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Abstract: This study concerns the analysis of the modulation of Chronic Myeloid Leukemia (CML)
cell model K562 transcriptome following transfection with the tumor suppressor gene encoding for
Protein Tyrosine Phosphatase Receptor Type G (PTPRG) and treatment with the tyrosine kinase
inhibitor (TKI) Imatinib. Specifically, we aimed at identifying genes whose level of expression is
altered by PTPRG modulation and Imatinib concentration. Statistical tests as differential expres-
sion analysis (DEA) supported by gene set enrichment analysis (GSEA) and modern methods of
ontological term analysis are presented along with some results of current interest for forthcoming
experimental research in the field of the transcriptomic landscape of CML. In particular, we present
two methods that differ in the order of the analysis steps. After a gene selection based on fold-change
value thresholding, we applied statistical tests to select differentially expressed genes. Therefore, we
applied two different methods on the set of differentially expressed genes. With the first method
(Method 1), we implemented GSEA, followed by the identification of transcription factors. With the
second method (Method 2), we first selected the transcription factors from the set of differentially
expressed genes and implemented GSEA on this set. Method 1 is a standard method commonly
used in this type of analysis, while Method 2 is unconventional and is motivated by the intention to
identify transcription factors more specifically involved in biological processes relevant to the CML
condition. Both methods have been equipped in ontological knowledge mining and word cloud
analysis, as elements of novelty in our analytical procedure. Data analysis identified RARG and
CD36 as a potential PTPRG up-regulated genes, suggesting a possible induction of cell differentiation
toward an erithromyeloid phenotype. The prediction was confirmed at the mRNA and protein level,
further validating the approach and identifying a new molecular mechanism of tumor suppression
governed by PTPRG in a CML context.
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1. Introduction

Chronic Myeloid Leukemia (CML) is a myeloproliferative disease affecting approx-
imately 1 per 200,000 persons per year in industrialized countries. Many treatment im-
provements have been achieved recently, especially in the development of new drugs, but a
mortality rate of 2–3% per year remains [1,2]. A distinctive feature of CML is the reciprocal
translocation, originating in hematopoietic stem cells (HSCs), between the long arms of
chromosomes 9 and 22, i.e., t(9;22) (q34;q11.2), which results in the BCR-ABL1 chimeric
gene. This genomic aberration generates a new fusion gene, BCR-ABL1, which encodes
for a tyrosine kinase held accountable for the neoplastic transformation of these cells by
affecting normal cellular pathways essential for tissue homeostasis and thus causing the
alteration of crucial cellular processes, such as apoptosis, cell cycle, and autophagy [3,4]. In
this context, one primary goal of research is to identify the regulatory mechanisms antago-
nizing the kinase activity of BCR-ABL1 and, possibly, of other vital effectors intersecting
this pathway, as players other than BCR-ABL1 have been involved in the pathogenesis
of the disease [5,6]. The natural history of CML, prior to the advent of small molecule
protein kinase antagonists, features a progression from a stable or chronic phase to an
accelerated phase or to a rapidly fatal blast crisis within 3–5 years. Typically blood cells
differentiate normally in the stable phase, but not in the blast phase [1]. Protein Tyrosine
Phosphatase Receptor Type G (PTPRG) is a member of the protein tyrosine phosphatase
(PTP) family featuring an extracellular and a single transmembrane region and two tandem
intracytoplasmic catalytic domains [7]. PTPRG is widely expressed in human tissues [8]
and is involved in the regulation of cell growth, differentiation, mitotic cycle, and oncogenic
transformation [9,10]. The gene encoding for this phosphatase is located in a chromosomal
region (3p21-p14.2) frequently deleted in renal cell and lung carcinoma, where PTPRG acts
as a tumor suppressor in many cancers [11–14]. Specifically, PTPRG was recognized as hav-
ing an oncosuppressor function gene and was found down-regulated in CML patients. The
relevance of this gene to CML has recently been supported by several studies performed in
patients, and strategies aimed at restoring its expression are expected to benefit the course
of the disease by improving drug efficacy or contrasting the emergence of BCR/ABL1
mutants [15–17].

Epigenetic events, such as the hyper-methylation of its promoter region as well as
intron 1, negatively regulate the transcription of PTPRG, as demonstrated in CML and
childhood acute lymphoblastic leukemia [16,18–20]. Re-expression of this protein occurs
in leukocytes (especially neutrophils) of CML patients following targeted therapy [18].
Once activated, PTPRG can reduce the phosphorylation level of BCR-ABL1 and some
of its key targets, such as CRK-L and STAT5 [18]. We found that in CML cells, PTPRG
expression inversely correlates with BCR/ABL1 expression and activation, both in cell lines
and primary cell models following pathways that include beta catenin [21] and possibly
others that are currently under investigation [17,20,21].

Our study focuses on the detection of genes and gene pathways in protein–protein
interaction networks (commonly considered a proxy of gene networks) that are most
likely affected by the state of the gene coding for PTPRG and by the treatment with a
prototype tyrosine kinases inhibitor (TKI), Imatinib, in the K562 cell line overexpressing
the enzymatic active and enzymatic dead PTPRG. Tyrosine kinases phosphorylate proteins
on tyrosine residues, producing a biologic signal that also influences many aspects of
cellular functions, including cell growth, proliferation, differentiation, and death. PTPs
act as natural modulators of TKI signaling, and it is well known how the inhibition of TKI
represents a strategy to disrupt signaling pathways that promote neoplastic growth and
survival in haematologic malignancies and likely in other neoplasia as well. In order to
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identify responsive genes, we implemented two analytical pipelines, hereafter referred
to as Method 1 and Method 2. On the set of differentially expressed genes, we applied
two methods of analysis. With the first method (Method 1), we implemented Gene Set
Enrichment Analysis (GSEA [22]), followed by the identification of transcription factors.
With the second method (Method 2), we first selected the transcription factors (TFs) from
the set of differentially expressed genes and implemented GSEA on this set. Method 1 is a
standard method commonly used in this type of analysis, while Method 2 is unconventional
and is motivated by the intention to identify transcription factors more specifically involved
in biological processes relevant to the CML condition. In Method 1, due to a larger gene
universe, we expect the set of transcription factors selected upstream of the GSEA to be
either larger or related to the known role of PTPRG as a modulator of hematopoietic cell
differentiation [10].

