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Abstract: The newly developed prediction models, having the aim to classify Romanian honey
samples by associating ATR-FTIR spectral data and the statistical method, PLS-DA, led to reliable
differentiations among the samples, in terms of botanical and geographical origin and harvesting
year. Based on this approach, 105 out of 109 honey samples were correctly attributed, leading
to true positive rates of 95% and 97% accuracy for the harvesting differentiation model. For the
botanical origin classification, 83% of the investigated samples were correctly predicted, when four
honey varieties were simultaneously discriminated. The geographical assessment was achieved in a
percentage of 91% for the Transylvanian samples and 85% of those produced in other regions, with
overall accuracy of 88% in the cross-validation procedure. The signals, based on which the best
classification models were achieved, allowed the identification of the most significant compounds for
each performed discrimination.

Keywords: honey authentication; ATR-IR spectroscopy; PLS-DA; preprocessing

1. Introduction

Honey is a natural sweet substance made by Apis mellifera bees, either from the nectar
of plants, from the secretion of plants or from the excretion of insects. It has been consumed
since ancient times and it is known to have high nutritional value. Honey mainly consists of
carbohydrates such as fructose, glucose and sucrose, whose concentrations depend on the
botanical origin. Non-volatile compounds such as sugars [1,2], amino acids [3,4], proteins,
minerals [1] and phenolic compounds [5] contribute to the taste and color of the honey,
while the volatile compounds confer its aroma [6].

Since honey supply is lower than the demand, it is susceptible to adulteration. Monoflo-
ral honey, being the most appreciated, is the main target of adulteration by mixing multiple
types of multifloral honey. The quality, aroma and physical properties of honey within the
same floral source vary due to seasonal climatic variations or the geographical location of
the apiary [3]. Therefore, an important issue has been to identify pure honey and verify its
authenticity, by developing analytical approaches to permit the verification of the quality
specification.

The composition of honey changes over time, and the most important modifications are
related to its concentrations of dextrose, levulose, maltose, sucrose, higher sugars, diastase
and total acidity, which lead to darkening and loss of aroma and flavor [7]. Furthermore,
during storage, the Maillard reaction and/or caramelization can occur, when the concen-
tration of monosaccharides decreases and the levels of organic acids, 5-hydroxymehyl-2-
furaldehyde (HMF) and furosine increase [8,9].

The most popular method to authenticate the botanical origin of honey is melissopa-
lynological analysis based on microscopic identification of the pollen type [10]. However,
this method is time-consuming and implies many processing steps. Therefore, there is
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an ongoing need to develop faster, practical methods to determine the botanical or geo-
graphical origin of the honey. In recent years, the Fourier transform infrared spectroscopy
(FT-IR) has been frequently used in the food industry for the detection and quantification
of adulteration [11,12], because of its fast response time and wide spectral range of analysis.
Moreover, if the spectrometer is equipped with an attenuated total reflectance (ATR) sample
technique, it is nondestructive and does not require any sample manipulation [6,13].

Near-infrared and mid-infrared spectroscopy in corroboration with chemometric meth-
ods were extended, developed and successfully used for the quality control and botanical
origin assessment of honey samples [14–17]. Several methods have been developed using
partial least squares discriminant analysis (PLS-DA) for the detection of adulterated honey,
by determining the sugar syrup content [18,19] or for sugar quantification in honey, such
as glucose, fructose, sucrose and maltose [10,12]. Good results in differentiating the botan-
ical origin of 11 honey types using linear discriminant analysis (LDA), having a correct
classification rate ranging from 70 to 100%, were reported in the literature by Ruoff and
co-workers [10]. Moreover, a good botanical classification of honey samples from Turkey
by using principal component analysis (PCA) and hierarchical cluster analysis (HCA) was
obtained by Gok and co-workers [18]. The near- and mid-infrared spectra of raw honey
samples were also employed for the classification of honey samples with different botanical
origins, leading to accuracies greater than 96% when PLS-DA and PCA were applied [19].

