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Abstract: Iris laevigata is ideal for gardening and landscaping in northeast China because of its
beautiful flowers and strong cold resistance. However, the short length of flowering time (2 days for
individual flowers) greatly limits its applications. Molecular breeding and engineering hold high
potential for producing I. laevigata of desirable flowering properties. A prerequisite is to identify
and characterize key flowering control genes, the identity of which remains largely unknown in
I. laevigata due to the lack of genome information. To fill this knowledge gap, we used sequencing data
of the I. laevigata transcriptome to identify MADS-box gene-encoding transcription factors that have
been shown to play key roles in developmental processes, including flowering. Our data revealed
41 putative MADS-box genes, which consisted of 8 type I (5 Mα and 3 Mβ, respectively) and 33 type
II members (2 MIKC* and 31 MIKCC, respectively). We then selected IlSEP3 and IlSVP for functional
studies and found that both are localized to the nucleus and that they interact physically in vitro.
Ectopic expression of IlSEP3 in Arabidopsis resulted in early flowering (32 days) compared to that
of control plants (36 days), which could be mediated by modulating the expression of FT, SOC1,
AP1, SVP, SPL3, VRN1, and GA20OX. By contrast, plants overexpressing IlSVP were phenotypically
similar to that of wild type. Our functional validation of IlSEP3 was consistent with the notion that
SEP3 promotes flowering in multiple plant species and indicated that IlSEP3 regulates flowering in
I. laevigata. Taken together, this work provided a systematic identification of MADS-box genes in
I. laevigata and demonstrated that the flowering time of I. laevigata can be genetically controlled by
altering the expression of key MADS-box genes.
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1. Introduction

Iris laevigata (family of Iridaceae) is an herbaceous flowering plant species growing
in the temperate regions of the Northern Hemisphere [1]. The large, bright, and elegant
flowers, along with tall, verdant, and straight leaves, make I. laevigata of high ornamental
values. In addition, I. laevigata is strongly tolerant of cold [2]. Thus, I. laevigata is an ideal
gardening plant in the northeast region of China with high commercial value. Nonetheless,
the potential of I. laevigata in gardening and landscaping is limited due to a short length
of flowering time, typically only 2 days for an individual flower and 20–25 days for the
population. Because the flower is the most important ornamental part of I. laevigata, it is
critical for breeders to identify key factors controlling flowering time and use genetic tools
to improve flowering traits [3].

Flowering is a critical developmental process featuring the transition from vegetative
to reproductive growth in plants [4]. Molecular genetics have identified six major flowering
pathways: the autonomous pathway, photoperiod pathway, gibberellic acid-dependent
pathway, vernalization pathway, aging pathway, and ambient temperature pathway [4–9].
Extensive studies have demonstrated that these pathways form intricate networks that

Int. J. Mol. Sci. 2022, 23, 9950. https://doi.org/10.3390/ijms23179950 https://www.mdpi.com/journal/ijms

https://doi.org/10.3390/ijms23179950
https://doi.org/10.3390/ijms23179950
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/ijms
https://www.mdpi.com
https://doi.org/10.3390/ijms23179950
https://www.mdpi.com/journal/ijms
https://www.mdpi.com/article/10.3390/ijms23179950?type=check_update&version=1


Int. J. Mol. Sci. 2022, 23, 9950 2 of 16

respond to a plethora of internal and external stimuli for flowering. Ultimately, these
networks converge at several key floral pathway integrators such as FLOWERING LOCUS
T (FT), SUPPRESSOR OF OVEREXPRESSION OF CONSTANS 1 (SOC1), APETALA1 (AP1),
and FLOWERING LOCUS C (FLC). Much of detailed molecular works has been performed
in the model plant Arabidopsis [10]. In I. laevigata, very few studies have been reported
on the flowering control. Most studies used plants in the same genus, focusing on the
characterization of the reproductive growth and modulation of flowering time via changing
agronomic parameters, such as photoperiod and temperature, or using plant growth
regulators [11–14]. Currently, the molecular identities of flowering pathway members and
integrators in I. laevigata remain largely unknown.