2. Materials and Methods

In this section, we report on the methods and materials relevant to the experimental
activity of data collection and the methodology of the computational analysis of the data.

2.1. Cell Lines

The human K562 Chronic Myeloid Leukemia clones expressing full-length PTPRG,
empty vector, and inactive mutant holding a mutation on the catalytic domain D1028A
were previously described [18] and were cultured in RPMI medium supplemented with 1%
L-glutamine 100× (Biowest), 10% fetal bovine serum (FBS, Euroclone), and the selective
agent G418 0.5 mg/mL (Sigma) at 37◦ C in a humidified incubator with 5% CO2.

2.2. Quantitative Real-Time Polymerase Chain Reaction

Total RNA was extracted from the K562 cell lines using Qiagen RNeasy Kit accord-
ing to the manufacturer’s protocol. Complementary DNA was synthesized using the
PrimeScript™ reagent Kit (TAKARA BIO Inc, Shiga, Japan), and the quantitative real-time
polymerase chain reaction (qRT-PCR) was performed using TB Green Premix™ Ex taq
(TAKARA BIO Inc.). Each sample was run in triplicate, and 3 ng complementary DNA was
used for each reaction. The sequences of gene-specific primers used are listed in Table 1.
The fold changes in mRNA levels of transcription factors (TF-DEGs) between K562 cell
line expressing PTPRG and control group were determined using the 2−∆∆Ct method with
GAPDH used as the internal control for normalization. Prism GraphPad Software [23])
was used for statistical analyses, and the Student’s t-test was used to determine statistically
significant differences between groups.

Table 1. Sequences of gene-specific primers used in this study.

Gene Forward 5′–3′ Reverse 5′–3′

MECP2 CGTGAAGGAGTCTTCTATCCGA GCTTCACCACTTCCTTGACC
TFAP2C ATTCGCAAAGGTCCCATTTCC GGCATTTAAGCATTCAGGTGG
RARG GCAAGTATACCACGAACTCCAG ACGCAGCATCAGGATATCTAGG
TRPS1 CAAACAAGAAGCAAATCACCTG GTGTGCTCTCCTGTAGTGTC
SMAD1 TCCTTCCAACAATAAGAACCGT CTACTGTCACTAAGGCATTCG
CD36 TTTGGCTTAATGAGACTGGGAC ACAAACATCACCACACCAACAC

2.3. Flow Cytometry Analysis

The K562 cell lines (5 × 105 cells) were harvested, washed in FACS buffer (PBS
supplemented with 2% FBS and 2 mM EDTA), and centrifuged at 1200 rpm for 5 min at
room temperature. The cell suspensions (100 µL) were plated in 96-well plate, and 2 µL
anti-CD36 (V450 mouse 2-Human CD36; cat.no. 561535; BD Biosciences) was added. The
samples were incubated in the dark for 1 h at 4 ◦C, washed again with FACS buffer, and
centrifugated (1200 rpm for 5 min). FACS buffer (150 µL) was added to the cell pellet, and
the samples were analyzed using MACSQuant Analyzer 10 Flow Cytometer (Miltenyi
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Biotec) [24]. The data were analyzed with FlowJoTM v10.8.1 software [25], and the fraction
of positively stained cells (CD36+) was determined as the percentage of live population
stained with Propidium Iodide (PI).

2.4. Data Collection

The RNAs from the samples were hybridized on Agilent whole human genome
oligo microarray (#G4851A, Agilent Technologies, Palo Alto, CA, USA). This microarray
consists of 60 mer DNA probes synthesized with SurePrint technology [26], covering
60,000 unique human transcripts. One-colour gene expression was performed according
to the manufacturer’s procedure. Briefly, total RNA fraction was obtained from samples
by using the Trizol Reagent (Invitrogen). RNA quality was assessed by the use of Agilent
2100 Bioanalyzer (Agilent Technologies). Low quality RNAs (RNA integrity number
below 7) were excluded from microarray analyses. Labeled cRNA was synthesized from
100 ng of total RNA using the Low Input Quick-Amp Labeling Kit, one colour (Agilent
Technologies) in the presence of cyanine 3-CTP. Hybridizations were performed at 65 ◦C
for 17 h in a rotating oven. Images at 3 µm resolution were generated by Agilent scanner,
and the Feature Extraction 10.7.3.1 software (Agilent Technologies) was used to obtain the
microarray raw data.

Microarray results were then analysed by using the GeneSpring GX 11 software
(Agilent Technologies). Data transformation was applied to set all the negative raw values
at 1.0, followed by a normalization on the 75th percentile. A filter on low gene expression
was used to keep only the probes expressed in at least one sample (flagged as Marginal
or Present).

The data used in this study derive from the above-mentioned analysis carried out
by microarray hybridization of the CML cell transcriptome (K562) in different conditions.
The cells were transfected with full-length PTPRG and compared to several controls: cells
transfected with the empty vector, cells transfected with PTPRG inactive mutant holding a
mutation on the catalytic domain (D1028A), and cells treated with Imatinib targeting the
oncogene BCR/ABL1. We integrated the data relating to gene expression with the gene
ontology and protein–protein network data. We investigated

• The effect of the PTPRG expression and its activation status;
• The impact of PTPRG expression (both active and inactive) in the presence of TKI,

hereafter called by its clinical name Imatinib;
• The effect of Imatinib in combination with functional or mutant PTPRG expression.

