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Abstract: The natural sweeteners erythritol and xylitol might be helpful to reduce sugar consumption
and therefore prevent obesity and diabetes. The aim of the present study was to determine the
absorption and metabolization into erythronate of different concentrations of erythritol and xylitol.
Seventeen healthy lean participants received intragastric solutions of 10, 25, or 50 g erythritol or 7, 17,
or 35 g xylitol on three study days in a randomized order. The study was double blinded with respect
to the doses administered. We assessed plasma concentrations of erythritol, xylitol, and erythronate
at fixed time intervals after administration with gas chromatography-mass spectrometry. We found:
(i) a dose-dependent and saturable absorption of erythritol, (ii) a very low absorption of xylitol,
(iii) a dose-dependent metabolization of erythritol into erythronate, and (iv) no metabolization of
xylitol into erythronate. The implications of the metabolization of erythritol into erythronate for
human health remain to be determined and more research in this area is needed.

Keywords: erythritol; xylitol; erythronate; natural sweeteners; absorption; metabolism; obesity;
diabetes

1. Introduction

The still-steady rise in sugar consumption is a key contributor to the dramatic global
rise in obesity and associated metabolic disorders, especially type 2 diabetes mellitus. The
WHO has proposed a reduction in sugar intake as a preventive and therapeutic strategy to
curb these disorders [1]. A possible solution to achieve a reduction in sugar intake is the
partial substitution of table sugar and added sugars with low-caloric, naturally occurring
bulk sweeteners, also called polyols. Polyols are mono- and polysaccharides in which a
carbonyl group is replaced by an alcohol (hydroxyl) group. Polysaccharide polyols are
difficult to digest and metabolize due to their hydroxyl groups and their glycosidic linkages
other than α1-4 and α1-6 [2]. Monosaccharide polyols, such as erythritol and xylitol, are
partly absorbed by passive diffusion along a concentration gradient in the small intestine [3].
These monosaccharide polyols are gaining popularity among patients with overweight and
diabetes thanks to their low glycemic indexes [2], which gives them anti-hyperglycemic
and anti-diabetic properties [4]. In addition, erythritol and xylitol induce the secretion
of gastrointestinal satiation hormones (such as cholecystokinin (CCK) and glucagon-like
peptide-1 (GLP-1)) and promote satiety and slow gastric emptying [5–7]. Furthermore, the
two polyols actively benefit oral health [5].

Erythritol is a four-carbon sugar alcohol (C4H10O4, see Figure 1) with a molar mass of
122.12 g/mol and a glycemic index of 0 (in comparison, sucrose and glucose have glycemic
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indexes of 65 and 100, respectively). In 1996, Bornet et al. [8] found that plasma and urine
levels increased within two hours proportionally to the amount of erythritol ingested. They
found that the total urinary excretion reached 78% of ingested erythritol after 24 h [9]. A
chronic intake of erythritol over seven days showed that 78% of ingested erythritol was
excreted in the urine [10]. Munro et al. [11] summarized that erythritol is rapidly absorbed
up to 90% by the gastrointestinal tract and quantitatively excreted unchanged with the
urine. Whether the remaining 10% of the erythritol dose is fermented in the colon or
excreted unchanged via the stool is unknown in humans. However, in an in vitro setting,
erythritol was shown to be completely resistant to bacterial fermentation within 24 h [12].
In conclusion, available data suggest that erythritol is mainly absorbed in the intestine,
not metabolized by the body, and excreted unchanged via the kidney. However, in a side
experiment of their study on metabolic markers of adiposity gain, Hootman et al. [13]
recently shed light on an unknown pathway of erythritol metabolism. In their study,
three healthy males ingested a single dose of 50 g erythritol and gave finger-prick blood
samples at regular intervals after ingestion. The authors observed an immediate increase
in blood erythritol concentrations, followed by an increase in erythronate concentrations.
They suggest that ingested erythritol is oxidized into the sugar erythrose (C4H8O4), which
is in turn oxidized to erythronate (C4H7O5

