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Abstract: Nutrient stress harms plant growth and yield. Melatonin is a biologically active, multi-
functional hormone that relieves abiotic stress in plants. Although previous studies have shown
that melatonin plays an important role in improving nutrient-use efficiency, the mechanism of its
regulation of nutrient stress remains unclear. In this study, melatonin was applied to apple plants
under nutrient stress, and morphological indices, physiological and biochemical indices, and stomatal
morphology were evaluated. The response of apple plants to nutrient deficiency and the melatonin
mechanism to alleviate nutrient stress were analyzed by combining ionome, transcriptome, and
metabolome. The results showed that exogenous melatonin significantly alleviated the inhibitory ef-
fect of nutritional stress on the growth of apple plants by regulating stomatal morphology, improving
antioxidant enzyme activity, promoting ion absorption, and utilizing and changing the absorption
and distribution of minerals throughout the plant. The transcriptome results showed that melatonin
alleviated nutrient stress and promoted nutrient absorption and utilization by regulating glutathione
metabolism and upregulating some metal ion transport genes. The metabolome results indicated that
levels of oxalic acid, L-ascorbic acid, anthocyanins (cyanidin-3-O-galactoside), lignans (lirioresinol A
and syringaresinol), and melatonin significantly increased after exogenous melatonin was applied
to plants under nutrient stress. These differentially expressed genes and the increase in beneficial
metabolites may explain how melatonin alleviates nutrient stress in plants.

Keywords: apple; melatonin; nutrient stress; ionomic; transcriptomic; metabolomic

1. Introduction

High-quality arable land is limited and mostly used to produce food crops. China’s
apple-producing areas are primarily located in mountainous and hilly areas with poor soils.
Coupled with nutrient loss caused by impractical farming systems, soil nutrient imbalances
and shortages in orchards are widespread. Adequate and balanced mineral nutrition
is an important prerequisite for ensuring good growth and development of plants [1].
Macroelements (N, P, K, S, Ca, and Mg) and microelements (Fe, Mn, B, Zn, and Cu) play
indispensable roles in plant growth and development. For example, a lack of N leads
to a decrease in plant chlorophyll content, inhibits photosynthesis, decreases dry-matter
accumulation, and alters the root configuration [2–4]. P deficiency reduces photosynthetic
capacity, darkens leaves, causes leaf veins to become purplish-red, increases the root-to-
crown ratio, and augments the secretion of organic acids and phenols in roots [5]. When
plants are deficient in K, older leaves and leaf margins often turn yellow, and brown spots
or patches appear. It also inhibits photosynthesis and reduces resistance to stress [6]. The
transcriptome and metabolome have been combined to analyze the regulatory response
mechanism of apples to different N conditions. The results confirmed that apple plants
adapt to different N environments by regulating carbon metabolism, N metabolism, and
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the flavonoid pathway [7]. More attention should be paid to the observation that a nutrient
deficiency in an apple orchard is often not a single but rather a complex problem in which
multiple elements may be lacking at the same time [8], which may lead to complex stress
responses with elusive regulatory mechanisms. Improving management methods and
replenishing fertilizer is the main way to solve nutrient deficiencies, but this undoubtedly
increases the cost of investment. Therefore, new green and effective ways to improve plant
utilization efficiency are needed under limited nutrient conditions.

Melatonin is a pleiotropic molecule in plants that is synthesized by chloroplasts and
mitochondria and exists in almost all plant tissues, where it plays an important role in the
regulation of stress resistance [9,10]. Melatonin not only protects plants by scavenging
reactive oxygen species (ROS) in vivo but also has other functions [11]. Previous studies
have reported that melatonin can improve the formation of apple adventitious roots,
accelerate the invisible propagation of apple rootstocks that are difficult to root [12], and
improve the quality of apple fruit [13]. In addition, it protects the photosynthetic system and
enhances photosynthetic efficiency, regulates the activity of antioxidant enzymes [14,15],
and coordinates hormone levels in plants to enhance their resilience [16–18]. Recent studies
have reported that melatonin promotes the absorption and utilization of minerals in plants,
thus alleviating the inhibitory effect of abiotic stress on plant yield [6,19]. In a previous
study, we revealed that melatonin significantly alleviates the inhibitory effect of NO3

− and
NH4

+ deficiencies by regulating the activity of N metabolic enzymes and expressing N
transport and metabolic genes [3,4]. However, the mechanism of how melatonin regulates
nutrient stress response is relatively unknown.

