune cell function and inflammatory reactions [18–20]. Increased expression levels of
Cd74 have been reported in activated microglia in different neuropathological models and,
thus, is considered as a microglia activation marker [21–23].

In the current study, the effects of TGFβ1 as well as microglial TGFβ signaling on
Cd74 expression were analyzed in vitro using BV2 cells, primary microglia, and mixed
glia cultures. Moreover, transgenic mice with microglia-specific deletion of Tgfbr2 were
employed to demonstrate that TGFβ signaling inhibited expression of Cd74 under basal
conditions and further abrogated LPS-induced transcriptional activation of Cd74. Together,
these data further confirmed the essential immunosuppressive roles of TGFβ1 for microglia
and clearly demonstrated that TGFβ regulated expression of Cd74 in vitro and in vivo.

2. Results
2.1. TGFβ1 Inhibits LPS-Mediated Upregulation of Cd74 in BV2 Cells

Using RNA sequencing, we have recently demonstrated that Cd74 was upregulated in
microglia isolated from adult transgenic mice with deficient TGFβ signaling [18]. In order to
validate whether expression of microglial Cd74 is directly regulated by TGFβ1, we first used
the microglia cell line BV2. Cells were treated with TGFβ1 (5 ng/mL), LPS (1 µg/mL), or a
combination of both factors for 6 h, 12 h, and 24 h under serum-free conditions. As depicted
in Figure 1A–C, treatment with TGFβ1 alone resulted in significant downregulation of
Cd74 expression, whereas treatment with LPS induced upregulation of Cd74 mRNA levels
at all time points analyzed. Interestingly, TGFβ1 blocked the LPS-induced increase of Cd74
transcripts at 6 h (Figure 1A), 12 h (Figure 1B), and 24 h (Figure 1C). Analysis of CD74
protein levels after treatment of BV2 cells confirmed the transcriptional data. Again, TGFβ1
treatment alone resulted in significantly reduced CD74 total protein levels compared to
control cells after 6 h (Figure 1D,G), 12 h (Figure 1E,H), and 24 h (Figure 1F,I). Treatments
with LPS resulted in significant increases of CD74 protein levels at all time points, reaching
a maximum at 12 h (Figure 1D–I). In accordance with the abovementioned qPCR data,
TGFβ1 significantly inhibited the LPS-driven increases in CD74 total protein levels in
BV2 cells at all experimental time points (Figure 1D–I). Together, these data demonstrated
that TGFβ1 downregulated expression of Cd74 and further blocked the LPS-mediated
upregulation of Cd74 in BV2 cells.
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Figure 1. TGFβ1 inhibits LPS-mediated upregulation of Cd74 in BV2 cells. Expression of Cd74 after
treatment of BV2 cells with TGFβ1 (5 ng/mL), LPS (1 µg/mL), or both factors for 6 h (A), 12 h (B),
and 24 h (C). Quantification of CD74 total protein levels after treatments for 6 h (D), 12 h (E), and
24 h (F). (G–I) Representative western blot images for each experimental time point. Data are given
as means ± SEM for at least four independent experiments. p-values derived from one-way ANOVA
followed by Tukey’s multiple comparison tests are shown as follows: * p < 0.05, ** p < 0.01, and
*** p < 0.001.