−). The authors suggest that 5–10% of the
ingested amount of erythritol is metabolized into erythronate [13]. These results lead to
new questions about the metabolization of erythritol and the role of erythritol and its
metabolites, especially erythronate, for human health in relation to obesity and diabetes.
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in smaller proportions than erythritol. There are only a few studies investigating the ab-
sorption and metabolism of xylitol. In 1973, Asano et al. [14] studied the intestinal absorp-
tion of oral xylitol by aspiration and analysis of ileal content in five healthy subjects. They 
found that xylitol absorption ranged from 49–95%. However, they did not find any xylitol 
in plasma samples one and two hours after ingestion, nor did they notice significant 
amounts in urine up to 24 h after ingestion. After being absorbed, monosaccharide polyols 
can be excreted unchanged via the kidneys, oxidized directly, or metabolized in the liver 
to glycogen or glucose [15]. The latter is what Asano et al. [14] suggested as a hypothesis 
for the absence of xylitol in the blood, while at least half of the ingested quantity was 
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[16] up to 75% [17]. Xylitol is fermentable by colonic microorganisms and is considered a 
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Figure 1. Chemical structures of erythritol and xylitol.

Xylitol is a five-carbon sugar alcohol (C5H12O5, see Figure 1) with a molar mass of
152.15 g/mol and a glycemic index of 13. Due to its higher molar mass, xylitol is absorbed
in smaller proportions than erythritol. There are only a few studies investigating the
absorption and metabolism of xylitol. In 1973, Asano et al. [14] studied the intestinal
absorption of oral xylitol by aspiration and analysis of ileal content in five healthy subjects.
They found that xylitol absorption ranged from 49–95%. However, they did not find any
xylitol in plasma samples one and two hours after ingestion, nor did they notice significant
amounts in urine up to 24 h after ingestion. After being absorbed, monosaccharide polyols
can be excreted unchanged via the kidneys, oxidized directly, or metabolized in the liver to
glycogen or glucose [15]. The latter is what Asano et al. [14] suggested as a hypothesis for
the absence of xylitol in the blood, while at least half of the ingested quantity was absorbed.
Other estimates of xylitol intestinal absorption range from 48% [15] over 53% [16] up to
75% [17]. Xylitol is fermentable by colonic microorganisms and is considered a prebiotic, as
it promotes the proliferation and metabolic activity of beneficial bacteria and the production
of short-chain fatty acids such as butyrate [18,19]. Livesey summarized the evidence and
suggested a consensus of around 49% for absorptive capacity, less than 2% for urinary
excretion, and approximately 50% for fermentation [2]. However, like for erythritol, the
metabolism of absorbed xylitol still needs further investigation to understand its effect on
the human body better and evaluate its potential as a sugar substitute for patients with
obesity and diabetes.
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We administered different doses of each substance to healthy volunteers to investigate
the enteral absorption of erythritol and xylitol and their potential metabolization into
erythronate. We showed that the absorption of erythritol and its metabolization into
erythronate occur in a dose-dependent manner. The absorption of xylitol was low, and no
metabolization into erythronate took place.

2. Results

All participants tolerated the study treatments well, and there were no adverse events
that led to study discontinuation. Therefore, complete data from 2 × 12 participants were
available for analysis. There was no abdominal pain, nausea, flatulence, or vomiting
reported after any dose of erythritol or xylitol. One participant had diarrhea after 10 g
erythritol. Four participants reported feelings of bloating (after 25 g and 50 g erythritol and
after 17 g and 35 g xylitol) and two participants reported increased eructation (after 10 g
erythritol and after 7 g xylitol). A subjective increase in bowel sounds was reported by nine
participants after 10 g erythritol, seven after 25 g erythritol, and eight after 50 g erythritol;
and nine participants after 7 g xylitol, eight after 17 g xylitol, and nine after 35 g xylitol.

2.1. Absorption of Erythritol and Xylitol

The absorption of erythritol occurred in a dose-dependent manner. The area under
the curve from 0 to 180 min (AUC180) and the maximum erythritol plasma concentrations
(Cmax) increased in response to the three intragastric loads (AUC180: 10 g vs. 25 g, p < 0.001;
10 g vs. 50 g, p < 0.001; 25 g vs. 50 g, p < 0.001; Cmax: 10 g vs. 25 g, p < 0.001; 10 g vs. 50 g,
p < 0.001; 25 g vs. 50 g, p = 0.001, see Table 1).

Table 1. Absorption of erythritol.