In the model plant Arabidopsis, more than 100 genes involved in the flowering path-
ways have been characterized [10]. Among them, agamous has long been recognized as a
key player in stamen and carpel development [15]. Sequence alignment showed that the
Arabidopsis agamous gene encodes a transcription factor that is highly similar to homeotic
proteins in yeast (Mini Chromosome Maintenance 1, or MCM1), snapdragon (Deficiens, or
DEF), and humans (Serum Response Factor, or SRF). Collectively, these genes were named
the MADS-box gene family using the first letter of the four founding gene members [16].
MADS-box transcriptional factors function in a diverse array of biological processes during
development in eukaryotes. Nonetheless, all MADS-box proteins share the conserved
MADS-box domain of around 60 amino acids in the N-terminus (also known as the M
domain). Among them, MIKC-type genes encode plant-specific MADS-box proteins due
to the presence of three additional domains (the intervening domain, keratin domain,
and C-terminal domain) [17]. Two subtypes of MIKC, MIKCC, and MIKC*, have been
recognized based on variances in the intervening domain [18].

Given the essential role of MADS-box transcription factors in flowering, extensive
work has been performed in the identification of the encoding genes and delineation of
gene functions [19–26]. Advances in genome sequencing also allowed whole-genome
identification of MADS-box genes in many plant species. In the first comprehensive
profiling of MADS-box genes, the consensus sequence encoding the MADS-box domain
was used to search the genome of Arabidopsis [27]. MADS-box genes were identified, which
were categorized into five groups (MIKC, Mα, Mβ, Mγ, and Mδ) based on phylogenetic
analysis. Later, a similar approach was used to identify MADS-box genes in rice, another
model plant for both basic and crop research [20]. Compared to Arabidopsis, the rice genome
consists of a smaller MADS-box gene family with 75 members that are also categorized into
five groups (MIKCC, MIKC*, Mα, Mβ, and Mγ). Since then, MADS-box genes have been
documented in various plant species including bread wheat [21], willow [22], bamboo [23],
watermelon [24], cucumber [25], and foxtail millet [26].

Due to the lack of genome information, molecular studies in I. laevigata are lagging
far behind compared to those of other plant species. Consequently, little is known on
the molecular mechanisms behind the flowering control in I. laevigata. In addition, the
identity and function of MADS-box genes in I. laevigata have not been reported. To over-
come the unavailability of genome data, our group recently performed RNA-sequencing
using the flower tissue of I. laevigata [2]. The valuable resource made it possible to screen
23 R2R3-MYBs genes that are involved in cold-resistance in I. laevigata [2]. Using a sim-
ilar approach, the aim of this study was to systematically identify MADS-box genes in
I. laevigata and characterize selected genes in the context of flowering control. Here, we
report the identification of 41 putative MADS-box genes and phylogenetic/structural anal-
ysis of candidate genes. We selected two genes for further functional studies and found
that both IlSEP3 (SEPALLATA3) and IlSVP (SHORT VEGETATIVE PHASE) encode proteins
that are localized into the nucleus. Interestingly, the two proteins showed physical interac-
tions. Overexpressing IlSEP3, but not IlSVP, promoted flowering in Arabidopsis possibly by
regulating the expression of genes in multiple pathways.
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2. Results
2.1. Genome-Wide Identification of MADS-Box Genes in I. laevigata

A total of 41 non-redundant MADS-box genes were identified from our full-length
transcriptomics database (Figure 1). Phylogenetic analysis showed that there are 8 type
I and 33 type II MADS-box genes in I. laevigata. Among the 8 type I genes, 5 and 3
belong to the Mα and Mβ subfamily, respectively. Type II MADS-box genes consist of
2 MIKC* members and 31 MIKCC members, which can be further divided into the following
7 subtypes: SEP-like (n = 7), AGL6-like (n = 1), SQUA-like (n = 5), AG-like (n = 1), TM3-like
(n = 5), DEF/GLO-like (n = 11), and STMADS11-like (n = 1).
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2.2. Cloning and Bioinformatics Analysis of IlSEP3 and IlSVP