Transcriptomics and metabolomics are high-throughput omics methods that efficiently
respond to the regulation of gene expression and metabolite levels within plant tissues
or cells and have been widely used by researchers to study plant responses to different
stressors [7]. The perception of abiotic stress, such as nutrient stress, further leads to the
expression of related genes, including those related to metabolic pathways, such as drought,
that can affect the expression of genes related to the abscisic-acid-synthesis pathway. In
addition, the metabolite changes are a direct reflection of the physiological state of a
plant. For example, oat roots metabolize citric acid and malic acid to adapt to phosphorus
deficiency [20]. As minerals are involved in many key metabolic pathways, a lack of
minerals has numerous effects on metabolism. For example, K is primarily involved in
osmotic regulation and maintenance of the cation–anion balance [21]. Ca is a ubiquitous
and versatile second messenger that is involved in many metabolic pathways [22,23].
Mg is essential for chlorophyll, and P is a key component of ATP, nucleic acids, and
phospholipids [24]. Transcriptome and metabolome studies on the effects of melatonin
on apple leaf genes and their metabolites under nutritional stress will help to explain the
mechanism of the response to nutrient stress and how melatonin improves absorption and
utilization of nutrients and alleviates nutritional deficiencies in apples.

Applying some substances can enhance the ability of plants to resist abiotic stress,
which is a complex process involving genes, signaling pathways, and changes in metabo-
lites. However, few studies have conducted transcriptomic and metabolomic analyses on
the alleviation of nutrient stress in apples with exogenous melatonin. In this study, physiol-
ogy, ionome, transcriptome, and metabolome analyses were used to study the response of
apple plants to nutrient deficiency and to explore the mechanism of melatonin-induced tol-
erance and adaptability of apple seedlings to nutrient deficiency. The results will provide a
theoretical basis for reducing fertilizer use and improving the nutrient utilization efficiency
of apples.

2. Results
2.1. Exogenous Melatonin Regulates the Growth and Development of Apple Plants and Activates
the Antioxidant System under Nutrient Stress

Plant growth was severely inhibited under nutrient stress, and exogenous melatonin
significantly alleviated the inhibitory effect of nutrient stress on growth (Figure 1a). After
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20 days of hydroponic treatment, the plant lengths (PLs), trunk diameters (TDs), total
dry weights (TDWs), and relative growth rates (RGRs) of the ST (1/20 Hoagland nutrient
solution treatment) plants had decreased by 20.3%, 20.3%, 24.6%, and 49.7%, respectively,
compared to CK (1/2 Hoagland nutrient solution treatment). However, exogenous mela-
tonin significantly alleviated the downward trend in these indicators. The indicators were
increased by 25.0%, 21.1%, 33.9%, and 97.1% compared to ST, respectively. In addition, the
root/stem ratios (RSRs) of the MST (1/20 Hoagland nutrient solution with 0.1 µmol/L
melatonin treatment) plants were significantly higher than those of the ST plants (Figure 1b).
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Figure 1. Effects of melatonin on plant growth under nutrient stress: (a) plant phenotypic, (b) plant
length (PL), trunk diameter (TD), total dry weight (TDW), relative growth rate (RGR), and root/stem
ratio (RSR). Data are means ± SD of four replicate samples. Values labelled with different letters
are significantly different by Tukey’s multiple range tests (p < 0.05). CK, 1/2 Hoagland nutrient
solution; MCK, 1/2 Hoagland nutrient solution with 0.1 µmol/L melatonin; ST, 1/20 Hoagland
nutrient solution; MST, 1/20 Hoagland nutrient solution with 0.1 µmol/L melatonin.