A: 10 g Erythritol
(n = 11)

B: 25 g Erythritol
(n = 12)

C: 50 g Erythritol
(n = 12) p-Values

AUC180 (mM·min) 201.0 ± 12.7 450.6 ± 29.3 707.1 ± 53.9
A vs. B: p < 0.001
A vs. C: p < 0.001
B vs. C: p < 0.001

Cmax (µM) 1810.6 ± 124.6 3676.9 ± 251.2 5404.3 ± 450.6
A vs. B: p < 0.001
A vs. C: p < 0.001
B vs. C: p = 0.001

Absorption rate ka (min−1) 0.126 ± 0.183 0.374 ± 0.257 0.036 ± 0.031 All n.s.

Absorption half-life tka,1/2 (min) 5.40 ± 1.16 4.88 ± 0.86 14.23 ± 2.66
A vs. B: n.s.

A vs. C: p = 0.004
B vs. C: p = 0.002

Elimination rate k10 (min−1) 0.008 ± 0.002 0.008 ± 0.001 0.002 ± 0.001 All n.s.

Elimination half-life tka,1/2 (min) 46.09 ± 5.68 51.41 ± 3.62 42.69 ± 5.24 All n.s.

Volume of distribution V1 (L) 38.50 ± 4.27 37.74 ± 2.43 50.95 ± 5.62 All n.s.

Data are expressed as mean ± SEM and reported from baseline. Linear mixed effect model analysis with Šidak
correction for multiple testing. AUC180: area under the curve from 0 to 180 min, Cmax: maximum plasma
concentration, n.s.: not significant.

The absorption of erythritol was significantly slower with the 50 g load compared to
the lower doses (absorption half-life tka,1/2: 10 g vs. 50 g, p = 0.004, 25 g vs. 50 g, p = 0.002,
see Table 1), suggesting a saturable process. Neither the elimination rate constant k10
of erythritol and its half-life tk10,1/2 nor the volume of erythritol distribution (V1) were
significantly different between the treatment doses (Table 1).

Figure 2 shows the concentration-time curves and the dose-response diagram for
AUC180 (dose-response: R2 = 0.996, p = 0.02) and Cmax (dose-response: R2 = 0.999, p = 0.01)
of erythritol after administration of the three loads.
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Figure 2. Dose-dependent absorption of erythritol. Upper part: concentration–time curves after
administration of the three loads; lower part: dose-response for the area under the curve from 0
to 180 min (AUC180) and the maximum deviations from baseline (Cmax). Data are expressed as
mean ± SEM. Data were best fit with a non-linear dose-response model.

Xylitol absorption was low and could not be detected in any of the participants after
the 7 g dose, only in some of the participants after the 17 g dose and in all participants after
the 35 g dose (data not shown).

2.2. Metabolization of Erythritol and Xylitol into Erythronate

The metabolization of erythritol into erythronate occurred in a dose-dependent manner.
The AUC180 and Cmax for erythronate plasma concentrations increased in response to the
three intragastric loads of erythritol (AUC180: 10 g vs. 25 g, p = 0.069; 10 g vs. 50 g, p = 0.001;
25 g vs. 50 g, p = 0.002; Cmax: 10 g vs. 25 g, n.s.; 10 g vs. 50 g, p < 0.001; 25 g vs. 50 g,
p = 0.01, see Table 2). Figure 3 shows the concentration–time curves of erythronate and
the dose–response diagram for AUC180 (dose–response: R2 = 0.999, p = 0.018) and Cmax
(dose–response: R2 = 0.989, p = 0.045) of erythronate after administration of the three loads
of erythritol. Neither the formation rate (k12), nor the elimination rate k20 of erythronate
and its half-life tk20,1/2, nor the volume of erythronate distribution (V2) were significantly
different between the treatment doses (Table 2).
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Table 2. Metabolization of erythritol into erythronate.

A: 10 g Erythritol
(n = 11)

B: 25 g Erythritol
(n = 12)

C: 50 g Erythritol
(n = 12) p-Values

AUC180 erythronate (µM·min) 1034.4 ± 122.8 2664.8 ± 241.6 5151.9 ± 763.2
A vs. B: p = 0.069
A vs. C: p = 0.001
B vs. C: p = 0.002

Cmax erythronate (µM) 9.1 ± 1.5 21.0 ± 1.9 45.4 ± 9.1
A vs. B: n.s.