For this purposes, we developed ad hoc methods to identify differentially expressed
genes, with a particular focus on gene coding for transcription factors. This class of genes
was selected, as they are known to act as master genes activating cell programs that include
key features, such as cell differentiation and proliferation, rather than controlling genes
essential for the ontogenesis and maintenance of the normal hematopoietic system, and
instead of being involved in the pathogenesis of leukemia [27].

2.5. Computational Analysis

We implemented first differential gene expression analysis and then gene ontology
enrichment analysis of the identified differentially expressed genes (DEGs). Differential
expression analysis (DEA) is a single-gene technique performed to identify differentially
expressed genes (DEGs), namely genes whose expression levels vary significantly under
different experimental conditions. Gene set enrichment analysis (GSEA) is a computational
method applied to get biological insights from gene expression data. It is typically used to
examine a given subset of interesting genes stemming from previous analyses versus an
extensive reference set referred to as gene universe. Unlike single-gene techniques, GSEA
aims at identifying statistically significant groups of functionally related genes by relying
on current knowledge for data classification. For theoretical in-depth analyses of GSEA,
refer to [22]. Depending on the specific biological question that is designed to be tackled,
several databases can be employed to investigate a priori gene functional groupings.
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2.5.1. Differential Gene Expression Analysis

In this study, differential gene expression analysis was performed to detect DEGs
between two groups: control and the phosphatase inactive mutant D1028A [18] samples
considered to be the untreated group (4 replicates) and the treatment group referred to as
PTPRG-expressing samples (2 replicates). Differential expression analysis was conducted
on log2-transformed data using the Bioconductor/R package limma (Version 3.12) [28]. Both
the empirical Bayes correction on the variances and the multi-testing Benjamini–Hochberg
correction on p-values were selected.

Among the set of differentially expressed genes, we focused on transcription factors
(TF-DEGs). Indeed, the identification of the TF-DEGs responsive to the treatments would
allow for identifying the active drivers turning specific genes (possibly involved in the onset
and progression of CML) “on” or “off” or boosting/repressing the gene’s transcriptions.

2.5.2. Gene Ontology Enrichment Analysis of DEGs

In this study, gene ontology enrichment analysis of the DEGs relied on the Gene
Ontology (GO) system of classification [29] and in particular on the GO domain referring
to biological processes. Therefore, over-representation of GO terms pertinent to the DEGs
previously identified has been tested to reveal associations with disease phenotypes. In-
stead of investigating the results of GSEA applied to the whole set of DEGs, we focused on
the transcription factors (TFs) detected as DEGs (TF-DEGs).

The analysis of transcription factors was carried out by applying two different GSEA
methods implemented by the Bioconductor/R package topGO (version 3.12) [30]. Both
methods combine a classical enrichment analysis with the Kolmogorov–Smirnov statistic
test (runTest function with input parameters “algorithm = classic” and “statistic = ks”).
This particular setting was selected for two reasons.

1. The methods compute the significance of a node independently from its neighboring
nodes [31]. This means that if a GO term contains the same genes as one of its children,
then the traditional method gives the children the same score. While this setting
could cause data redundancy, by not discarding any GO term based on parent–child
relationships, it allows for keeping valuable information that can be exploited later on
to investigate associations and dependencies between GO terms.

2. The Kolmogorov–Smirnov statistic computes enrichment based on gene scores [29].
Hence, it is possible to take full advantage of the information obtained by DEA by
ranking genes according to their adjusted p-values.

These two considerations lead to two methods, hereafter referred to as Method 1
(corresponding to consideration 1) and Method 2 (corresponding to consideration 2),
which are outlined in more detail in Figure 1. Both methods were developed on two
separate streams to discriminate between GO terms associated with up-regulated and
down-regulated genes, respectively. In this regard, the procedure returned a total of four
lists of significant GO terms split into two methods and subsequently into two modalities
(up-regulated and down-regulated). The output lists of significant GO terms obtained
were analyzed on a textual content level and compared modality-wise with the aim of
extracting text-based insights that could guide the reader in searching GO terms relevant to
the case study and discriminating between the two methods at a glance. In these regards, a
graphical technique was developed based on word clouds for visual representation and
GSEA rankings for computing single-word significance. Specifically, the technique was
based on the R packages wordcloud [32] and tm [33].
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Figure 1. GSEA-based methods.

Its main steps are outlined in the following.

1. GSEA

• Ranked list of significant GO terms.

2. Data cleaning

• The text is converted to lower case.
• Unnecessary white spaces, common stop words, and punctuation are removed

from the text.

3. Term document matrix

• Each GO term is chunked into a single word.
• Each word is ranked based on the p-value of the GO term it belongs to. The rank

is called order.
• Word significance for a given chunk is defined as the sum of the reciprocals of

the respective orders retrieved by running down the whole list.
• Repeated chunks are removed, and the final list, i.e., the term document matrix,

is sorted based on word significance.

4. Visual representation

• The word cloud is displayed.
• Correlation analysis between chunks is performed for the first top 10 words of

the list.
• The results are shown in a bubble plot.

Tasks 1–4 have been applied to all the GO lists returned by Method 1 and Method 2.
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The word clouds and the correlation plots were used to inspect the lists of significant
GO terms returned by the two methods, compare the different results, and carry out in-
depth analyses on a specific subset of labels. In this regard, significant GO terms—and
hence biological processes—plausibly correlated with CML have been selected and further
examined at a single-gene level to implement the following objectives.

1. To compare the informative content of the labels to optimize the identification of
genes relevant to CML. More generic and high-level labels were discarded in favor of
more CML-specific ones.

2. To extend the analysis from TF-DEGs to their partners in the gene networks to gain
biological insights on gene–gene interactions and better understand the impact of the
treatment on the network topology.