For the geographical authentication, Formosa et al. used spectral transformations,
variable selection and PLS-DA to successfully classify the provenance of 21 local and
49 non-local honey samples [20]. Other reported studies present the use of chemometric
tools (PLS, PCA, LDA) in NIR spectroscopic studies to differentiate honey according to its
geographical origins [21,22]. All these studies employed the use of spectral transformations
prior to multivariate analysis.

This study proposes a new approach for the development of prediction models to clas-
sify a honey set formed by 109 Romanian samples belonging to four botanical origins that
were produced in two consecutive harvesting years. The association between ATR-FTIR
spectral data and a supervised statistical method, PLS-DA, led to reliable differentiations
among the samples in terms of the year of harvest, botanical origin and geographical prove-
nance. The novelty of the present work is highlighted by the construction of a highly precise
discrimination model capable of distinguishing honey belonging to 2020 production from
that harvested in 2021. According to our knowledge, to date, there are no reported data
related to the possibility of easily differentiating the harvesting year of honey based on the
association of IR spectroscopy and advanced statistical models. The practical importance
of this classification is related to the detection of the possible unfair practices related to the
re-utilization of unsold honey by labeling it as recently harvested. In order to maximize the
prediction rate of our developed differentiation models, special emphasis was given to the
applied data preprocessing step, a fact that also proved to be a very effective step in the
models’ prediction performance.

2. Results

All honey spectra were recorded in the spectral range 550–4000 cm−1. For a clear
understanding of the samples’ characteristics, Figure 1 contains the FTIR spectra of acacia,
colza, honeydew and linden honey species (Figure 1a) and acacia samples collected in the
2020 and 2021 years, respectively (Figure 1b).

As has been demonstrated over the years in the literature [18,23–27], six representative
regions can be emphasized in the FTIR spectra of honey (Figure 1a). Most of these bands
are associated with carbohydrates and O-H stretching vibrations (both from water and
carbohydrates), but the overlapping with the peaks originating from some minor com-
pounds such as amino acids, proteins or various organic acids can be also considered in
some spectral regions (i.e., spectral range from 1170 to 1540 cm−1, 1550 to 1750 cm−1 or
2800 to 3000 cm−1) [13,26–29].
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Moreover, visible differences are observed in almost all IR regions of the investigated
honey varieties (Figure 1a) and especially in three domains, namely 950 to 1170 cm−1,
1170 to 1540 cm−1 and 3000 to 3670 cm−1, when studying the harvesting year influences
(Figure 1b). Because the honey differentiations, according to some predefined criteria, such
as harvesting year and botanical and geographical origin, are mainly realized based on
the minor constituents of the honey—both organic and inorganic compounds—for the
classification models’ development, only the fingerprint region between 550 and 1775 cm−1

was further considered, in order to reduce the dimensionality of the data set.

3. Discussion

For the development of the most effective recognition models, the obtained experi-
mental spectra were preprocessed using autoscale. Then, a feature selection procedure that
aimed to reduce the number of input variables only to those that had the highest discrimina-
tion potential was applied. The final differentiation models were constructed by applying
the PLS-DA supervised method on the input space corresponding to only those previously
identified meaningful markers. A comparison of the models’ performance showed that
the best recognition models were obtained when a preprocessing step was performed and
when only the relevant markers were used for the development of the models.

The previously reported studies emphasized the potential of IR spectroscopy in the
differentiation of the botanical and geographical origins of honey [19–21], but according to
our knowledge, no studies related to the differentiation of honey harvesting years have
been performed.

3.1. Harvesting Year Differentiation

For the development of the model for harvesting year differentiation, a total of
109 honey samples, 60 from 2020 and 49 from 2021, were considered. The best obtained
recognition model was constructed by taking into consideration 63 markers (i.e., spectral
points), as resulted from the model-based feature selection method (Figure 2). Six latent
variables were used to construct the differentiation model, the selection of which was made
with the aim of minimizing the cross-validation error average (Figure 3). Through this
classifier, 105 out of 109 honey samples were assigned to the correct class, leading to true
positive rates of 95% and 97% for the groups of 2020 and 2021, respectively. The scores, ROC
and RMSECV plots associated with the prediction model are presented in Figures 4 and 5.
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Figure 5. (a) ROC curves containing estimated (blue), cross-validated (green) values and model thresh-
old (red circle), and (b) overlapped RMSECV plots for 2020 (RMSECV 1—blue) and 2021 (RMSECV
2—green) groups associated with the PLS-DA model developed for harvesting year differentiation.