2.2. TGFβ1 Inhibits LPS-Mediated Upregulation of Cd74 in Primary Mouse Microglia

In order to confirm the data obtained from BV2 cells, primary mouse microglia were
used during the next experimental steps. Since the availability of primary microglia cells
is limited, we decided to exclusively use 6 h and 24 h as experimental time points with
this approach. Figure 2 shows that treatment of primary microglia with TGFβ1 resulted in
significant downregulation of microglial Cd74 expression after 6 h (Figure 2A) and 24 h
(Figure 2B). Comparable with the results from BV2 cells, TGFβ1 significantly abrogated
the LPS-induced upregulation of Cd74 expression in primary microglia (Figure 2A,B). As
depicted in Figure 2C,E, TGFβ1 did not affect CD74 total protein levels in primary microglia
after 6 h, whereas LPS induced increased levels of CD74 without reaching significancy.
After treatment for 24 h, TGFβ1 significantly decreased CD74 total protein levels and
efficiently inhibited LPS-induced increases of CD74 in primary microglia (Figure 2D,F). The
densitometric analysis of the distinct CD74 31 kDa and 41 kDa isoform levels are depicted
in Supplementary Figure S1. These data confirmed the results obtained in the microglia
cell line BV2 and clearly demonstrated that TGFβ1 alone decreased Cd74 expression and
sufficiently inhibited LPS-triggered upregulation of Cd74 in primary microglia cultures.
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Figure 2. TGFβ1 inhibits LPS-induced expression of Cd74 in primary microglia. Expression of Cd74
after treatment of primary microglia with TGFβ1 (5 ng/mL), LPS (1 µg/mL), or a combination of
both factors for 6 h (A) and 24 h (B). Quantifications of CD74 total protein levels after treatments
for 6 h (C) and 24 h (D). (E,F) Representative western blot images for the analyzed experimental
time points. Data are given as means ± SEM for at least three independent experiments. p-values
derived from one-way ANOVA followed by Tukey’s multiple comparison tests are shown as follows:
* p < 0.05 and ** p < 0.01.

2.3. Inhibition of TGFβ Signaling Increases CD74 Cell Surface Levels in Primary Mouse Microglia

In the next step, blocking of TGFβ signaling using a TGFβ receptor type I inhibitor
(TβRI) was employed to analyze the effects of microglial TGFβ signaling in mixed glia
cultures. As a prerequisite, the functionality of the inhibitor was assessed after TGFβ1
treatment of primary microglia and subsequent analysis of SMAD2/3 nuclear translocation.
Figure 3 demonstrates that treatment of microglia with TGFβ1 for 2 h resulted in nuclear
accumulation of SMADs whereas co-treatment with the TβRI virtually completely blocked
TGFβ1-induced shuttling of SMADs to the nuclei (Figure 3A,B).

In contrast to the abovementioned experimental approach, where primary microglia
cultures were used under serum-free conditions, experiments involving pharmacological
inhibition of TGFβ signaling were performed using mixed glia cultures containing 10%
serum (FCS) during all steps. Initially, mature mixed glia/microglia cultures were treated
with TβRI or LPS for 24 h, microglia were shaken off, and RNA as well as protein isolation
were performed for subsequent qPCR and western blotting (Figure 4A).
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Figure 3. TβRI efficiently blocks TGFβ1-induced SMAD nuclear translocation in primary microglia.
Primary microglia were treated with TβRI (500 nM), TGFβ1 (5 ng/mL), or a combination of both
reagents for 2 h under serum-free conditions. (A) Representative immunocytochemistry images
after staining with anti-Iba1 and anti-SMAD1/2/3 primary antibodies and fluorescence-coupled
secondary antibodies. DAPI was used to counterstain nuclei. (B) Quantifications of microglia with
nuclear SMAD accumulation. Scale bars indicate 50 µm. Data are given as means ± SEM for three
independent experiments. p-values derived from one-way ANOVA followed by Tukey’s multiple
comparison tests are shown as follows: * p < 0.05 and ** p < 0.01.

Figure 4. Inhibition of TGFβ signaling increases expression of Cd74 in mixed glia cultures. (A) Scheme
of experimental workflow, created with BioRender.com. (B) Expression of Cd74 after treatment of
mixed glia cultures with TβRI (500 nM) or LPS (1 µg/mL) for 24 h. (C) Quantifications of CD74 total
protein levels after treatments for 24 h. (D) Representative western blot images for the analyzed
experimental time point. Data are given as means ± SEM for at least four independent experiments.
p-values derived from one-way ANOVA followed by Tukey’s multiple comparison tests are shown
as follows: * p < 0.05, *** p < 0.001, and **** p < 0.0001.

As shown in Figure 4B, inhibition of TGFβ signaling resulted in increased transcription
of Cd74, whereas LPS treatment significantly reduced Cd74 RNA levels after 24 h. As
expected, total CD74 protein levels were significantly increased after treatment with TβRI
(Figure 4C,D). Interestingly, LPS significantly increased the total CD74 protein levels after
24 h treatment, which was in contrast to the observed qPCR data. Noteworthy, LPS
enhanced the abundancy of the 41 kDa variant of CD74, whereas inhibition of TGFβ
signaling exclusively increased the 31 kDa variant of CD74 (Figure 4C,D). The densitometric
analysis of 31 kDa and 41 kDa protein levels after treatment with TβRI or LPS for 24 h is
depicted in Supplementary Figure S1C.