A vs. C: p < 0.001
B vs. C: p = 0.01
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Table 2. Cont.

A: 10 g Erythritol
(n = 11)

B: 25 g Erythritol
(n = 12)

C: 50 g Erythritol
(n = 12) p-Values

Formation rate k12 (min−1) 0.0003 ± 0.00009 0.0002 ± 0.00030 0.0002 ± 0.00002 All n.s.

Elimination rate k20 (min−1-) 0.0229 ± 0.0019 0.0188 ± 0.0012 0.0210 ± 0.0018 All n.s.

Elimination half-life tk20,1/2 (min) 14.34 ± 1.54 16.89 ± 1.23 15.59 ± 1.46 All n.s.

Volume of distribution V2 (L) 54.39 ± 14.61 49.33 ± 7.69 39.21 ± 5.34 All n.s.

Data are expressed as mean ± SEM and reported from baseline. Linear mixed effect model analysis with Šidak
correction for multiple testing. AUC180: area under the curve from 0 to 180 min, Cmax: maximum plasma
concentration, n.s.: not significant.

The metabolic ratio AUCerythritol/AUCerythronate was highest with the 10 g erythritol
load and decreased with higher doses (ratio AUC180 for 10 g: 236.2 ± 46.3 vs. 25 g:
187.6 ± 22.4 vs. 50 g: 162.3 ± 20.1, differences not significant). The Cmax, erythritol/Cmax, erythronate
ratio was also highest with the 10 g erythritol load compared to the higher doses (ratio
Cmax for 10 g: 229.0 ± 26.5 vs. 25 g: 193.1 ± 23.3 vs. 50 g: 153.8 ± 20.4, differences not
significant). These decreasing metabolic ratios with higher doses of erythritol indicate that
an increasing fraction of erythritol is metabolized into erythronate. Figure 4 shows the
metabolic ratios depending on the different doses of erythritol. This phenomenon is also
reflected by the non-linear dose-response for AUC180 and Cmax, as shown in the lower part
of Figure 2.
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The concentrations of erythronate in response to the intragastric loads of xylitol were
under the detection limit of the analytical assay, indicating no metabolization of xylitol into
erythronate at the doses applied in this study.
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3. Discussion

This study aimed to determine the absorption of different intragastric doses of erythri-
tol and xylitol and their potential metabolization into erythronate in healthy volunteers.
The results show that: (i) the absorption of erythritol is dose-dependent and saturable;
(ii) the absorption of xylitol is low; (iii) erythritol is metabolized into erythronate, the
metabolization is dose-dependent and higher with high doses of erythritol; and (iv) there is
no metabolization of xylitol into erythronate. The implications for human health remain to
be determined.

The absorption results for erythritol are in line with other human studies showing
that erythritol is rapidly absorbed [8–10]. However, the extent can only be estimated in
comparison to an intravenous control. The dose-dependent absorption of erythritol found
here confirms the results of Bornet et al. [8], who showed increasing plasma erythritol
concentrations as a function of ingested doses (0.4 or 0.8 g/kg body weight). More im-
portantly, we observed that the absorption of erythritol was slower with the highest dose
(50 g) suggesting a saturable process. The slower absorption might explain gastrointestinal
symptoms such as nausea, borborygmi, bloating, and diarrhea observed at high doses [5,20].
The hypothesis of a saturable absorption of erythritol at high doses is compatible with
these observations.

Xylitol, on the other hand, was poorly absorbed in the present study. This contrasts
with results showing absorption of at least 50% in healthy subjects [14]. In contrast, the
previous study used a test solution consisting of xylitol with an equal amount of glucose,
which is different from the current design. The addition of glucose might have affected
the absorption of xylitol. Moreover, the authors estimated absorption by aspiration and
analysis of ileal content (i.e., disappearance); of note, they did not find any xylitol in plasma
samples one and two hours after ingestion [14].