The markers based on which the best classification was achieved were situated in the
following spectral ranges: 550–700, 1050–1100 and a band around 1419 cm−1 (Figure 2).
An important observation pertained to the fact that the number corresponding to these
relevant markers was considerably lower (i.e., 63) as compared to the initial dimensionality
of the entire spectra (i.e., 1246).

An important spectral range that allowed the present classification is represented by
the region between 550 and 700 cm−1. This region is known as the “crystalline region”
and contains the exocyclic deformations (CCO) [24], or it can be associated with the M-O
vibrations [30], being able to offer information about the presence of some metals that are
directly related to environmental conditions (i.e., soils, pollution issues).

Another spectral region that contained markers for the harvesting year differentiation
is the one situated between 1050 and 1100 cm−1. This region is specific for the C-O
stretching vibration in carbohydrates such as sucrose, glucose and fructose [31]. This range
also indicates the presence of C-C stretching modes and O-H vibrations, characteristic of
organic acids, carotenes and polyphenols [12,32]. Monosaccharide concentrations can be
considered as an important feature for the storage time of honey, since their concentration
decreases with time due to spontaneous chemical degradation, such as the non-enzymatic
Maillard reaction [9].

A meaningful marker for the present classification was represented by the band
around 1419 cm−1, attributed to a combination of O-H bending of the C-O-H group and
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C-H bending vibrations of alkenes [12]. The structure of some organic acids contains
-CH=CH- bonds, which can contribute to this band, e.g., in the case of fumaric acid (COOH-
CH=CHCOOH. The presence of fumaric acid is an indicator of the deterioration of honey
because of storage and aging [7,12].

3.2. Botanical Differentiation

The botanical classification model was constructed based on the entire set of honey
samples that corresponded to the four floral types: acacia (41 samples), colza (18), honeydew
(20) and linden (30). The most accurate obtained PLS-DA classifier was built on 146 features
that were selected as significant markers for the botanical differentiation of the honey
samples (Figure 6). Eighteen components proved to be the optimal selection for the number
of latent variables (Figure 7), leading to 83% accuracy in the cross-validation evaluation
procedure. Therefore, 91 samples were correctly predicted (34 acacia, 14 colza, 11 honeydew,
24 linden samples) according to their botanical class. The score plot associated with the
botanical differentiation models is illustrated in Figure 8. Moreover, the RMSECV and ROC
plots are presented in Figure 9a,b.
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The markers based on which the best classification was achieved were situated in the
spectral ranges between 550 and 1000, and 1550 and 1700 cm−1.

The spectral area 550–700 cm−1 can be also associated with the skeletal vibrations
of carbohydrates, being known as the “crystalline region”, containing the exocyclic de-
formations (CCO) [24]. However, few influences for botanical discrimination can be also
identified in the region below 700 cm−1 (Figure 6).

As has been illustrated in Figure 1a, the spectral area from 700 to 900 cm−1 is specific
to the anomeric forms of saccharides, being called the fingerprint or “anomeric region”. By
analyzing the bands from this region, it was possible to identify the α and β anomers in
monosaccharides or higher saccharides [24]. The peaks from 950 to 1000 cm−1 correspond
mainly to the C-O stretching of carbohydrates, and allow differentiation according to
the presence of glucose, fructose and sucrose in the honey samples. These two regions
have the most significant contribution to the botanical discrimination of samples, being in
accordance with the fact that various types of honey contain different amounts of glucose
and fructose, respectively. This region can also indicate the presence of C-O stretching
modes characteristic of polyphenols [32], which is an indicator of floral origin, as flower
honey is characterized by high concentration values of glucose and fructose and low
polyphenol content, whereas honeydew honey has a lower concentration of glucose and
fructose and higher polyphenol content compared with other varieties of honey [33].