We next cloned both IlSEP3 and IlSVP (Figure S1). Sequencing results confirmed that
the ORF of IlSEP3 was 720 bp, encoding a protein of 239 amino acid residues (Figure S2A).
The ORF of IlSVP was 705 bp with a deduced protein of 234 amino acid residues (Figure S2B).
Both genes were predicted to encode MIKC-type MADS-box proteins with the presence of
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a MEF2-like MADS domain and a K-box domain (Figure S3). Sequence alignment showed
a high level of similarity between IlSEP3 and SEP3 from other plant species, all of which
share the characteristic SEP3Imotif and SEP3IImotif (Figure 2). Similarly, a high level
of sequence conservation was also found for IlSVP and its homologs from other plants
(Figure 3). Phylogenetic analysis showed that the two proteins are most closely related to
the counterparts in Crocus sativus (also in the Iris family, Figure S4).
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Figure 2. Sequence alignment of IlSEP3 proteins from different species. IlSEP3: Iris laevigata
(ON398430); AoAGL9: Asparagus officinalis (XP_020247630.1); CsSEP3: Crocus sativus (ACB69509.1);
AcSEP3: Allium cepa (QCT25556.1); FhSEP3: Freesia hybrid cultivar (QGV23785.1); AcAGL9:
Ananas comosus (XP_020107646.1); PdAGL9: Phoenix dactylifera (XP_038986890.1); EgAGL9:
Elaeis guineensis (XP_010913017.1); MsAGL9: Musa acuminata subsp. Malaccensis (XP_009415892.1);
PaAGL9: Persea americana (AAX15924.1); AhSEP3: Alpinia hainanensis (ALB09087.1); DcAGL9:
Dendrobium catenatum (XP_020706096.1); EpSEP3: Euptelea pleiosperma (ADC79706.1); NnAGL9:
Nelumbo nucifera (XP_010250667.1); CgSEP3: Cymbidium goeringii (AHJ80843.1).
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Figure 3. Sequence alignment of IlSVP proteins from different species. IlSVP: Iris laevigata
(ON398431); CsSVP: Crocus sativus (QIH12017.1); NnSVP: Nelumbo nucifera (XP_010254525.1); EgSVP:
Elaeis guineensis (XP_010942683.1); CnSVP: Cocos nucifera (EHA8591139.1); HhSVP: Hemerocallis
hybrid cultivar (QBX87860.1); VvSVP: Vitis vinifera (XP_019073897.1); MeSVP: Manihot esculenta
(XP_021631111.1); HbSVP: Hevea brasiliensis (XP_021662492.1); VrSVP: Vitis riparia (XP_034692566.1);
SiSVP: Sesamum indicum (XP_020554864.1); PcSVP: Paphiopedilum callosum (QXO37013.1); QlSVP:
Quercus lobata (XP_030923627.1); PdSVP: Phoenix dactylifera (XP_038983281.1); MaSVP: Morus alba var.
alba (AYK27567.1).

The predicted physicochemical properties of both proteins were summarized in
Table S1. Of note, both were predicted as unstable proteins (instability index > 40), in-
dicative of a fast protein turnover. In addition, both showed negative values of the grand
average of hydropathicity (GRAVY), suggesting that they are hydrophilic. Assessment on
the hydrophobicity/hydrophilicity scale showed similar results with a significant portion
of hydrophilic amino acid residues in both proteins (Figure S5). Prediction of the secondary
structure showed that α-helix is the dominant form of both proteins (51.88% for IlSPE3
and 56.84% for ILSVP). Accordingly, the predicted tertiary structures also showed the
dominance of α-helix (Figure S6). We also found multiple phosphorylation sites for both
IlSEP3 (13 Ser,4 Thr, and 3 Tyr residues, Figure S7A) and IlSVP (17 Ser, 13 Thr, and 3 Tyr
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residues, Figure S7B). Finally, we did not identify any membrane-spanning domains or
signaling peptides on either protein.

2.3. IlSEP3 and IlSVP Are Localized to the Nucleus

Both IlSEP3 and IlSVP were predicted to function within the nucleus. This was
validated by expressing GFP-fusion proteins transiently in Nicotiana benthamiana (Figure 4).
Our data showed that both proteins were exclusively localized to the nucleus. By contrast,
the empty vector harboring GFP showed non-specific autofluorescence in epidermal cells,
especially in the cell membrane.
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2.4. IlSEP3 Interacts with IlSVP

Information on the interacting proteins enables a better understanding of how protein
act within a network. Unfortunately, the identity of interacting patterns for IlSEp3/IlSVP
has rarely been reported. Thus, we used their homologs in the model plant Arabidopsis for
this exploration. We found 20 interacting proteins for AtSPE3 (Figure S8A). Many of them
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including SVP (others are AP1, LFY, FT, TFL1, AGL20, or SOC1) are involved in flowering
control. For AtSVP, we also found 20 interacting proteins including key regulators in
the photoperiod pathway (CO and GI) and the circadian clock control including FKF1,
ELF3, PRR7, TOC1, ZTL, DOF5.5, and COP1 (Figure S8B). Because of high sequence
similarity, these data supported a role for IlSEP3 and IlSVP in flowering. In addition,
interaction between IlSEP3 and IlSVP could be one mechanism by which these proteins
control flowering.