In the next step, we analyzed the surface expression of CD74 in primary microglia cul-
tures using flow cytometry. As depicted in Figure 5A, mixed glia cultures were treated with
a TGFβ receptor inhibitor (5 nM TβRI) or lipopolysaccharide (LPS, 1 µg/mL) for 1, 3, 5, and
7 days, and microglia were finally shaken off and used for flow cytometry. Figure 5B shows
the gating strategy to identify CD74+ microglia out of the F4/80+ population. The initial
flow cytometry analysis revealed that most of the F4/80+ microglia were also positive for
CD74 (Figure 5B). Thus, we decided to further analyze the changes in relative fluorescence
intensities after different treatments and time points. We observed that inhibition of TGFβ
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signaling in mixed glia cultures resulted in increased surface levels of CD74 in microglia
at all time points analyzed (Figure 5C–F). Interestingly, the surface levels of CD74 after
LPS treatment were significantly reduced compared to those of untreated control cultures
(Figure 5C–F). These data indicated that TGFβ signaling was vital to control CD74 surface
levels in microglia and that the LPS-induced upregulation might be abrogated by inhibitory
factors and/or molecules released by cells in the mixed glia culture setup.

Figure 5. Inhibition of TGFβ signaling increases surface expression of CD74 in microglia. (A) Scheme
of experimental workflow for flow cytometry, created with BioRender.com. (B) Gating strategy
to detect CD74 surface expression in F4/80+ microglia. Relative fluorescence intensities (RFI) of
CD74 in microglia (out of F4/80+ cells) were analyzed after 1 (C), 3 (D), 5 (E), and 7 days (F).
(C–F) Quantifications and statistical analyzes of relative fluorescence intensities (RFI) of CD74 after
indicated treatments and time points. Data are given as means ± SEM for at least three independent
experiments. p-values derived from one-way ANOVA followed by Tukey’s multiple comparison tests
are shown as follows: * p < 0.05, ** p < 0.01, *** p < 0.001, and **** p < 0.0001.

2.4. Microglia-Specific Knockout of Tgfbr2 Increases Microglial CD74 and MHCII Expression In Vivo

To further elucidate the importance of TGFβ signaling for the regulation of Cd74 ex-
pression in vivo, we used transgenic mice with microglia-specific deletion of Tgfbr2 [18]. As
shown in Figure 6A, new born Cx3cr1CreERT2:R26-YFP:Tgfbr2fl/fl and control mice received
tamoxifen injections (0.2 mg/10 µL) on postnatal days 3 and 5. Subsequently, brains were
isolated and fixed at postnatal day 14 and used for immunohistochemistry. Whereas mice
lacking expression of Cre recombinase showed no YFP+ microglia (Figure 6B,H), the vast
majority (98.99% ± 0.4978%) of microglia (Iba1+) in brain sections from Cx3cr1CreERT2:R26-
YFP:Tgfbr2fl/fl mice displayed positivity for YFP after tamoxifen-induced recombination
(Figure 6C,H), indicating sufficient deletion of exons 2 and 3 of Tgfbr2 in microglia. Next,
the expression of CD74 in microglia of control and Cx3cr1CreERT2:R26-YFP:Tgfbr2fl/fl mice
was analyzed. As shown Figure 6D,I, 3.928% (±0.3991%) of microglia in control mice
were positive for Iba1 and CD74. In contrast, virtually all microglia (99.18% ± 0.1019%)
in Tgfbr2-deficient mice showed strong positivity for CD74 (Figure 6E,I). The strong func-
tional link between CD74 and MHC class II led us to analyze the expression of MHCII
in Cx3cr1CreERT2:R26-YFP:Tgfbr2fl/fl mice. Similar to the low expression of CD74, control
microglia showed only a very weak (14.67% ± 2.553%) immunoreactivity for MHCII
(Figure 6F,J). Noteworthy, almost all Iba1+ microglia in Cx3cr1CreERT2:R26-YFP:Tgfbr2fl/fl

mice showed robust expression of MHCII (99.08% ± 0.09112%) after tamoxifen-induced
recombination (Figure 6G,J). Together, these data confirmed the observations made during
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in vitro experiments and clearly demonstrated that silencing of microglial TGFβ signaling
in vivo, by knockout of exons 2 and 3 of Tgfbr2, resulted in upregulation of CD74 and
MHCII expression, indicating microglia activation and the increase in antigen presentation.