In addition, nutrient stress significantly inhibited root growth (Figure 2a). Root lengths,
diameters, surface areas, volume, tips, and forks of ST plants decreased by 23.9%, 18.5%,
31.2%, 47.3%, 33.6%, and 33.0%, respectively, compared to CK. Exogenous melatonin
significantly increased the roots and architecture indices, by 26.6%, 15.9%, 43.7%, 57.6%,
37.5% and 43.7%, respectively, compared to ST (Figure 2b).
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(TTC) decreased by 15.2% in ST plants, while MDA and REL increased by only 9.0% and 

Figure 2. Root architecture under different treatments: (a) root architecture scan, (b) the lengths,
diams, surface areas, volume, tips, and forks of roots. Data are means ± SD of five replicate samples.
Values labelled with different letters are significantly different by Tukey’s multiple range tests
(p < 0.05). CK, 1/2 Hoagland nutrient solution; MCK, 1/2 Hoagland nutrient solution with
0.1 µmol/L melatonin; ST, 1/20 Hoagland nutrient solution; MST, 1/20 Hoagland nutrient solution
with 0.1 µmol/L melatonin.

At the same time, total chlorophyll content (TCC) in ST plants decreased by 25.7%
compared to CK after 20 days of hydroponic treatment but only decreased by 5.7% after
exogenous melatonin application (Figure 3a). Malondialdehyde (MDA) content, relative
electrical conductivity (REL) of leaves, and root activity were determined. MDA and REL
in ST plant increased by 17.5% and 13.8% compared to CK, respectively. Root activity
(TTC) decreased by 15.2% in ST plants, while MDA and REL increased by only 9.0%
and 1.7%, and root activity decreased by 6.3% in MST plants (Figure 3b–d). Exogenous
melatonin activated the antioxidant systems and improved the antioxidant capacities of
plants under nutrient stress. Superoxide dismutase (SOD), peroxidase (POD), catalase
(CAT), and ascorbate peroxidase (APX) activity in MST plants increased by 13.4%, 16.8%,
49.0%, and 26.3%, compared to ST, respectively (Figure 3e–h).
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pared to ST plants, respectively (Figure 4b). 

Figure 3. Effects of different treatments on total chlorophyll content (TCC), relative electrical con-
ductivity (REL), the root activity (TTC), malondialdehyde (MDA) content, and antioxidant enzyme
activities. (a) TCC, (b) REL, (c) TTC, (d) MDA content, (e) superoxide dismutase (SOD) activity, (f)
peroxidase (POD) activity, (g) catalase (CAT) activity, and (h) ascorbate peroxidase (APX) activity.
Data are means ± SD of three replicate samples. Values labelled with different letters are significantly
different by Tukey’s multiple range tests (p < 0.05). CK, 1/2 Hoagland nutrient solution; MCK, 1/2
Hoagland nutrient solution with 0.1 µmol/L melatonin; ST, 1/20 Hoagland nutrient solution; MST,
1/20 Hoagland nutrient solution with 0.1 µmol/L melatonin.

2.2. Exogenous Melatonin Mediates the Regulation of Stomatal Configuration under
Nutrient Stress

After 20 days of the hydroponic nutrient-deficiency treatment, the lower surfaces of
the leaf samples were scanned at 700× and 2500×magnifications, respectively (Figure 4a).
Nutrient stress and exogenous melatonin changed the stomatal structure. Although exoge-
nous melatonin had no significant effect on stomatal width, stomatal density decreased by
17.4%, and stomatal length and stomatal opening increased by 13.9% and 116.7%, compared
to ST plants, respectively (Figure 4b).
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Figure 4. Melatonin regulates stomatal development and opening of apple leaves under nutrient
deprivation: (a) electron microscopy of stomata, (b) stomatal density, stomatal length, stomatal width
and stomatal aperture under different treatment conditions. Data are means ± SD of five replicate
samples. Values labelled with different letters are significantly different by Tukey’s multiple range
tests (p < 0.05). CK, 1/2 Hoagland nutrient solution; MCK, 1/2 Hoagland nutrient solution with 0.1
µmol/L melatonin; ST, 1/20 Hoagland nutrient solution; MST, 1/20 Hoagland nutrient solution with
0.1 µmol/L melatonin.