To validate the prediction, we constructed various of vectors for Y2H test. First, we
transformed either pGBKT7-IlSEP3 or pGBKT7-IlSVP alone into yeast cells and found no
toxicity and autoactivation activities (Figure 5), Likewise, neither gene in the pGBKT7
vector can survive in the selective medium. We then co-transformed the two vectors into
Y2HGold competent cells (Figure 5). We found that strains harboring IlSEP3-IlSVP can grow
on the selective medium (SD/-Trp/-Leu/-Ade/-His). As expected, the positive control
harboring pGADT7-T and pGBKT7-53 also showed colony formation on the high stringent
medium. By contrast, no colony was seen for the negative control harboring pGADT7-T
and pGBKT7-Lam. These data indicated that IlSEP3 interacts with IlSVP physically.
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Figure 5. Interaction between IlSEP3 and IlSVP by yeast-two-hybrid. Numbers on top indicate
dilution factors. The relative interaction strengths were determined by increasing dilution of yeast
colonies. AD, active domain; BD binding domain. For co-transformation, eight groups were assessed:
the test group (pGBKT7-IlSEP3 and pGADT7-IlSVP), (pGBKT7-IlSVP and pGADT7-IlSEP3), control
for self-activation (pGBKT7-IlSEP3 and empty), (pGBKT7-IlSVP and empty), (empty and pGADT7-
IlSVP), (empty and pGADT7-IlSEP3), positive control (pGADT7-T and pGBKT7-53), and negative
control (pGADT7-T and pGBKT7-Lam). Transformed cells were diluted and then grown on either
SD/-Trp/-Leu or SD/-Trp/-Leu/-Ade/-His/X-α-Gal/ABA at 28 ◦C for 48 h.

2.5. Ectopic Expression of IlSEP3 in Arabidopsis Promotes Early Flowering

To test the functional relevance of the two selected MADS-box genes, we created
transgenic Arabidopsis overexpressing IlSEP3 or IlSVP. We obtained 15 transgenic lines for
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IlSEP3 and 16 lines for IlSVP after antibiotic selection (Hygromycin) and PCR screening
(Figure S9). Three overexpressing lines (OE) for each were selected for phenotypical study.
As expected, plants transformed with the empty vector were phenotypically identical to
that of wild type (Figure 6). Compared to these controls, plants overexpressing IlSEP3
showed significant early bolting and flowering (Figure 6A–C). While the controls bolted
and flowered at 32 d and 36.08 d, respectively, the IlSEP3-OE12 line showed a bolting time
of 28.2 d and a flowering time of 32 d (Figure 6B,C). In addition, the number of rosette
leaves is another important indicator for plant development and transition to reproductive
growth. Our data showed fewer leaves in the transgenic plants (mean of 11.93) compared
to the controls (mean of 14.38) at the time of flowering (Figure 6D).
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Phenotypical analysis of three IlSVP lines showed a slightly early flowering time (34.5,
34.3, and 34.3 d, respectively) compared to the controls (mean of 36.08 d). However, the
difference was not statistically significant (p > 0.05). Thus, plants overexpressing IlSVP
were not used for further experiments in this study.
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2.6. Overexpression of IlSEP3 Modulates the Expression of Flowering Time Genes

To understand the molecular mechanism by which IlSEP3 promotes early flowering,
the mRNA abundance of various endogenous flowering time genes was determined in
the transgenic plants (Figure 7). Compared to plants transformed with the empty vector,
overexpression of IlSEP3 resulted in significant up-regulation of FT, SOC1, AP1, SVP, SPL3,
VRN1, and GA20OX. By contrast, CO was significantly down-regulated in the transgenic
plants. In addition, the expression of FLC was comparable between the transgenic plants
and the control.
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3. Discussion

In this study, we identified 41 MADS-box genes in I. laevigata using transcriptomics
data. The number of genes is significantly less than that in Arabidopsis (n = 107). However,
our data is comparable to 39 MADS-box genes in the Louisiana Irises (Iris fulva), 25 of
which belonged to the MIKCC type [28]. Notably, transcriptomics data generated from
floral and young leaf tissues were also used for the Louisiana Irises study due to the lack of
genome sequencing data. Similarly, 43 MADS-box genes were identified in the de novo
transcriptomics study of Iris atropurpurea, an endemic species in Israel [29]. Compared to
33 MIKCC genes identified in this study, 28 were found in the I. atropurpurea transcriptome.
Thus, these data suggested similar gene numbers and subtypes among closely related
Iris species.