3. Results

Genes with an adjusted p-value < 0.05 and |log2FoldChange| > 0.1 were considered
to be differentially expressed. Based on these criteria, 384 genes were selected as DEGs: 115
were up-regulated and 269 were down-regulated (see Figure 2). In the set of genes scoring
positively on the fold change test, we identified 43 differentially expressed transcription fac-
tors (TF-DEGs), of which 24 were down-regulated and 19 were up-regulated (see Figure 1).
The top five down-regulated TF-DEGs were ARNTL2, ZNF563, KLF7, TRPS1, and LHX2,
while the top five up-regulated were ZNF90, ZNF492, HOXD9, MECP2, and RARG.

Validation

We proceeded to the validation of gene expression by quantitative RT-PCR on an
independent set of samples. We selected a group of up- and down-regulated genes based
on microarray data and performed RT-qPCR validation. Figure 3 shows the results of the
analysis, providing confirmation of the microarray analysis.

DEA and GSEA performed on the TF-DEGs bring to our attention a set of up- and
down-regulated genes that become part of a complex network reflecting on cell phenotype.
Transcription factors recognize and bind to consensus sequence elements that are specific
for each transcription factor, and the transcription factors then regulate downstream gene
expression. We then proceeded to evaluate the phenotypic consequences of this regulation
and focused on the up-regulation of RARG, a gene belonging to the nuclear receptor
superfamily, sharing 90% homology with retinoic acid receptor α (RARα, also indicated
as RARG) and retinoic acid receptor β (RARβ), which appears crucial for haematopoietic
development [34] and the erythroid differentiation program. Although the effect in mice
appears to be the result of an erythroid cell extrinsic role (i.e., alteration of the bone marrow
microenvironment), a role in stress erythropoiesis or non-homeostatic erythroid demand
was not excluded [34,35]. Therefore, up-regulation of RARG might imply an increased
propensity to erythroid differentiation in haemopoietic cells, a prediction that we verified
and confirmed in the same cell model. As we noticed that starting from 0.125 µM IMA, the
cells seem to have reached the maximum capability to produce haemoglobin, we decided
to pool these data and perform statistical analyses, such as an estimation plot (Figure 4).
The statistical analyses confirmed the change in the differentiation program toward the
erythroid lineage. Furthermore, CD36, expressed by committed erythroid progenitors
expressing higher levels of β-globulin [36], appears to be one of the genes more strongly
up-regulated, further suggesting that erythroid differentiation is modulated by PTPRG
expression. Thus, ultimately, in addition to confirming the up-regulation of CD36 at the
mRNA level (as shown previously in Figure 3), we also confirmed it at the protein level
both under resting conditions and after overnight treatment with IMA 5 upmuM (Figure 5).

In order to further validate the cDNA assays, we identified four additional genes
(STAT1, NFκB p50, C/EBP β, and NFκB p65) that were expressed (but not modulated by
PTPRG overexpression). As expected, the genes were also expressed at similar levels at
the protein level, further supporting the value of the cDNA array analysis (Figure S1 in
Supplementary Materials).
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Figure 2. Volcano plot plot for DEGs among controls and PTPRG overexpressing K562. Genes are represented as scattered points: the x-axis is the log2FoldChange,
and the y-axis shows the log1p(-log10 adjusted p-value). Green dots represent the non-differentially expressed genes. Both red and blue dots represent genes that
were identified as significantly differentially expressed (adjusted p-value < 0.05) with |log2FoldChange| > 0.1. Specifically, red dots refer to transcription factors.
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Figure 3. mRNA level of selected up-regulated and down-regulated DEGs identified by Method 1
and 2. The mRNA levels of genes were determined by qRT-PCR, and the relative fold changes were
calculated between K562 expressing PTPRG and untreated control group (control ∅ and D1028A).
GAPDH was used as the endogenous control. The number of asterisks denotes the order of magnitude
of the p-value: p-values less than 0.0001 are summarized with four asterisks, p-values less than 0.001
are summarized with three asterisks, p-values less than 0.01 are summarized with two asterisks, and
p-values less than 0.1 are summarized with one asterisk.
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Figure 4. Up-regulation of RARG implies an increased propensity to erythroid differentiation in hemopoietic cells. (A) K562 cells were treated for 48 h with the
indicated concentrations of Imatinib (IMA). (B,C) Cells were lysed, and Hb content was evaluated (ng Hbµg total lysate) and expressed as fold increase over baseline
(p-value < 0.0001 Mann–Whitney test). In (B), by convention, the number of asterisks denotes the order of magnitude of the p-value: p-values less than 0.0001 are
summarized with four asterisks.
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Figure 5. Flow cytometry analysis of CD36+ surface marker on K562 subclones. (Left panel): Representative dot plot graphs show the increased expression of CD36
on the surface of the K562 cell lines expressing PTPRG γ1 compared to the control group (control ∅ and D1028A) in presence or absence of 5 µM IMA overnight
treatment. (Right panel): summary of the results of a minimum of 3 experiments (p = 0.03, one-tail t-test). p-values less than 0.1 are summarized with one asterisk.
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4. Identification of Molecular Pathways

As a result of GSEA, the TF-DEGs identified by Methods 1 and 2 are represented in
Figure 6. The TF-DEGs associated with GO terms stemming from Method 2 are contained in
the set returned by Method 1. Figure 7 shows the bar plots of the distributions of p-values
returned by Methods 1 and 2. The plots show significant differences between the two
methods: Method 1 returns larger sets of GO terms with low p-value frequencies (less than
6% for both up-regulated and down-regulated genes). On the other hand, Method 2 returns
smaller sets of GO terms characterized by frequencies that reach up to 20%. In this regard,
as opposed to Method 1, Method 2 shows fewer significant GO terms distributed in more
densely populated and separated clusters.