2.3. Exogenous Melatonin Mediates the Regulation of the Concentration, Uptake, Transfer, and
Distribution of Minerals in Plants under Nutrient Stress

When plants were stressed by nutrient deficiency, the concentrations of almost all
macro- and microelements significantly decreased. The concentrations of N, P, K, Ca,
Fe, Mn, Cu, Zn, and B significantly decreased in ST plants by 13.1%, 14,2%, 15%, 16.1%,
19.2%, 26.1%, 36.6%, 17.8%, and 16.6% compared to CK, respectively. Exogenous melatonin
significantly alleviated the decreases in N, P, K, Fe, Mn, Zn, and B by 1.1%, 6.7%, 8.2%,
4.8%, 4.7%, 3.4%, and 8.6%, respectively (Table S1).

The absorptions of N, P, K, Ca, Mg, Fe, Mn, Cu, Zn, and B were significantly reduced
by 58.8%, 59.0%, 58.1%, 55.1%, 51.9%, 65.3%, 73.5%, 71.6%, 57.1%, and 60.4%, respectively,
in ST plants compared to CK. However, exogenous melatonin significantly increased the
absorptions of these elements. The uptake of these minerals in MST plants increased by
131.4%, 115.9%, 117.1%, 103.2%, 116.0%, 141.0%, 224.2%, 100.0%, 111.8%, and 122.2%,
compared to ST, respectively (Figure 5).
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Figure 5. Effects of melatonin treatment on uptake fluxes of macro- and microelements (µg plant−1

day−1) in Malus hupehensis. (a–e) Uptake fluxes of macronutrients (N, P, K, Ca and Mg) and
(f–j) micronutrients (Fe, Mn, Zn, Cu and B). Data are means ± SD of four replicate samples. Values
labelled with different letters are significantly different by Tukey’s multiple range tests (p < 0.05). CK,
1/2 Hoagland nutrient solution; MCK, 1/2 Hoagland nutrient solution with 0.1 µmol/L melatonin; ST,
1/20 Hoagland nutrient solution; MST, 1/20 Hoagland nutrient solution with 0.1 µmol/L melatonin.

The transport rates of macro- and microelements were severely affected by the nutrient
stress. The nutrient transport rates of N, P, K, Ca, Fe, Mn, and B to leaves were significantly
higher in MST than in ST plants. In addition, the root accumulation rates of K, Mg, Fe, Mn,
Zn, and Cu were significantly higher in MST plants than in ST plants, but no significant
differences in the accumulation rates of N, P, Ca, or B were observed in roots between the
two groups. The root accumulation rates of the minerals were consistent with the mineral
transport rates to leaves (Figure 6).
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erals in the leaves and roots. N, P, K, Mg, Fe, Mn, and B levels increased in the leaves of 
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Figure 6. Nutrient transport and accumulation in Malus hupehensis plants under different treatment
conditions: (a–e) macronutrients (N, P, K, Ca, and Mg) transport (leaf and stem) and accumulation
(root), and (f–j) micronutrients (Fe, Mn, Zn, Cu, and B) transport (leaf and stem) and accumulation
under different treatment conditions. Data are means ± SD of four replicate samples. Values
labelled with different letters are significantly different by Tukey’s multiple range tests (p < 0.05). CK,
1/2 Hoagland nutrient solution; MCK, 1/2 Hoagland nutrient solution with 0.1 µmol/L melatonin; ST,
1/20 Hoagland nutrient solution; MST, 1/20 Hoagland nutrient solution with 0.1 µmol/L melatonin.

The concentrations of N, P, K, Ca, Mg, Fe, Mn, Zn, Cu, and B were highest in leaves, and
applying 0.1 µM melatonin significantly increased the partitioning of almost all minerals in
the leaves and roots. N, P, K, Mg, Fe, Mn, and B levels increased in the leaves of MST plants
by 19.5%, 7.5%, 19.0%, 14.7%, 25.9%, 129.5%, and 12.0% compared to ST. N, P, K, Mg, Fe, Zn,
and Cu levels increased by 19.1%, 13.4%, 14.8%, 20.7%, 23.3%, 35.4%, and 15.3%, respectively,
in the roots of MST plants. Compared to ST, N, P, K, Fe, Zn, Cu, and B levels increased in the
stems of MST plants by 16.3%, 25.1%, 13.1%, 17.9%, 104.2%, 12.1%, and 32.1% (Figure 7).
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Figure 7. Melatonin regulates the content and partition of elements in whole plants under nutrient
deprivation: (a–e) macronutrients (N, P, K, Ca, and Mg) content and partition, and (f–j) micronutrients
(Fe, Mn, Zn, Cu and B) content and partition in whole plants under different treatment conditions.
Data are means ± SD of four replicate samples. Values labelled with different letters are significantly
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2.4. Differentially Expressed Gene Analysis