Erythritol is metabolized into erythronate, confirming the findings of Hootman et al. [13].
In addition, we extend these findings by showing that this metabolization is dose-dependent
and increases with high doses of erythritol. The metabolization process occurred, however,
in minimal amounts: less than 1% of erythritol was converted into erythronate—which
is less than Hootman et al. who reported a conversion rate of 5–10%. In their study, only
three men were included and they received 50 g of oral erythritol 43 min after having
consumed 2 g of labeled glucose. Although the dose is similar, the limited sample size,
the route, and the timing of administration are important differences in the study design.
Both studies agree that only on a small amount of erythritol is metabolized (<10%). We
think that erythritol is converted by an alcohol dehydrogenase to threose, which is in turn
probably further biochemically oxidized to erythronate (Figure 5).
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The formation rate of erythronate did not significantly differ between the different
doses of erythritol, although numerically, the metabolic ratio decreased with higher doses
indicating that the metabolization increased. It is interesting to note that erythronate is
eliminated faster than erythritol. The elimination rate of erythronate is about 0.02 min−1,
while the elimination rate of erythritol is only 0.008 min−1 for the two lower doses and even
lower (0.002 min−1) for the 50 g dose of erythritol. The reasons for these differences are
unclear: the higher polarity of erythronate compared to erythritol could be an explanation,
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although both substances are quite hydrophilic. It is not known if erythronate is further
metabolized or directly excreted in the urine.

We did not detect any metabolization of xylitol into erythronate. The metabolization of
erythritol into erythronate might follow an oxidation reaction including the sugar erythrose.
Therefore, xylitol has to be metabolized into erythrose before being further oxidized into
erythronate. This reaction is possible requiring multiple steps: xylitol can be transformed
into xylulose and then into xylulose-5-phosphate through enzymatic reactions. Xylulose-
5-phosphate is an entry point into the pentose phosphate cycle [21]. Within this cycle,
xylulose-5-phosphate can be metabolized into erythrose-4-phosphate, which, in turn, can
be transformed into erythrose and further oxidized into erythronate. This process involves
several steps; the resulting concentrations were not detectable within the dose range
investigated here. Therefore, we conclude that xylitol is not metabolized into erythronate
at the concentrations administered in this study.

Little is known about the role of erythronate in the human body. It seems that ery-
thronate is an oxidative stress product [22,23]. It has been shown in feces of colorectal
cancer patients, that erythronate correlated with the presence of Enterobacteriaceae, a
potentially pathogenic group of bacteria [24]. In patients with liver cirrhosis, erythronate
was associated with the severity of hepatorenal dysfunction and it was a significant pre-
dictor of mortality [25,26]. A stepwise increase in erythronate plasma concentration in
patients with renal disease was observed with decreasing renal function [27]. In addition,
erythronate was associated with the estimated glomerular filtration rate in the general
European population, and the authors suggest that it may be an early marker of reduced
kidney function [28]. However, before using erythronate as a marker of different condi-
tions, more research is necessary and it must be taken into account that increasing amounts
of erythritol is consumed, and that this consumption influences the circulating levels
of erythronate.

Hootman et al. [13] found a positive association between circulating levels of erythritol
and the incidence of central adiposity gain in nonobese young adults studied over nine
months. They also showed that glucose can be metabolized into erythritol, and erythritol
can be metabolized into erythronate. We and others hypothesize that the presence of
erythritol and erythronate in the plasma of subjects who are not regularly consuming
erythritol might serve as a marker of elevated blood sugar levels and oxidative stress,
which are associated with central adiposity [29]. More research is needed to validate the
role of erythronate metabolized from erythritol ingestion in the human body.

The present study has some limitations: first, it is an a posteriori analysis, and there-
fore, no pre-study sample size calculation was made. However, as the results of the main
trial (dose-response effect on satiation hormones secretion) were significant [6,7], we can
assume that the sample size was robust to detect a dose-dependent effect in the absorption
of erythritol and xylitol and their conversion into erythronate. Second, the doses chosen
might have been too low to observe the conversion of xylitol into erythronate. However,
as mentioned before, the doses in this study were chosen to represent real life conditions
and to limit gastrointestinal symptoms. Finally, we only assessed erythritol, xylitol, and
erythronate concentrations in the plasma. It would be interesting to measure their concen-
tration in urine and feces, too, to understand whether erythronate is further metabolized or
directly eliminated.

In conclusion, erythritol is absorbed in a dose-dependent and saturable manner. It is
metabolized in a small amount into erythronate, and this process is dose-dependent. The
absorption of xylitol is low, and no metabolization into erythronate takes place at the doses
used in this study. The implications for human health remain to be determined.