Figure 6. TF-DEGs detected by Methods 1 and 2.

Figure 7. Bar plots of GSEA p-values.

4.1. Automated GSEA-Based Semantic Analysis

In order to better inspect the differences between the two methods, we built and
analyzed the weighted word clouds from such lists of GO terms with a view of improving
understanding about the differences between Method 1 and Method 2. Word clouds for
up-regulated genes are shown in Figure 8. We note a clear distinction between the two
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plots based on both data quantity and content. For example, the chunk myeloid is contained
in both word clouds in two different sizes:

• In the first case, it appears as a small-sized chunk among other terms that are in all
likelihood connected to CML;

• In the second case, it is represented as a middle-sized chunk among terms that seem
quite distant from the target.

Correlation analysis was then performed further to investigate the informative content
of the word clouds. Figure 9 shows the results achieved on the top 10 most significant words.
The chunk myeloid appears in Method 2’s top 10 associated with the chunks regulation,
differentiation, and cell, which in turn show other interesting associations. On the other
hand, Method 1 shows interesting correlations for all the top 10 chunks even if the word
myeloid is not among them. In this regard, further investigation was conducted by going
through the list of GO terms and picking attractive labels based on the insights extracted
from the word clouds.

Figure 10 shows the word clouds for down-regulated genes. In this case, the two
plots show mainly content-based differences. In fact, both clouds are thick and almost
equally distributed in terms of word sizes. Moreover, the most powerful words are mostly
in common. Both clouds show words of potential interest for experimental analyses—even
if with different sizes—such as immune, transcription, myeloid, leukocyte, and growth. On the
other hand, Method 2 appears to be more detailed than Method 1 since it shows additional
specific chunks, such as apoptotic, hemopoiesis, hematopoietic, p53, chondrocyte, cytokine,
stem, and differentiation.

Figure 8. Word clouds for GO terms related to up-regulated genes. The word clouds show the top
100 words retrieved using the procedure described in Figure 7.
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Figure 9. Correlation analysis for the top 10 words. The top 10 most significant words are represented
on the y-axis, while their respective associated words are on the x-axis. The colour of the bubbles is
based on the order (significance of a given GO term as described in Figure 7), whilst the size depends
on the correlation between words. Note that if two top 10 words A and B are associated with each
other, then the plot shows both pairs (A,B) and (B,A).

Figure 10. Word clouds for GO terms related to down-regulated genes. The word clouds show the
top 100 words retrieved using the procedure described in items 1–4 in Section 2.5.2. Both single word
size and colour depend on word significance.

Correlation analysis was then performed to better discriminate between the two word
clouds. Figure 11 shows the results performed on the top 10 most significant words. We
see that the majority of the top 10 words are shared between the two methods. The chunks
regulation, process, negative, metabolic, compound, and biosynthetic are represented in both
plots. Moreover, since we are analysing biological processes related to down-regulated
genes, it is interesting that both methods share the association negative–regulation. However,
the main difference between the two methods relies on the associated words rather than on
the most significant ones themselves. In fact, Method 1 shows interesting but high-level
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associations that bring attention to generic biological processes. On the contrary, Method 2
shows more detailed associations, such as differentiation–chondrocyte, leukocyte, myeloid,
compound–phosphate-containing, and negative–transcription.

Figure 11. Correlation analysis for the top 10 words. The top 10 most significant words are represented
on the y-axis, and their respective associated words are on the x-axis. The colour of the bubbles
is based on the order (significance of a given GO term as described in items 1–4 in Section 2.5.2),
whilst the size depends on the correlation between words. Note that if two top 10 words A and B are
associated with each other, then the plot shows both pairs (A,B) and (B,A).

4.2. Final Expert-Curated GO Terms Selection

After examining the GO lists on a single-word level with the aim of highlighting
key words and biological insights, we thereby selected specific GO terms which showed
particular relevance to biological processes involved in CML onset and development. In
this regard, the plots presented hereafter split the analysis into two levels, which are the
level defined by the GO terms set that provides labels along with the enrichment score
(transformed p-value) returned by GSEA and (ii) the level of the TF-DEGs set.

Figures 12 and 13 show the selected labels for up-regulated genes. The first plot
of Figure 12 shows the selected labels returned by Method 1. GO terms result in being
clustered as in Table 2.

Table 2. GO terms of the biological processes selected by up-regulated TF-DEGs returned by Method 1.
We note that the majority of GO labels are associated with the terms chromatin and acetylation, while
there is only one GO label (GO:0045637) directly correlated to CML.

Chunk References GO ID

chromatin [37] GO:0016569, GO:0034401, GO:0097549,
GO:1905269, GO:0006342

acetylation [38] GO:0006473, GO:0006475, GO:0018393,
GO:0016573, GO:0018394

acylation [39] GO:0043543
amino acid [40] GO:0018193
cell growth GO:0016049
myeloid cell [41] GO:0045637

differentiation
angiogenesis [42] GO:0090049
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Figure 12. Interesting GO terms and related TF-DEGs. The first plot shows selected GO terms on the
y-axis and the respective log1p(−log10(p-value)) as the Enrichment score on the x-axis. The second
plot shows on the y-axis the TF-DEGs and the related GO terms on the x-axis. In both plots, colour
and size of the bubbles depend on the Enrichment score. We note that gene MECP2 is involved in
almost all the selected GO labels, while genes RARG and NR2E1 result in being specific.

Figure 13. Interesting GO terms and related TF-DEGs. The first plot shows selected GO terms on the
y-axis and the respective log1p(−log10(p-value)) as the Enrichment score on the x-axis. The second
plot shows TF-DEGs on the y-axis and the related GO terms on the x-axis. In both plots, colour and
size of the bubbles depend on the Enrichment score. We note that gene RARG results in being strictly
CML-related, while genes MECP2 and NR2E1 are associated with a more general biological process.