Currently, the MIKCC subgroup members are the most extensively studied MADS-box
genes. Based on phylogenetic analysis, 12 subgroups have been found in Arabidopsis [30].
Nonetheless, many subgroups, including FLC-like, AGL15-like, GGM13-like, AGL17-like,
and AGL12-like, were not identified in I. laevigata. This is consistent with a previous
report, where FLC-like, GGM13-like, TM8-like, AGL15-like, AGL17-like, and AGL12-like
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were not identified in the Louisiana Irises [28]. Lacking some of these subgroups in Iris
is supportive of the notion that FLC-like is specific to dicots such as Arabidopsis [20,28,30].
By contrast, the lack of other subgroups in our transcriptome data could be attributed to
spatial gene expression. For instance, AGL15-like, GGM13-like, AGL17-like, and AGL12-like
showed high mRNA expression levels in the root [30]. The use of floral and leaf tissues
for transcriptome data generated in this study cannot rule out the possibility that these
MADS-box subgroups may exist in the genome. It would be interesting to compare these
data to putative MADS-box genes from genome sequencing data once available. Such
comparisons can reveal a more comprehensive picture of MADS-box genes in I. laevigata.

For functional studies, we selected two members in the MIKCC branch. Both IlSEP3
(belonging to the SEP-like sub-branch) and IlSVP (belonging to the STMADS11-like sub-
branch) showed high sequence similarities to their corresponding homologs in other plant
species. The physical interactions between IlSEP3 and IlSVP indicated that they may
function as a complex in vivo regulating flowering. This challenges the conventional view
that SVP and SEP3 function in the early stage of flowering initiation and floral organ
formation, respectively [31]. Instead, it supports the emerging notion that these genes form
an integrated network to control the flowering process [32]. Experimental evidence in
favor of the later model have been provided by yeast three-hybrid showing the formation
of higher-order complexes among MADS-box proteins with SEP3 serving as a glue for
multimerization [31–34]. Further in vivo studies are needed to validate the interaction of
SEP3 with other proteins for flowering control.

Our overexpression experiments provided a direct assessment of molecular functions
of IlSEP3 and IlSVP, which showed that IlSEP3 promotes flowering. This is consistent
with previous studies in which an earlier flower phenotype was observed in transgenic
Arabidopsis overexpressing SEP3 from different plant species including lavender [35],
Ziziphus jujuba Mill. [36], lily [37], and woad (Isatis indigotica) [38]. Conversely, silenc-
ing pf IiSEP3-2 and IiSEP3-3 using virus-induced gene silencing (VIGS) resulted in delayed
flowering in woad [38]. In addition to flowering, overexpressing SPE3s in Arabidopsis often
resulted in curly and smaller leaves compared to WT. Thus, our results and data from
others strongly support that SPE3 is a positive player in flowering.

Mechanistically, we found that overexpressing IlSEP3 led to perturbed expression
patterns of key flowering genes including FT, SOC1, AP1, VRN1, AG20OX, as well CO
(downregulation). Previous studies also showed that overexpressing of these upregulated
genes (FT, SOC1, AP1, VRN1, and AG20OX) promotes flowering [39–41]. These data also
indicated that IlSEP3 can modulate various flowering pathways, including the gibberellic
acid-dependent pathway and the vernalization pathway in promoting early flowering in
transgenic plants. It is also noteworthy that overexpressing IlSEP3 resulted in a higher
expression of SVP. A similar repressuring effect on SVP has been found in Arabidopsis
plants overexpressing either the SEP3-2 or SEP3-3 splicing variant of woad [38]. More
interestingly, SVP was upregulated before flowering and downregulated after flowering
in Arabidopsis plants overexpressing ZjSEP3 [36]. It is possible that the observed gene
expression pattern is dependent on the developmental stage given dynamic interactions
among these genes/pathways. A time-course gene expression study would be required to
clarify the exact regulatory network in the IlSEP3-overexpression plants.