The spectral region around 1530–1730 cm−1 represents an overlapped signal involving
the O-H deformation vibration of water and the C=O stretching from carbohydrates,
proteins, amino acids or organic acids [18,27,29,30]. The region of 1600–1700 cm−1 was
also involved in the botanical differentiation in previously reported studies [18,26], and
its efficiency can be explained through the presence of proteins and some interactions, i.e.,
water–carbohydrates and water–proteins, which are directly related to the floral origin.
However, in this range, the water content has to be considered as having a significant
influence on the IR spectra.
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All these identified meaningful spectral regions from the current work were previ-
ously used for developing models in order to differentiate the botanical origins of honey
samples [10,12,18,19,26].
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3.3. Geographical Discrimination

The PLS-DA models designed for geographical differentiation were based on 54 samples:
34 from Transylvania and 20 honey samples from other regions. Once again, the recognition
model that proved to have the highest discrimination capability corresponded to a reduced
input space—namely, only 28 spectral points were taken into account (Figure 10). Regard-
ing the selection for the number of latent variables, seven components were chosen for
the construction of the PLS-DA model (Figure 11). Here, 88% accuracy was achieved after
conducting the cross-validation procedure, leading to the correct prediction of 91% of the
Transylvanian samples and 85% of the honey samples produced in the other regions. Satis-
factory separation of the samples in terms of the geographical origin is reflected through
the score plot associated with the first three latent variables (Figure 12). Moreover, the
RMSECV and ROC plots associated with the developed classification model are presented
in Figure 13a,b.
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The markers based on which the best classification was achieved are illustrated in
Figure 10, being mainly situated in the region 550–700 cm−1, and, besides these, a few nar-
row bands around 710, 810, 870 and 1180 cm−1 also proved to have discrimination potential.
The spectral region 500–700 cm−1 is characteristic of the skeletal vibrations of carbohydrates,
but these markers can be also indicative of the soil composition [34] and can reveal the
differences in the mineral content of the soil. Thus, the peaks found in this area correspond
to M-O vibrations and could give information about the presence of some metals, such
as aluminum, copper, lead, iron, tin [30], manganese [35], lithium [36] or strontium [37],
which could be seen as possible markers of geographical origin. Manganese, lithium and
strontium elements have been identified as elemental markers in various food commodities
from the Transylvania area, such as milk [38], carrots [39] and cheese [40]. These elements
proved to be powerful discriminators of Transylvanian products as compared to those that
originated from other geographical regions.

The signals from the region between 810 and 890 cm−1 are characteristic of the
anomeric vibrations of carbohydrates or could be due to the C-H out-of-plane deformation
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vibrations [28], being important for honey analysis, while the band at 1180 cm−1 could be
associated with C-O stretching vibrations from phenols [30].
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4. Materials and Methods
4.1. Sample Description

For this study, 109 authentic honey samples collected during the 2020 and 2021 harvest,
directly from producers located in the most important melliferous regions of Romania,
were analyzed and the obtained analytical data were further processed.

The honey floral origin, year of harvest and geographical distribution are presented
in detail in Table 1. With respect to the geographical origin, it was necessary to take into
account the apiculture practices in Romania. Because, for some flowers (e.g., acacia), the
blooming period is very short and differs from one Romanian region to another, moving
the hives in order to increase honey production is a common practice. This habit leads to
the imprecise geographical origin of some honey samples. For this reason, only the samples
having an exact region of collection (i.e., Transylvania) were explicitly considered to belong
to a precise area.
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Table 1. The honey botanical origin, year of harvest and geographical distribution of the authentic
honey samples.

Botanical Origin Sample Number
Harvesting Year Geographical Origin

2020 2021 Transylvania Others

Acacia 41 20 21 14 6

Linden 30 19 11 7 6

Colza 18 8 10 5 4

Honeydew 20 13 7 8 4

Total 109 60 49 34 20

All collected honey samples were stored in the dark, in screw-cap jars, at room
temperature (18–25 ◦C) until the spectral acquisition. Prior to the spectral collection, the
crystalized honey samples were heated overnight (37 ◦C) and manually stirred to ensure
their homogeneity.