Figure 6. Loss of microglial Tgfbr2 expression results in upregulation of CD74 in vivo. (A) Scheme of
the experimental workflow for analysis of YFP, CD74, and MHCII expression in frontal cortices of
microglia-specific Tgfbr2 mutant mice. Created with BioRender.com. (B,C) Immunohistochemistry
against for Iba1 (microglia) and YFP (reporter gene) to detect and quantify recombination efficacy.
Double staining for Iba1 and CD74 to detect and quantify CD74+ microglia in control (D) and
knockout mice (E). Immunohistochemical detection of MHCII and Iba1 in control mice (F) and
Tgfbr2-deficient mice (G). Representative images at a magnification of 60× are shown. Scale bars
indicate 50 µm. Quantifications of YFP+ (H), CD74+ (I), and MHCII+ (J) microglia in control and
mutant mice. Data are given as means ± SEM for at least three mice per group. p-values derived
from student’s t-test are shown as follows: **** p < 0.0001.



Int. J. Mol. Sci. 2022, 23, 10247 8 of 13

3. Discussion

In the present study, we demonstrated that TGFβ1 inhibited LPS-induced upregula-
tion of Cd74 in the microglia cell line BV2 as well as in primary mouse microglia. Moreover,
treatment with TGFβ1 alone resulted in significant downregulation of Cd74 in both cell
culture systems. Interestingly, we provided evidence that LPS predominantly increased
the 41 kDa chain and inhibition of TGFβ signaling resulted in upregulation of the 31 kDa
isoform. Using flow cytometry, we clearly showed that inhibition of TGFβ signaling in
mixed glial cultures increased the surface levels of CD74 in vitro. Finally, silencing of
microglial TGFβ signaling in vivo using Cx3cr1CreERT2:R26-YFP:Tgfbr2fl/fl mice confirmed
our in vitro data. Here, lack of Tgfbr2 in microglia resulted in robust microglia activation
associated with intense CD74 and MHCII immunoreactivity. Together, these data vali-
dated CD74 as a microglia activation marker and further underlined the importance of
TGFβ1 and microglial TGFβ signaling to regulate expression of Cd74 and, thus, control
microglia activation.

The analysis of total proteins from BV2 cells and primary microglia in vitro revealed
that CD74 was present in the 31 kDa (p31) and 41 kDa (p41) forms. Interestingly, LPS
treatment increased p41, whereas inhibition of TGFβ signaling increased the p31 form
of CD74. Moreover, the increase in the 41 kDa isoform triggered by LPS treatment was
faster in BV2 cells compared to primary microglia, which might be caused by the well-
described activated phenotype of BV2 cells. These two isoforms existed due to alternative
splicing [24], and the observed expression suggested that LPS and inhibition of TGFβ
signaling activate different pathways, resulting in differences in CD74 isoform expression.
Studies involving transgenic mice with exclusive expression of specific CD74 isoforms have
demonstrated that in general all isoforms are able to mediate MHCII assembly, transport,
and subsequent antigen presentation [24,25]. However, subtle differences of presented
peptides have been described [26]. To which extent the observed differences in CD74
isoform expression in microglia contribute to functional aspects remains unclear. Absence
of the p41 CD74 isoform seems to prevent associations between CD74 and CD44 in human
lung adenocarcinoma-derived cells [27]. Moreover, the invariant chain p41 mediates
production of soluble MHC class II molecules [28]. Noteworthy, an inhibitory fragment
from the p41 isoform of CD74 has been shown to regulate activity of cysteine cathepsins in
antigen presentation, suggesting that regulation of the proteolytic activity of most of the
cysteine cathepsins by p41 is an important control mechanism of antigen presentation [29].
Inhibition of cathepsin L was shown to alleviate microglia-mediated neuroinflammatory
responses through caspase-8 and NF-κB pathways [30]. It remains to be elucidated why
inhibition of TGFβ signaling exclusively increased the levels of the 31 kDa isoform of CD74.
As long as the function of this isoform in microglia is not understood, we can only speculate
about the functional outcome of the CD74 31 kDa upregulation. However, all recent
data using inhibition of microglia TGFβ signaling resulted in an activation phenotype of
microglia [18,31].