The second plot of Figure 12 shows the TF-DEGs associated with the above-mentioned
GO terms. We note that there are only three TF-DEGs: MECP2, involved in almost all
the selected biological processes; NR2E1, associated with the regulation of cell migration
involved in sprouting angiogenesis; and RARG2, implicated in both cell growth and the
regulation of myeloid cell differentiation.

The first plot of Figure 13 shows the selected labels returned by Method 2. There are
only two GO labels that show a connection with CML (see Table 3).
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Table 3. GO terms of the biological processes selected by up-regulated TF-DEGs returned by Method 2.
We note that as opposed to Method 1, the selection comprises just a few terms. Furthermore, only
one term (GO:0045637) appears to be strictly correlated to CML.

Process References GO ID

regulation of myeloid [41] GO:0045637
cell differentiation
regulation of blood vessel [43] GO:0043535
endothelial cell migration

Even if the selection is very different from the one carried out in Method 1, we obtained
that the TF-DEGs identified are the same. Furthermore, Method 2 detected both NR2E1
and MECP2 as members of GO:0043535.

Figures 14 and 15 show the selected labels for down-regulated genes. The first plot of
Figure 14 shows the selected labels returned by Method 1. GO terms can be clustered as
follows based on the key words used to carry out the selection reported in Table 4.

Table 4. GO terms of the biological processes selected by Method 1 for down-regulated genes. We
note that most of the GO labels are associated with the term differentiation. Moreover, the other
terms comprised in the selection also appear to be clearly correlated with CML.

Process References GO ID

growth GO:00071559, GO:0071560
differentiation [41] GO:0046637, GO:0006475, GO:0018393,

GO:0016573, GO:0046632
immune GO:0002376, GO:0002253
kinase [41] GO:0007178
epigenetic [44] GO:0040029
endopeptidase [45] GO:2000117
cell population GO:0045637

Figure 14. Selected GO terms and related TF-DEGs. The first plot shows selected GO terms on the
y-axis and the respective log1p(−log10(p-value)) as the Enrichment score on the x-axis. The second
plot shows TF-DEGs on the y-axis and the related GO terms on the x-axis. In both plots, colour
and size of the bubbles depend on the Enrichment score. We note that genes SOX5 and SMAD1 are
associated with the most significant GO labels, which results in being associated with cell growth.
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Figure 15. Selected GO terms and related TF-DEGs. The first plot shows selected GO terms on the
y-axis and the respective log1p(−log10(p-value)) as the Enrichment score on the x-axis. The second
plot shows TF-DEGs on the y-axis and the related GO terms on the x-axis. In both plots, colour and
size of the bubbles depend on the Enrichment score. We note that both genes MECP2 and NR2E1 are
involved in the same process, while RARG is identified as strictly CML-related. We note that almost
all genes are associated with the most significant GO labels involving leukocyte differentiation.

The second plot shows the TF-DEGs associated with the GO terms listed in Table 4.
In the plot, we see that the two most significant GO terms both refer to the genes SOX5
and SMAD1. Moreover, GO:0071560 is a direct child of GO:0071559, and hence it is more
specific than the other. Secondly, we note that several genes are identified in the high-level
label GO:0002376 immune system process. Among them, only ZBTB16, IFI16, and BATF3 are
associated with more specific terms.

The first plot of Figure 15 shows the selected labels returned by Method 2. The selection
of GO terms reported in Table 5 is more relevant to CML than the one returned by Method 1,
both regarding the number of labels and their specificity. On the other hand, the set of
related TF-DEGs overlaps with the one from Method 1 except for the genes LHX2 (only in
Method 2), TFAP2C, and TRPS1 (only in Method 1). Moreover, it is possible to notice that
the TF-DEGs are always associated with more than two labels. Hence, Method 2 proves to
be more detailed not only in the variety of GO terms but also in the number of associated
TF-DEGs. Regarding the genes left out by Method 1, we note that both TFAP2C and LHX2
were associated only with GO:00040029 regulation of gene expression, epigenetic, which
results in being a high-level label. On the contrary, the new entry TRPS1 is associated with
both GO:0002062 and GO:0032330, i.e., with chondrocyte differentiation. This means that
Method 2 opted again in favor of a more CML-specific connotation.

Table 5. GO terms of the biological processes selected by Method 2. We note that the terms differentiation,
immune, and leukocyte are the most significant as far as number of associated GO labels. Moreover,
also the other terms comprised in the selection appear to be strictly correlated to CML. In this case, the
correlation is clearly higher than the one returned by Method 1. This is due to the fact that the key terms
comprised in the selection refer to more specific biological processes involved in CML.

Process References GO ID

leukocyte [46] GO:0002521, GO:1902105, GO:0045321,
GO:0002573

immune GO:0002376, GO:0006955, GO:0002520,
GO:0002550
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Table 5. Cont.

Process References GO ID

chondrocyte [47] GO:0002062, GO:0032330
p53 [48] GO:0072331
myeloid [41] GO:0030099, GO:0002573
growth GO:0071560, GO:0071559
differentiation [41] GO:0002521, GO:1902105, GO:0030099,

GO:0002573, GO:0032330
hemopoiesis [49] GO:0030097
hematopoietic [49] GO:0048534
cytokine [50] GO:0001816, GO:0001817
phosphorylation [50] GO:0006468
stem [51] GO:0098722, GO:0008356

5. Discussion

We analyzed the modulation of CML cell model K562 transcriptome following trans-
fection with the tumor suppressor gene PTPRG and treatment with the tyrosine kinase
inhibitor (TKI) Imatinib with the aim of identifying genes responding to the PTPRG modu-
lation and/or treatments with Imatinib.