4. Materials and Methods
4.1. Study Approval

The trial was approved by the local ethical committee of Basel, Switzerland (Ethikkom-
mission Nordwest- und Zentralschweiz; EKNZ 2016-01928) and was performed in compli-
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ance with the current version of the Declaration of Helsinki, the ICH-GCP, and national
legal and regulatory requirements. Each participant gave written informed consent for the
trial. The trial was registered at ClinicalTrial.gov under NCT03039478.

4.2. Participants

A total of 17 healthy normal-weight participants took part in the trial. The participants’
baseline characteristics are shown in Table 3. Participants were excluded if they suffered
from acute infections, chronic diseases, or diseases of the gastrointestinal tract, if they took
medications regularly, if they were pregnant, or if they consumed substances in abuse. In
addition, none of the participants had a history of food allergies, dietary restrictions, or
pre-existing consumption of erythritol or xylitol on a regular basis.

Table 3. Participants’ baseline characteristics (mean ± SD (range)).

Parameter Xylitol Group Erythritol Group p-Values

Gender n = 12 (7♀, 5♂) n = 12 (5♀, 7♂) 0.683 †

Age (yrs) 25.6 ± 5.1 (23; 41) 26.2 ± 6.6 (18; 40) 0.810 §

Weight (kg) 64.5 ± 9.5 (51.0; 82.9) 66.4 ± 8.3 (54.7; 82.9) 0.607 §

Height (m) 1.74 ± 0.11 (1.61; 1.90) 1.75 ± 0.09 (1.65; 1.90) 0.836 §

BMI (kg/m2) 21.2 ± 1.3 (19.4; 23.0) 21.7 ± 1.4 (19.4; 24.0) 0.422 §

† Chi-square test, § Analysis of variance, ♀ stands for women, ♂ stands for men, BMI: body mass index, SD:
standard deviation.

4.3. Study Design

This acute study was conducted as a parallel trial. The first twelve included partici-
pants were given erythritol; the following twelve participants were included in the xylitol
arm. Within the arms, the doses were given in a randomized order. The trial was conducted
double blind, meaning that the study participant, the person carrying out all tests, and the
personnel performing the analyses of blood samples were blinded concerning the dosage
assigned to the participant. Some participants (n = 7) participated in the xylitol arm after
enrolling in the erythritol arm. That is why the total number of participants was only 17.
For participants included in both arms, a wash-out phase of at least four days between the
two interventions was respected.

4.4. Experimental Procedure

Participants were admitted to St. Clara Research Ltd. in the morning after a 10 h
overnight fast. A feeding tube was placed to administer the substances intragastrically.
This route of administration was chosen to bypass exteroceptive cues (e.g., taste and smell)
and their associated hedonic responses and cognitions that may influence subjective ratings
or even physiological/endocrine responses [30]. An antecubital catheter was inserted into a
forearm vein for blood sampling. After taking fasting blood samples, participants received
one of the following solutions (t = 0 min) directly into the stomach, over two minutes, in a
randomized order, depending on the intervention arm:

For the erythritol arm:

- 10 g of erythritol dissolved in 300 mL tap water
- 25 g of erythritol dissolved in 300 mL tap water
- 50 g of erythritol dissolved in 300 mL tap water

For the xylitol arm:

- 7 g of xylitol dissolved in 300 mL tap water
- 17 g of xylitol dissolved in 300 mL tap water
- 35 g of xylitol dissolved in 300 mL tap water

The doses of erythritol were chosen to represent everyday life conditions. For example,
50 g erythritol dissolved in 300 mL corresponds to 30 g sucrose in 330 mL, the concentration
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found in common sweet beverages. Moreover, the gastrointestinal tolerance of 50 g of
erythritol seems acceptable, as this dose only causes nausea and borborygmi, while 50 g
of xylitol can cause bloating, colic, and watery feces in some subjects. Lower doses of
erythritol do not cause any symptoms [20]. The doses of xylitol were chosen to be equisweet
to erythritol.