Another very exciting feature of CD74 is that MIF binding induces its intramembrane
cleavage and the release of the cytosolic intracellular domain (CD74-ICD). CD74-ICD is
able to interact with the transcription factors Runt-related transcription factor (RUNX) and
NF-κB and binds to regulatory sites of genes involved in apoptosis, immune response, and
immune cell migration [32]. Based on these reports, CD74 might have anti-inflammatory
as well as inflammatory functions.

Using Cx3cr1CreERT2:R26-YFP:Tgfbr2fl/fl mice, we clearly demonstrated that lack mi-
croglial TGFβ signaling resulted in intense CD74 immunoreactivity of microglia indicating
microglia activation. It is worth to speculate about the functions of CD74 in this context.
It has been demonstrated that MIF induces astrocyte activation by binding to CD74 [33].
Interestingly, the targeted inhibition of CD74 attenuates adipose COX-2-MIF-mediated
M1 macrophage polarization and abrogates obesity-related adipose tissue inflammation
and insulin resistance [34]. Several studies have linked high expression of CD74 with
increased infiltration of immune cells in different diseases and disease models. For instance,



Int. J. Mol. Sci. 2022, 23, 10247 9 of 13

increased infiltration of immune cells in breast cancer has been described after upregu-
lation of CD74 [30]. Moreover, traumatic brain injury causes selective, CD74-dependent
peripheral lymphocyte activation that exacerbates neurodegeneration [31]. Using MIF- and
CD74-deficient mice, it was shown that CCL2-induced leukocyte adhesion and transmigra-
tion are dependent on MIF and CD74 [35]. Taken together, TGFβ-mediated downregulation
of CD74 in vivo might be essential to control excessive microglia activation. Given the fact
that predominantly neurons seem to express and release TGFβ1 in vivo [36], TGFβ1 should
be considered as an essential factor in neuron-microglia-crosstalk under physiological and
pathological conditions.

In conclusion, this study provides evidence that microglia activation was associated
with increased expression of CD74 and that microglial expression of CD74 was tightly
controlled by TGFβ signaling in vitro and in vivo. It remains unclear whether TGFβ
directly controls CD74 expression or whether crosstalk with other signaling pathways is
involved in this regulation. Moreover, the functional aspects of microglial CD74 in distinct
activation settings need to be addressed in future studies using microglia-specific targeting
of Cd74.

4. Materials and Methods
4.1. Animals

Throughout the study, NMRI mice were used for the establishment of primary microglia cul-
tures. The generation of microglia-specific Tgfbr2-knockout mice has been described elsewhere [18].
Briefly, the mouse lines Cx3cr1CreERT2 [37], B6.129× 1-Gt(ROSA)26Sortm1(EYFP)Cos/J [38], and
Tgfbr2flox/flox [39] were used to obtain Cx3cr1CreERT2:R26-YFP:Tgfbr2fl/fl mice. Cre recombi-
nase activation was induced by injection of 0.2 mg tamoxifen (TAM, T5648; Sigma-Aldrich,
Schnelldorf, Germany) and solved in 10 µL corn oil (C8367, Sigma-Aldrich) at postnatal
days 3 (P3) and 5 (P5). Mice carrying one allele Cre (Cre/+) were considered as knockouts,
whereas mice lacking Cre expression (+/+) were referred to as control mice.

All mice were obtained from Janvier (Le Genest-Saint-Isle, France) and were kept
at 22 ± 2 ◦C under a 12 h light/dark cycle with ad libitum access to water and chow.
All mice procedures were performed in accordance with the German Federal Animal
Welfare Law and the local ethical guidelines of the University of Rostock. Experiments
involving mice were approved by the animal experimentation committee of the University
of Rostock and the Landesamt für Landwirtschaft, Lebensmittelsicherheit und Fischerei
Mecklenburg-Vorpommern (7221.3-1-064/18).