We developed two GSEA-based computational methods, Method 1 and Method 2,
aimed at detecting all the CML-related differentially expressed transcription factors
(TF-DEGs) and the biological processes involved. To summarize, the genes responsive to
the treatments found by our methods are:

• Method 1:

– Up-regulated TF-DEGs: MECP2, NR2E1, RARG;
– Down-regulated TF-DEGs: ZBTB16, TFAP2C, SOX5, SMAD1, LHX2, IKZF3, IFI16,

EPAS1, BATF3, BACH2;

• Method 2:

– Up-regulated TF-DEGs: MECP2, NR2E1, RARG;
– Down-regulated TF-DEGs: ZBTB16, TRPS1, SOX5, SMAD1, IKZF3, IFI16, EPAS1,

BATF3, BACH2.

Method 1 was designed to take as input the whole list of DEGs stemming from DEA
and afterwards select only the TF-DEGs. On the other hand, Method 2 was set to filter
out only TF-DEGs, identifying a smaller gene universe than Method 1. Moreover, the
two methods were split into two modalities to discern between up-regulated and down-
regulated genes. We observed that Method 1 returned more GO labels than Method 2 in
both modalities. However, this entailed different outcomes for up-regulated and down-
regulated TF-DEGs, respectively. In fact, both the word clouds and the correlation analysis
showed that for up-regulated TF-DEGs, Method 1 returned appropriate and specific GO
labels, while Method 2 provided more general results. Nevertheless, the selections of
CML-related TF-DEGs stemming from key term analysis identified the same list of genes
for both methods. Hence, we could say that in this case, Method 1 appears to be more
appropriate on the grounds that it identified more specific GO labels than Method 2. For
down-regulated TF-DEGs, Method 1 provided more high-level biological insights at all
stages (weighted word clouds, correlation analysis, and key term selection), while Method 2
showed more specific references to CML-related biological processes. However, the final
lists of CML-related TF-DEGs differ for only a few genes (LHX2 only for Method 2, and
TFAP2D and TRPS1 only for Method 1). In this case, Method 2 is to be preferred to
Method 1.

It is worth underlining that the validity of the dataset used and the methods ap-
plied were validated in the cell model by the identification of a novel molecular pathway
that has been suggested by the analysis of the data derived from the approach proposed.
Based on the identification of RARG and CD36 regulation in PTPRG overexpressing K562,
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we reasoned that a cell differentiation pathway might be altered in this condition. In-
deed, Walkley et al. [34] showed that RARγ null mice exhibit a considerable increase
in granulocytes in the peripheral blood (PB) and in the bone marrow (BM) and spleen,
developing a myeloproliferative-like syndrome and displaying a reduction in the megakary-
ocyte–erythroid progenitor fraction, thus altering homeostatic bone marrow erythropoiesis.
We were able to confirm CD36, a Scavenger receptor expressed in myeloid cells [52],
up-regulation at the protein level and found that this was associated with hemoglobin
overexpression, both markers of erythromyeloid differentiation induced by the treatment
with TKI Imatinib. These data further confirm the key role of PTPRG, a gene described as a
key regulator of cell differentiation in normal and in CML cells, acting as tumor suppressor
in this context, a role supported by several studies performed in patients [15,16,20,21,53].
Strategies aimed at restoring PTPRG expression are expected to benefit the course of the
disease by improving drug efficacy or contrasting the emergence of BCR::ABL1 mutants.

In conclusion, the methods here presented offer a versatile exploratory computational
approach to analyzing and extracting meaningful biological information. The study com-
bines statistical tests for DEA and GSEA with human-curated contents (Gene Ontology),
weighted word clouds, correlation analysis, and key term selection, originally born in dif-
ferent application domains (such as textual analysis). These methods could also potentially
be very useful and expressive in the descriptive statistical analyses applied to gene biology.

Finally, we provide some future development of our analysis. The identification of
genes responsive to pharmacological treatments is certainly not limited to the application of
these exploratory methods focused mainly on the gene as a single entity and the quantitative
characteristics of its activity (e.g., its expression level), but requires analyses relevant to the
field of systems biology. Indeed, the past 20 years have seen a revolution in the volume and
complexity of data generated in experiments and observations in the life sciences. With
the increase in available data, the need for data management, integration, and analysis has
become an increasingly important challenge. Biological knowledge is inherently complex
and so cannot readily be integrated into existing databases of molecular data. For more
than 20 years, ontologies have provided a means of unambiguously specifying biological
knowledge—for example, about genes, anatomy, and phenotypes—in complex graph-
based structures, which formally represent the concepts that are relevant in the domain and
the relationships between them [54]. On the one hand, an ontology defines a vocabulary
of terms to denote concepts and relationships that are familiar to the user. On the other
hand, it extends the data with background knowledge, such as sub-class and sub-property
axioms, axioms establishing which classes constitute the domain and range of properties,
and axioms expressing the disjointedness between classes or properties.

The use of ontologies began in the biological sciences around 1998 with the develop-
ment of the Gene Ontology [55,56], which systematically summarizes the current knowl-
edge of gene products across a wide range of species. Since then, many other initiatives
have given rise to the design and implementation of ontology-based data management
systems (also known as “Virtual Knowledge Graphs” [57,58] in the biological domain).
Since then, many other databases have been created to store biological information in
ontological structures. We refer the reader to [56,59,60] for a comprehensive review of the
most relevant existing ontologies in this field and their associated data sources.