Three transcriptomic comparisons (including CK, ST, and MST) were performed to
identify the effect of exogenous melatonin on differentially expressed genes (DEGs) in
apple leaves under nutritional stress. Three pairs of libraries (ST/CK, MST/CK, and
MST/ST) were prepared according to the different treatments, and transcriptome analysis
was performed on apple leaves (three replicates per treatment). A total of 65.88 Gb of
clean data was obtained. Clean data of each sample was ≥ 6 Gb. The percentage of the
Q30 bases was ≥94%, indicating that the quality of the transcriptome data was relatively
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high (Table S2). PCA was used to detect the severity of changes caused by the different
treatments. The results showed an obvious difference among CK, ST, and MST samples
(Figure S1). A clustering heat map was used to cluster genes with the same or similar
expression patterns. The map indicated that the expression patterns were significantly
different between the ST/CK and MST/ST treatments (Figure 8b,d). DESeq2 was used to
complete the DEG analysis. The total number of DEGs, the number of upregulated genes,
and the number of downregulated genes were counted in each group. A total of 285 (140 up
and 145 downregulated) DEGs in MST/CK, 111 (47 up and 64 downregulated) DEGs in
ST/CK, and 138 (68 up and 70 downregulated) DEGs in MST/ST were detected (Figure 8a,c
and Table S3). Genes related to chlorophyll synthesis, stress response, metal-ion transport,
and phosphate balance changed at the same time in both treatments (Table S4). These
results show that nutrient stress and exogenous melatonin induced transcriptomic changes
in apple leaves.

GO and KEGG enrichment analyses were performed to verify the biological functions
of the DEGs. The GO analysis exhibited the top 50 enrichment classifications and indicated
that most of the genes in ST/CK were involved in biological processes and molecular
functions. However, the DEGs in MST/ST were only involved in biological processes
(Figure S2). The KEGG enrichment analysis results showed that the DEGs in ST/CK were
involved in porphyrin and chlorophyll metabolism, flavonoid biosynthesis pathways, circa-
dian rhythm-plants, and ubiquinone and other terpenoid-quinone biosynthesis pathways.
The DEGs in MST/ST were involved in glutathione metabolism and cutin, suberin, and
wax biosynthesis (Figure 9).
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Figure 8. Transcriptome statistics of DEGs under different treatment conditions: (a,b) the volcano
pot and cluster heat map of differently expressed genes in ST/CK; (c,d) the volcano plot and cluster
heat map of differently expressed genes in MST/ST. The abscissa indicates the sample name and
hierarchical clustering results, and the ordinate indicates differently expressed genes and hierarchical
clustering results.
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2.5. Validation of DEGs by qRT-PCR

To confirm the RNA-seq results, eleven DEGs that had different roles in plant leaves
were selected. The qRT-PCR and RNA-Seq results were consistent for all the ten validated
genes (Figure S5), indicating that reliable RNA-seq data were obtained from the samples.