4.2. Reagents

Primary microglia cultures as well as BV2 cells were treated with the following factors
and reagents: 5 ng/mL TGFβ1 (Peprotech, Hamburg, Germany), 1 µg/mL LPS (Sigma-
Aldrich, Schnelldorf, Germany), and 500 nM TGFβ receptor type I inhibitor (TβRI, Cal-
biochem, Merck, Germany).

4.3. BV2 Cell Culture

The microglia cell line BV2 was kept in DMEM/F12 media (Thermo Fisher Scientific,
Dreieich, Germany) supplemented with 10% heat-inactivated FCS (PAN Biotech) and 1%
penicillin/streptomycin (Sigma-Aldrich, Schnelldorf, Germany). BV2 cells were incubated
at 37 ◦C in a 5% CO2 and 95% humidified atmosphere. Cells were washed with PBS and
kept under serum-free conditions for at least 2 h prior to treatment with TGFβ1 and/or
LPS for 6 h, 12 h, and 24 h.

4.4. Primary Microglia Cultures

Primary microglia cultures were established as described previously [31]. Briefly,
brains from new born P0/P1 NMRI mice were washed with Hank’s balanced salt solutions
(HBSS, Gibco), and all blood vessels and meninges were rapidly removed. Next, brains
were transferred to ice-cold HBSS and digested with 1× Trypsin-EDTA (Thermo Fisher
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Scientific, Dreieich, Germany) at 37 ◦C for 10 min. An equal amount of ice-cold fetal calf
serum (FCS) containing DNase (Roche, Mannheim, Germany) at a final concentration
of 0.5 mg/mL was added, and finally, brains were dissociated using Pasteur pipettes.
Dissociated cells were centrifuged, collected and resuspended in DMEM/F12-culturing
media containing 10% FCS and 1% penicillin/streptomycin (Sigma-Aldrich, Schnelldorf,
Germany). Dissociated cells from 2–3 brains were transferred into poly-D-lysine-coated
(Sigma-Aldrich, Schnelldorf, Germany) 75 cm2 tissue culture flasks. For 25 cm2 flasks, cells
from 1 P0/P1 brain were used.

4.5. RNA Isolation, Reverse Transcription, and Quantitative RT-PCR

Total RNA was isolated from primary microglia or BV2 cells using TRIfast (VWR,
Darmstadt, Germany) according to the manufacturer’s instructions. RNA concentra-
tions were analyzed using a photometer (Eppendorf BioPhotometer D30). cDNA syn-
thesis was performed using a ProtoScript II First Strand cDNA Synthesis Kit (New Eng-
land BioLabs) according to the manufacturer’s instructions. A CFX ConnectTM System
(Bio-Rad, München, Germany) was employed for quantitative RT-PCR (qPCR) analyses.
Samples were prepared using a Luna Universal qPCR Master Mix (New England Bio-
Labs, Ipswich, MA, USA). All qPCR reactions were performed in duplicates, and the
results were analyzed using the CFX ConnectTM System software and the comparative
CT method. Data are presented as 2−∆∆CT for the gene of interest (Cd74) normalized
to the housekeeping gene Gapdh and presented as percent of the control groups. The
following primers were used: Cd74 for 5′-CCGCCTAGACAAGCTGACC-3′, Cd74 rev 5′-
ACAGGTTTGGCAGATTTCGGA-3′ (NM_010545.3), Gapdhfor 5′-AGGTCGGTGTGAACG
GATTTG-3′, and Gapdhrev 5′-TGTAGACCATGTAGTTGAGGTCA-3′ (NM_008084).

4.6. Protein Isolation and Western Blotting

Total proteins were isolated from microglia cultures using PierceTM RIPA buffer
(Thermo Fisher Scientific, Dreieich, Germany), and protein concentrations were measured
using a PierceTM BCA Protein Assay Kit (Thermo Fisher Scientific, Dreieich, Germany)
according to the manufacturer’s instructions. Lysates (10 µg total protein/lane) were
loaded on Mini-PROTEAN Precast gels (Bio-Rad, München, Germany) for electrophoresis.
Blotting was performed using a Trans-BlotR TurboTM Transfer System and a Trans-BlotR