By contrast, we found no impact on flowering time by overexpressing IlSVP. Although
SVP is often considered a repressor of flowering, the literature is divided on its molecular
function. For example, ectopic expression of kiwifruit SVP3 (Actinidia spp.) in A. deliciosa
showed no impact on flower time but led to prolonged flowers [42]. TaVrt2, an SVP-like
MADS-box protein, has been demonstrated to promote flowering in the vernalization
pathway via binding to the promoter of TaVrn1 (encoding another MADS-box transcription
factor) [43]. In addition, overexpression of SVP from sweet cherry resulted in a delay in
flowering and the production of flowers with curly sepals in Arabidopsis [44]. Thus, it
seems the exact function of SVP is plant species dependent. Currently, the mechanism
underlying the functional divergence of SVPs among different plant species remains un-
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clear. Nonetheless, SVP may represent a gene characterized with functional variations as
SVPs from the same species can exhibit distinct functions. For instance, the four SVPs in
kiwifruit showed gene-specific expression patterns and functions during vegetative growth,
flowering, and bud dormancy [42]. The duality of conservation and divergence of SPVs
have also been observed in Arabidopsis, in which SVP and SGL24 can function in concert
with each other during one developmental stage (e.g., flower development) but perform
opposite roles for another process (e.g., floral initiation) [45,46]. In terms of functional
conservation among different species, further studies can be performed by expressing IlSVP
in the corresponding Arabidopsis mutant to see whether it can rescue the svp mutant.

4. Materials and Methods
4.1. Gene Sequence Identification and Phylogenetic Analysis

An annotated transcriptomics dataset of I. laevigata (unpublished from our group)
was used to identify the MADS-box gene family. The open reading frame (ORF) of the
obtained sequences was predicted by the TBtools (https://github.com/CJ-Chen/TBtools,
accessed on 1 January 2022). Domain analysis was performed using the online Batch CD-
Search tool (https://web.expasy.org/protparam/, accessed on 1 January 2022). Sequences
harboring the MADS-box domain were kept and subjected to a second-round ORF analysis
(https://www.ncbi.nlm.nih.gov/orffinder/, accessed on 1 January 2022) to ensure the
integrity of the transcript.

Phylogenetic analysis was performed using MEGA X with MADS-box sequences from
I. laevigata and Arabidopsis. MADS-box proteins of Arabidopsis were downloaded from
Phytozome (https://phytozome-next.jgi.doe.gov/, accessed on 1 January 2022). Sequence
alignment was performed using Clustal W, and the neighbor-joining (NJ) method was used
for tree construction with a bootstrap of 1000 times. Annotation of the phylogenetic tree
was performed using iTOL (https://itol.embl.de/, accessed on 1 January 2022).

4.2. Gene Cloning and Bioinformatics

Total RNA was extracted from the leaf and flower of I. laevigata plants grown in the
nursery of Northeast Forestry University (May 2020) using a kit (KANGWEI). Agarose gel
electrophoresis was used to check the quality of the RNA, and DNA Eraser was used to
remove genomic DNA. Next, 1 µg of total RNA was used for reverse transcription (TaKaRa).
Amplification of target genes was performed using PCR with the following primers:
5′-TATTCAATGGTGAGGGGGAGAGTGGAGC-3′ and 5′-TTATGTGCAGGGATGGCTTCC
GTGAGAC-3′ for IlSEP3; and 5′-TCTTTCTCCTCTGTTGCTGTGT-3′ and 5′-GAAGCTCTAC
TGCATCATCGTG-3′ for IlSVP. The obtained gene fragments were ligated into the pEASY-
Blunt Zero Cloning Vector (TRANSS) and transformed into E. coli. Positive clones were
selected for sequencing (QINGKE). All procedures were performed per instructions of
respective kits.

Physical and chemical parameters were predicted using the ProtParam tool (https://
web.expasy.org/protparam/, accessed on 1 January 2022). The hydrophobicity/hydrophilicity
scale was assessed using ProtScale (https://web.expasy.org/protscale/, accessed on
1 January 2022). Prediction of the secondary and tertiary structures was performed using
SOPMA and SWISS-MODEL, respectively. Potential phosphorylation sites were predicted
by the NetPhos software. Subcellular localization was predicted using Wolf Psort.