2.6. Metabolic Response of Apple Trees to Nutrient Stress

Metabolomic analysis was performed to identify the effect of applying exogenous
melatonin to apple plants under nutritional stress. A total of 849 metabolites were detected
based on the UPLC-MS platform and a self-built database and were separated into three
treatments according to the PCA (Figure S3). We carried out further analysis of the relation-
ships between the different treatments. According to the screening criteria, the numbers of
increased and decreased metabolites in MST/CK, ST/CK, and MST/ST were nine and five,
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two and nine, and nine and seven, respectively (Table S5). A Venn diagram was prepared to
analyze the intersection and unique metabolites between ST/CK and MST/ST. Among them,
three different metabolites were common in the ST/CK and MST/CK groups. In all, eight
and thirteen different metabolites were unique between ST/CK and MST/ST, respectively
(Figure S4). Oxalic acid, 3-ureidopropionic acid, L-asparagine, L-aspartic acid, muconic acid,
2,2-dimethylsuccinic acid, 2′-deoxyinosine-5′-monophosphate, isorhamnetin-3-O-gallate,
and solatriose were significantly decreased in ST plants compared to CK (Tables S6 and S8).
However, oxalic acid, L-ascorbic acid, melatonin, 2-acetyl-3-hydroxyphenyl-1-O-glucoside,
3-O-methylquercetin, cocamidopropyl betaine, lirioresinol A, syringaresinol, cyanidin-3-
O-galactoside, and solatriose were significantly increased in MST plants compared to ST
(Tables S7 and S8). These metabolites were classified into KEGG pathways, and ST/CK
was enriched in cyanoamino acid metabolism, beta-alanine metabolism, pantothenate and
CoA biosynthesis, and alanine, aspartate, and glutamate metabolism. Moreover, the KEGG
pathways enriched in MST/ST included taurine and hypotaurine metabolism and sulfur
metabolism (Figure 10).
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3. Discussion

In this study, nutrient stress resulted in a significant decrease in all growth param-
eters, including PL, TD, TDW, RSR, and RGR. However, applying exogenous melatonin
significantly alleviated the inhibitory effect of nutrient stress on plant growth (Figure 1).

Leaf yellowing caused by reduced chlorophyll content is a symptom of nutrient stress,
which drastically reduces photosynthesis (Figure 3a). In our study, applying exogenous
melatonin enhanced the absorption and utilization of N, P, and Fe, thus maintaining chloro-
phyll content at a high level (Figure 5). Nutrient stress significantly reduced stomatal
length, width, and aperture (Figure 4), which may lead to lower CO2 assimilation and
transpiration rates and a lower photosynthetic rate. In addition, it has been well docu-
mented that K-deficient plants have inhibited stomatal movement, enzyme activities, and
protein synthesis, while producing large quantities of ROS that impair the photosynthesis
process [21]. Here, exogenous melatonin significantly improved stomatal status and the
absorption and utilization of K under nutrient stress, which was conducive to maintaining
strong transpiration and photosynthetic rates. Chloroplasts are the primary site of mela-
tonin synthesis and one of the organelles most susceptible to ROS [25]. Many studies have
reported the protective effects of melatonin on chloroplast and stomatal structure [18,26].
In this study, adding exogenous melatonin significantly reduced the REL and MDA of
plant leaves, and increased SOD, POD, CAT, and APX activities (Figure 3). These results
indicate that exogenous melatonin reduced the degree of membrane lipid peroxidation
in leaves and maintained membrane permeability under nutrient deficiency. Applying
melatonin to rice seedlings enhances their tolerance to cold by improving the efficiency of
the photosystems and the activity of antioxidant enzymes [27]; our results are consistent
with this concept. The strong antioxidant function of melatonin played an important role
in the resistance of apple plants to nutrient stress.

Minerals at concentrations of more than 0.1% of plant dry weight are essential for
plant growth and nutritional quality [28,29]. Severe mineral deficiencies are usually related
to corresponding phenotypic symptoms in plants [24]. Roots play an important role in
the absorption and utilization of nutrients. Root growth is inhibited, and root activity
and biomass significantly decrease under nutrient stress [8]. In this study, nutrient stress
significantly reduced RSR and root activity, as well as the root length, diameter, surface
area, volume, tips, and forks. These indices significantly improved in plants that received
exogenous melatonin (Figure 2). Root morphology is extremely sensitive to reduced
N and P contents and changes accordingly [2,30]. Apple plants increase K uptake by
changing their root morphology [6]. Root growth is stunted when Ca, Mg, Fe, and Mn
are deficient [8]. Interestingly, applying exogenous melatonin promoted root growth and
elongation, increased the root absorption area, and improved root vitality. Such changes
in root morphology contribute to adaptation to nutrient stress [4]. In addition, melatonin
enhances nutrient transport and accumulation, which in turn affects the distribution of
nutrients throughout the plant [6]. In this study, the concentrations of most minerals
significantly decreased in plants under nutrient stress, and adding melatonin maintained
a higher concentration of these minerals and changed the absorption and distribution of
minerals throughout the plant (Table S1 and Figure 7). At the same time, the absorption
and accumulation of these minerals significantly decreased in response to stress, and the
decrease was alleviated by applying melatonin (Figures 5 and 6).