TurboTM RTA Midi PVDF Transfer Kit (Bio-Rad, München, Germany). All membranes
were blocked with 5% BSA (Sigma-Aldrich) in TBST for 90 min. Incubation with primary
antibodies against CD74 (BD Biosciences, 555317) and β-Actin (Cell Signaling Technologies,
4970) was performed at 4 ◦C overnight. Finally, membranes were washed with TBST and
incubated with HRP-conjugated anti-rat (Abcam, ab97057) and anti-rabbit (Cell Signal-
ing Technologies, 7074S) secondary antibodies. Labelled proteins were detected using a
PierceTM ECL Western Blotting Substrate (Thermo Fisher Scientific, Dreieich, Germany).
Blots were captured using a Proxima ECL Detection Setup (Isogen). Densitometric analysis
was performed using ImageJ software (National Institutes of Health, Bethesda, MD, USA).

4.7. Immunocytochemistry and Immunohistochemistry

Primary microglia were shaken off from mixed glial cultures, plated on coverslips and
incubated at 37 ◦C prior to treatments. After treatments, cells were washed with PBS and
fixed with 4% paraformaldehyde (PFA) for 15 min, and washing with PBS (3 × 5 min) was
performed prior to blocking with PBS containing 10% normal goat sera and 0.1% Triton-X
100 (Sigma-Aldrich, Germany) for 1 h. Microglia were incubated with anti-Smad1/2/3
(sc-7960, Santa Cruz Biotechnology Inc., Dallas, TX, USA) at 4 ◦C overnight. After washing
three times with PBS, cells were incubated with Alexa Fluor-594-conjugated secondary
antibodies (1:500, Abcam, ab150080) for 1 h. FITC-coupled isolectin (Invitrogen, Waltham,
MA, USA, 121411) served as a microglial marker, and nuclei were stained using 4′-6′-
diamidino-2-phenylindole (DAPI, Dianova, 711-165-152). Finally, coverslips were mounted
on objective slides using Fluoromount-G mounting media (SouthernBiotech).



Int. J. Mol. Sci. 2022, 23, 10247 11 of 13

For immunohistochemistry, new born Cx3cr1CreERT2:R26-YFP:Tgfbr2fl/fl and control
mice received tamoxifen injections (0.2 mg/10 µL) at postnatal days 3 and 5. Subsequently,
brains were isolated and fixed at postnatal day 14, and 50 µm cryostat sections were stained
using anti-Iba1 (Wako Chemicals, 019-19741), anti-GFP (Abcam, ab13970), anti-CD74 (BD
Biosciences, 55317), and anti-MHC-II (Santa Cruz, sc-59318) primary antibodies. Alexa
FluorR 488 anti-chicken (Abcam, ab150173), Alexa FluorR 488 anti-rat (Abcam, ab150157),
and Alexa FluorR 594 anti-rabbit (Abcam, ab150080) secondary antibodies were used. DAPI
was used as a nuclear counterstain, and sections were mounted using Fluoromount-G
mounting media (SouthernBiotech, Birmingham, AL, USA). All fluorescence images were
taken using the Nikon C1 confocal microscope (Nikon, Düsseldorf, Germany). Quantifica-
tions of cells was performed using ImageJ software (National Institutes of Health, Bethesda,
MD, USA).

4.8. Flow Cytometry

Primary microglia were shaken off from mixed glia cultures after treatments and
were stained with primary antibodies directed against F4/80 (4 µL, MCA497A488, AbD
Serotech) and CD74 (3 µL, 151004, BioLegend, San Diego, CA, USA) at 4 ◦C for 30 min. Fc
receptor blocking was performed for all samples using TrueStain fcX (101319, Biolegend) to
avoid unspecific antibody binding. Finally, cells were washed with 500 µL FACS buffer,
centrifuged for 5 min at 400× g and analyzed using a CytoFlex cytometer (Beckman Coulter,
Brea, CA, USA). Quantifications were evaluated using the FlowJoTM v10.8 software (BD
Life Sciences, Aalst, Balgium).

4.9. Statistics

All data presented here are given as means ± SEM. Multiple group analysis was con-
ducted using one-way ANOVA followed by Tukey’s multiple comparison test. p-values < 0.05
were considered as being statistically significant. The software GraphPad Prism 8 (Graph-
Pad Software Inc., San Diego, CA, USA) was used for all analyses.
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