4.2. Vibrational Spectroscopy Analysis and ATR-FTIR Spectroscopy

The infrared spectra of the honey samples were recorded with a Jasco 4100 FTIR
spectrometer in attenuated total reflectance (ATR) mode with a ZnSe crystal. The detection
system consisted of a DTGS detector, having a spectral resolution of 4 cm−1. At room tem-
perature, samples were placed on the crystal. Each spectrum was recorded in the spectral
range 550–4000 cm−1, by averaging 16 scans. The air spectrum was taken as background,
and between measurements, the ATR crystal was carefully cleaned with acetone.

4.3. Statistical Treatments

For the development of the honey classification models, a supervised statistical method
was applied, namely partial least squares discriminant analysis (PLS-DA). PLS-DA repre-
sents a classification methodology derived from PLS regression and it involves building
a regression model between the data matrix containing the input variables (i.e., measure-
ments) and a dummy matrix that illustrates the adherence of each sample from the data set
to a predefined class. Therefore, the goal is the identification of the latent variables (i.e.,
PLS components) that both capture variance and attain correlation [41,42]. The evaluation
of the developed discrimination models was performed by means of the venetian blinds
cross-validation technique, having the number of data splits set to ten. Therefore, the
performance metrics illustrating the classification ability of the honey differentiation are the
results of an unbiased evaluation methodology. In the framework of the present study, the
number of latent variables to keep for the construction of the PLS-DA models was chosen
with the aim of minimizing the cross-validation classification error average.

The identification of the features having the highest classification power was achieved
by applying a feature selection tool that relies on a comparison of the root-mean-square
error of cross-validation values (RMSECV) of PLS models built on different groups of
variables. Firstly, from the entire set of attributes, the ones having the lowest Variable
Importance in Projection (VIP) and selectivity ratio (SR) values were eliminated from the
input space; furthermore, the same procedure was followed until the performance of the
PLS-DA model did not continue to improve [43].

The pretreatment technique that was used in the present work was autoscale. Through
autoscale, the original matrix corresponding to the experimental data set is transformed so
that each column has an average of zero and a standard deviation of one.

All of the previously mentioned data processing approaches (i.e., the application of
preprocessing methods, the construction of the PLS-DA models, the selection of the most
relevant variables for the development of the honey classification models) were conducted
under the SOLO 8.9.1 (2021) software (Eigenvector Research, Manson, WA, USA).
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5. Conclusions

This study proposes a new approach for the development of prediction models aiming
to classify Romanian honey according to its harvesting year, botanical origin and geo-
graphical provenance by associating ATR-FTIR spectral data with analytical methods (i.e.,
PLS-DA). By applying, as a preprocessing step, the autoscale method, it was observed that
the models gave a better classification. Dimensionality reduction through the application
of the PLS-DA supervised method led, in most cases, to a drastic improvement in the
classification rate. Thus, for the model developed for the harvest recognition, 105 out of
109 honey samples were correctly attributed, leading to true positive rates of 95% and 97%
for the harvesting years 2020 and 2021, respectively. The markers based on which the best
classification was achieved revealed that monosaccharaides and organic acids (e.g., fumaric
acid) are important characteristics during the storage of honey.

The developed model for botanical origin classification presented a correct classifica-
tion rate of 84% when four honey varieties were simultaneously classified. The markers
selected for this classification can be explained by the differences in polyphenol concen-
tration, water content and the interaction with the carbohydrates and proteins, whose
concentrations depend on the floral origin.

The developed model for the geographical provenance allowed the correct classifica-
tion of 91% of the Transylvania samples and 85% of those produced in other regions. Thus,
the overall accuracy of the model developed for geographical origin recognition was 88%
in the cross-validation evaluation technique.

The employment in the model construction of an extended honey sample set having
a more balanced distribution could lead to the development of more robust recognition
models. This subject represents a future work direction.
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