4.3. Yeast-Two-Hybrid (Y2H)

To construct vectors for Y2H, the coding sequences of IlSEP3 and IlSVP were first am-
plified by PCR. Plasmids containing pEASY-IlSEP3 or pEASY-IlSVP were used as template.
Primers for IlSEP3 into pGBKT7 were 5′-CATATGTATTCAATGGTGAGGGGGAGAGTGG
AGC-3′ (NdeI for restriction site, underlined) and 5′-GGATCCGTCCGGAAGCCATCCCTG
CACATAACCA-3′ (BamHI). Primers for IlSEP3 into GADT7 were 5′-ATATGGCCATGGAG
GCCAGTGAATTCATTCAATGGTGAGGGGGAGAGTGGAGC-3′ and 5′-ATCTGCAGCTC
GAGCTCGATGGATCCGTCCGGAAGCCATCCCTGCACATAACCA-3′ (homology arm,

https://github.com/CJ-Chen/TBtools
https://web.expasy.org/protparam/
https://www.ncbi.nlm.nih.gov/orffinder/
https://phytozome-next.jgi.doe.gov/
https://itol.embl.de/
https://web.expasy.org/protparam/
https://web.expasy.org/protparam/
https://web.expasy.org/protscale/
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underlined). Primers for IlSVP into pGBKT7 were 5′-ATATGGCCATGGAGGCCAGTGAAT
TCATGGCGAGGGAGAAGATACAG-3′ (homology arm, underlined) and 5′-ATCTGCAGC
TCGAGCTCGATGGATCCCTGCATCATCGTGCCCTTC-3′. Primers for IlSVP into pGADT7
were 5′-CCATGGAGGCCAGTGAATTCATGGCGAGGGAGAAGATACAG-3′(homology
arm, underlined) and 5′-AGCTCGAGCTCGATGGATCCCTGCATCATCGTGCCCTTC-3′.
pGBKT7-IlSEP3 was obtained by subcloning IlSEP3 into the pre-linearized pGBKT7 vector
(NdeI and BamHI). pGADT7-IlSEP3 was obtained by subcloning IlSEP3 into GADT7 via
(EcoRI and BamHI) homologous recombination using the ClonExpress II One Step Cloning
Kit. In the same way, pGADT7-IlSVP (EcoRI and BamHI) and pGBKT7-IlSVP(EcoRI and
BamHI) were obtained.

The Y2HGold yeast was used as the bait strain. Transformation into the competent
cells was performed as described before [47]. Toxicity test was performed by transforming
pGBKT7-IlSEP or pGBKT7-IlSVP into Y2HGold and growing the cells on SD/-Trp. For
the autoactivation test, cells transformed with pGBKT7-IlSEP or pGBKT7-IlSVP were
grown on SD/-Trp/X-α-gal/AbA. For co-transformation, eight groups were assessed: the
test group (pGBKT7-IlSEP3 and pGADT7-IlSVP), (pGBKT7-IlSVP and pGADT7-IlSEP3),
(pGBKT7-IlSEP3 and empty), (pGBKT7-IlSVP and empty), (empty and pGADT7-IlSVP),
(empty and pGADT7-IlSEP3), positive control (pGADT7-T and pGBKT7-53), and negative
control (pGADT7-T and pGBKT7-Lam). Transformed cells were diluted and then grown
on either SD/-Trp/-Leu or SD/-Trp/-Leu/-Ade/-His/X-α-Gal/ABA at 28 ◦C for 48 h.

4.4. Vector Construction for Protein Expression

For gene overexpression, pCAMBIA1300-Pro35S: IlSEP3-GFP and pCAMBIA1300-
Pro35S: IlSVP–GFP vectors were constructed by homologous recombination. Briefly, the full-
length coding region was amplified using the following primers with homology arms (un-
derlined): 5′-TTGATACATATGCCCGTCGACTATTCAATGGTGAGGGGGAGAGTGGAG
C-3′ and 5′-CCCTTGCTCACCATGGATCCGTCCGGAAGCCATCCCTGCACATAACCA-
3′ for IlSEP3; and 5′-TTGATACATATGCCCGTCGACTCTTTCTCCTCTGTTGCTGTGT-
3′ and 5′-CCCTTGCTCACCATGGATCCGAAGCTCTGCATCATCGTGCCC-3′ for IlSVP.
These constructs, along with the empty vector (pCAMBIA1300-Pro35S: GFP, used as a
negative control), were then delivered into Agrobacterium tumefaciens GV3101 by the freeze-
and-thaw method [48]. Positive clones were confirmed by sequencing.