After administration of the test solutions, blood samples were taken at regular time
intervals (t = 15, 30, 45, 60, 90, 120, and 180 min). Participants were asked to rate GI
symptoms at 30, 60, 90, 120, 150, 180, and 240 min after administration of the test solutions.
The experimental procedure is depicted in Figure 6.
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4.5. Blood Sample Collection and Processing

Blood samples were collected on ice into tubes containing EDTA (6 µmol/L blood)
and a protease-inhibitor cocktail (Complete, EDTA-free, one tablet/50 mL blood, Roche,
Mannheim, Germany). After centrifugation (4 ◦C at 3000 rpm for 10 min), plasma samples
were processed into aliquots. The samples were then stored at −80 ◦C until analysis.

4.6. Materials

Erythritol and xylitol were purchased from Mithana GmbH (Zimmerwald, Switzerland).

4.7. Assessments of Erythritol, Xylitol, and Erythronate Concentrations

To analyze erythritol, xylitol, and erythronate, the plasma samples were first extracted
with a solution of water/methanol (1/8) v/v containing the internal standard and dried
at 55 ◦C on a vacuum centrifuge for one hour. The dried sample spots were then recon-
stituted in pyridine containing methoxyamine and derivated at 70 ◦C for 30 min. Before
analysis, the samples were derivated a second time by adding N-Methyl-N-(trimethylsilyl)-
trifluoracetamid at 40 ◦C for another 30 min. Finally, the concentration of erythritol, xylitol,
and erythronate was assessed using gas chromatography-mass spectrometry with helium
as carrier gas. In samples from the erythritol arm, xylitol was used as an internal standard;
in samples from the xylitol arm, erythritol was used as the internal standard.

4.8. Statistical Analysis

This study is an a posteriori sample analysis. Therefore, no sample size calculation
was made, and 12 participants per group was chosen for comparability and practica-
bility. However, as the results of the main trial (dose-response of satiation hormones
secretion) were significant [6,7], we can assume that the sample size is enough to detect
a dose-dependent effect in the absorption of erythritol and xylitol and their conversion
into erythronate.
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Molar concentrations of erythritol, xylitol, and erythronate were analyzed kineti-
cally using the following system of coupled differential Equation (1), based on the three-
compartment model depicted in Figure 7.

dX0/dt = −ka · X0
dX1/dt = ka · X0 − k10 · X1 − k12 · X1

dX2/dt = k12 · X1 − k20 · X2

(1)
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This linear three-compartment model describes the mass transfer between the first
compartment (X0, gut), from which the absorbable fraction of the erythritol/xylitol dose
(F × dose, where F = bioavailability) is absorbed into the central compartment (X1, blood)
by a linear process with a rate constant ka. Erythritol/xylitol in compartment X1 is ei-
ther eliminated from the compartment (elimination rate constant k10) or metabolized into
erythronate in the compartment X2. Although the formation of erythronate from erythri-
tol/xylitol is done by enzymatic reaction, it could best be modeled by a linear process and
was denoted by the formation rate constant k12. The elimination of erythronate from the
metabolite compartment (X2, blood) is described by the elimination rate constant k20. The
volumes of distribution of compartments X1 and X2, called V1 and V2, respectively, relate
the masses to plasma concentration (y1 and y2), as shown in the following Equation (2):

y1(t) = X1(t)/V1 and y2(t) = X2(t)/V2. (2)

The initial conditions at t = 0 were set to X0(0) = molar doses, X1(0) = 0, and X2(0) = 0.
Data were modeled using Python programming language (version 3.8.5), and the Lim-

fit module version 1.0.2 (Newville, M. et al., LMFIT: Non-Linear Least-Square Minimization
and Curve-Fitting for Python (2021), https://zenodo.org/record/11813#.Yex0ZerMJZc) to
numerically solve the Equations (1) and (2) and fit them to the observed concentrations of
xylitol, erythritol, and erythronate.

The half-life of the respective rate constant k for absorption and elimination was
calculated as shown in the following Equation (3):

tk,1/2 = ln (2)/k, ln = natural logarithm. (3)

The concentrations of erythritol, xylitol, and erythronate were baseline-corrected
before analysis.

All statistical analysis was done using the statistical software package IBM SPSS
Statistics for Windows, Version 27.0 (Armonk, NY, USA: IBM Corp.). Values were reported
and displayed as means ± standard error of the mean (SEM) if not otherwise specified.

Data were compared between doses by linear mixed model analysis with Šidak correc-
tion for multiplicity of testing. Differences were considered to be statistically significant
when p < 0.05.

https://zenodo.org/record/11813#.Yex0ZerMJZc
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