Currently, the most prominent ontologies and ontology-based data management sys-
tems in the biology field store knowledge and data about the static structures of biological
organisms, whereas the dynamic behaviours of biological processes have, for the past
half-century, been captured in the mathematical language of physics-based simulation
modelling [61]. To date, there have been only a few attempts to bridge the wealth of
structural knowledge and the wealth of process knowledge, i.e., of the physico-chemical
laws described by equations of dynamical models. D. Cook et al. [61] introduced the
terms bio-ontology and biosimulation to indicate ontologies related to biological entities and
simulation of physics-based mathematical models of biological systems dynamics.
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Specifically, D. Cook and co-authors showed that the semantics of biosimulation
models could be expressed in a formal ontology that describes the entities, the properties,
and the physical laws that are encoded in the mathematical equations of a simulation
model. They introduced the Ontology of Physics for Biology (OPB) [62,63] based on systems
dynamics that makes explicit the biophysical semantics of physics-based biosimulation
models. OPB can be used as a reference knowledge resource for annotating variables
and equations of models and for deriving computable modeling code. Therefore, the
future direction of this study is the development of a methodology to bridge this gap
and link the semantics of biosimulation to the knowledge in structural bio-ontologies. A
possible way to pursue this goal could be the analysis of gene networks resulting from the
identification of TF-DEGs of interest. More specifically, we plan to choose TF-DEGs that
seem to be involved in CML-related biological processes and expand the analysis on genes
that interact with them. The types of relations between genes can be retrieved from various
sources as partner or pathway databases. Here we relied on Pathway Commons, a pathway
database that uses the Biological Pathway Exchange (BioPAX) [64] standard to represent
data. It allows for investigating multiple biological concepts, such as biochemical reactions;
gene regulatory networks; genetic interactions; proteins, small molecules, DNA, RNA,
complexes, and their cellular locations; complex assembly and transport; post-translational
protein modifications; citations; experimental evidence; and links to other databases, e.g.,
protein sequence annotation [65].

For our purposes, we focused on two types of gene–gene relationships involving
TF-DEGs:

• Control of gene expression (one-way relationship): we analyzed all the genes in control
or controlled by TF-DEGs in terms of expression levels.

• Interaction between genes (two-way relationship): we analyzed all the genes that
chemically interact with TF-DEGs.

Since the analysis on up-regulated genes returned the same set of relevant TF-DEGs,
we focused only on down-regulated genes. Figures S2–S5 in Supplementary Materials show
the analysis results for Method 1 and Method 2 as gene networks. In conclusion, we plan
to investigate the biological and chemical relations between the genes represented in the
networks to enrich the exploratory methods hereby defined with additional information
about the network dynamics. The construction of the equations for the dynamics of the
gene networks of interest involves calibrating the model as the next step. In possession
only of static data, such as those used in this study, this phase will require the development
of efficient sensitivity analysis techniques, given the large number of genes potentially
involved and the expected non-linear dynamics. In this regard, we plan to refine the numer-
ical techniques for parameter sensitivity analysis, inference, and the dynamic simulation
developed in [66–68].

Another future research line to be further explored is the identification and the analysis
of the DEGs responsive to both the case study under examination and known pharmaco-
logical treatments with TKI. In this direction, we preliminarily performed DEA to detect
DEGs between two groups: control considered as the untreated group (two replicates) and
the treatment group referred to as TKI-expressing samples (two replicates). In order to
discard background noise, only genes with an intra-group standard deviation <0.3 and
distance between the group means >0.5 were considered. Differential expression analysis
was conducted on log2-transformed gene expressions using the Bioconductor/R package
limma (Version 3.12). Both the empirical Bayes correction on the variances and the multi-
testing Bonferroni–Hochberg correction on p-values were selected. Therefore, genes with
an adjusted p-value < 0.05 and |log2FoldChange| > 0.1 were considered to be differentially
expressed. Based on these criteria, 568 genes have been selected as DEGs: 310 were up-
regulated, and 258 were down-regulated. Among them, we have identified 61 transcription
factors, of which 25 are down-regulated, and 36 are up-regulated (see Figure 16). The top
five down-regulated TFs are GATA3, RUNX3, HES1, TBX4, and FOSL1, while the top five
up-regulated are NPAS4, FOXN4, HOXA2, PURG, and ZNF540. Then, we selected only the



Int. J. Mol. Sci. 2022, 23, 9899 22 of 26

DEGs that occurred in both selections stemming from DEA. The results are represented in
Figure 17 and are split between up-regulated and down-regulated genes.

Figure 16. Volcano plot plot for DEGs. Genes are represented as scattered points: the x-axis is the
log2FoldChange, and the y-axis shows the log1p(−log10 adjusted p-value). Both red and blue dots
represent genes that were identified as significantly differentially expressed (adjusted p-value < 0.05)
with |log2FoldChange| > 0.1. Specifically, red dots refer to transcription factors.

Figure 17. TF-DEGs in common between empty vs TKI and empty + D1028A vs PTPRG. Down-
regulated genes are represented in the first set, whilst up-regulated ones are shown in the second set.
Moreover, TF-DEGs are written in bold white, and DEGs are reported in black.

6. Conclusions

In this study, we identified molecular pathways modulated by the tumor suppressor
gene PTPRG and focused on transcription factors known to act as master genes controlling
a high number of downstream effectors. Future avenues might involve the identification of
specific genes regulated by them and investigating the biological and chemical relations
between the genes represented in the networks to enrich the exploratory methods hereby
defined with additional information about the network dynamics. The methods here
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presented offer a versatile exploratory computational approach to analyze and extract
meaningful biological information. The study combines statistical tests for DEA and GSEA
with human-curated contents (Gene Ontology), weighted word clouds, correlation analysis,
and key term selection, originally born in different application domains (such as textual
analysis). Of note, we have validated the microarray data using a group of differentially
expressed genes and identified a cell differentiation program activated by the TSG PTPRG,
leading to a higher propensity of the blasts to differentiate toward a more mature phenotype,
a condition that is further enhanced by TKI treatment. These data further support the
relevance of the re-expression of PTPRG in the context of CML, suggesting it as a relevant
therapeutic target. These methods also could potentially be very useful and expressive in
the descriptive statistical analyses applied to gene biology.
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