4.5. Subcellular Localization

Subcellular localization was performed by transient expression of the IlSEP3-GFP and
IlSVP-GFP proteins in Nicotiana benthamiana leaves according to previously established
methods [49]. Briefly, positive clones harboring pCAMBIA1300-Pro35S: IlSEP3-GFP or
pCAMBIA1300-Pro35S: IlSVP–GFP were cultured. Bacterial cells were collected by cen-
trifuge and resuspended in 10 mM MaCl2 to OD600 of 1.5, followed by the addition of
acetosyringone to a final concentration of 200 µM. After activation at dark for 3 h, the bac-
terial solution was injected into the downside of the leaf using a syringe. Fusion proteins in
the epidermal cells of the transformed plants were determined under microscopy.

4.6. Overexpression of IlSEP3 and IlSVP in Arabidopsis

Transformation of A. thaliana (ecotype Col-0) was performed using the floral dipping
method [50]. Seeds of the transformed plants were selected on 1/2 MS medium supple-
mented with 25 mg/L Hyg. After 7–9 days, T1 seedlings that can grow on the selective
medium were transferred to the potting mixture and further cultured under 16 h/8 h
(light/dark) at 20 ◦C. Transgenic plants were also screened by PCR. Homozygous lines
were obtained by successive screening for three generations. The expression level of IlSEP3
and IlSVP were determined by qRT-PCR using the seeding leaf of the transgenic plants.
Actin2 (AT3G18780) was used as a control. Relative gene expression was determined using
the 2−∆∆CT method. Three lines of a high level of expression were selected.
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4.7. Phenotypical Analysis

Phenotypical analyses were performed as described previously [51–53]. Transgenic
plants, wild-type Col-0, and plants transformed with the empty vector (Pro35S: GFP)
were compared. Seeds were germinated on 1/2 MS plates and seedlings were trans-
ferred to potting soil after 2 weeks. Plants were allowed to grow at long-day conditions
(16 h light/8 h dark) 20 ◦C. Bolting was defined when the inflorescence stalk is 1 cm long.
Flowering was defined as the opening of the first flower. The number of rosette leaves was
recorded at the flowering time. For each line, data from 12 individual plants were collected.

4.8. Expression of Flowering Genes

The expression of 10 well-known genes in flowering control (CO, GA20OX, VRN1,
SPL3, FCA, SVP, FT, SOC1, AP1, and FLC) was determined by RT-PCR. Two-week-old
seedlings were used. The selection of these genes and the time for gene expression analysis
were based on previous studies [54–58]. Relative expression against the AtACT2 control
(2−∆∆CT method) was shown.

4.9. Statistical Analyses

Student’s t test was performed for phenotypical data and relative gene expression
results. Statistical difference was determined between the transgenic and the control plants.
Bar plots were used for data presentation.

5. Conclusions

In summary, we identified 41 putative MADS-box genes in the I. laevigata flower
transcriptome. The putative MADS-box gene family may expand upon the availability of
I. laevigata genome due to spatial-specific gene expression. Ectopic expression of IlSEP3
in Arabidopsis promotes flowering by regulating various flowering pathways. The impact
of overexpressing IlSEP3 in I. laevigata on flowering awaits further investigation. If suc-
cessful, the discovery here could broaden the application of I. laevigata in the wetlands of
northeastern China by providing a genetic resource for flowering time control.

It would be intriguing to generate transgenic I. laevigata overexpressing IlSEP3 and
evaluate the impact on flowering. Based on the current results, one would reason an early
flowering phenotype in the transgenic I. laevigata plants. If this indeed is the case, a broader
application of I. laevigata for landscaping/gardening in northeastern China can be expected.
It can be even imagined that this finding can be used to prolong the overall length of
flowering by planting early-flowering transgenic plants along with wild-type plants. If a
relationship between gene dosage and flowering time exists, it can be further exploited to
create I. laevigata plants of the most ideal flowering time. Flowering in spring (e.g., May)
would be beneficial because of a general lacking flowering plants in wetland during that
time window of the year.
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