Transcriptome sequencing was performed to further explain the gene differences
caused by nutrient stress and melatonin. Particular numbers of DEGs were detected in
ST/CK and MST/ST (Figure 8). According to the KEGG-pathway diagram, the DEGs
were involved in porphyrin and chlorophyll metabolism, flavonoid biosynthesis, metabolic
pathways, circadian rhythm-plants, ubiquinone, and other terpenoid-quinone biosynthetic
KEGG pathways in ST/CK. The DEGs in MST/ST were involved in glutathione metabolism
and cutin, suberin, and wax biosynthesis (Figure 8). Studies have shown that porphyrin
and chlorophyll metabolism help Malus halliana seedlings resist salt-alkali stress [31]. Glu-
tathione (GSH) exists in the form of oxidized glutathione (GSSG) and reduced glutathione
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(GSH), which scavenge ROS. Nutrient stress can reduce the accumulation of GSH and GSSG
and interfere with glutathione metabolism [32]. In this study, adding exogenous melatonin
promoted the absorption and utilization of nutrients, thus regulating the GSH cycle to
reduce adverse reactions under stress conditions. In addition, most of these genes are
involved in chlorophyll synthesis, the stress response, metal-ion transport, and phosphate
balance. Among them, some metal-ion-transport-related genes were downregulated by
nutrient stress, while exogenous melatonin significantly alleviated the downregulation of
some metal-ion-transport-related genes (Table S4). K deficiency regulates gene expression
less than N or P deficiency [33]. However, few studies have examined the transcriptome
in plants under nutrient stress. Our results show that the effect of nutrient stress on the
transcriptome was not as great as that of a single mineral.

Nutrient stress affects plant metabolism [34]. For example, when N is scarce, amino-
acid levels in plant leaves significantly decrease [35]. Most amino acids and their derivative
organic acids and flavonoids change significantly in the root system of P-deficient apple
seedlings [5], and phosphorylated metabolites in roots decrease significantly [20]. Remod-
eling of the metabolome under nutrient stress largely reflects the response and defense of
the plant’s body to stress. In this study, nutrient stress resulted in a decline in concentration
of amino acids, organic acids, and phenolic acids. Notably, oxalic acid, L-ascorbic acid,
anthocyanins (cyanidin-3-O-galactoside), lignans (lirioresinol A and syringaresinol), and
melatonin significantly increased after exogenous melatonin was applied to plants under
nutrient stress (Table S8). Oxalic acid plays a positive role in regulating metal stress, ion
stress, and disease from insect pests [36]. It plays an important role in enhancing resistance
to smut in Triticum aestivum [37]. Plants have developed a variety of strategies to ameliorate
the harmful effects of stress. The production of additional antioxidant protectants is one
important strategy. Ascorbic acid and anthocyanins are effective antioxidants and are
present in almost all photosynthetic eukaryotes [38]. Anthocyanin metabolism is involved
in freezing and drought resistance in plants [39,40]. Ascorbic acid also enhances the re-
sistance to drought stress [41]. In addition, lignin is the main component of the cell walls
of vascular plants; it promotes lignification and enhances the ability of plants to resist
stress, such as enhancing the resistance of Zea mays to leaf blight and gray spot [32,42].
Melatonin acts as the first line of defense against oxidative stress in the internal and external
environments. The results of this experiment show that when exogenous melatonin is
applied to apple plants, the leaves metabolize melatonin to help the plants resist oxidative
damage caused by the nutrient stress. The increase in these beneficial metabolites may be
the key way melatonin helps apple plants resist nutrient stress and promotes the absorption
and utilization of nutrients in plants under nutrient stress.

4. Materials and Methods
4.1. Plant Materials and Growth Conditions

Malus hupehensis from triploid and apomixis-type seeds were gathered from Pingyi
(35◦07′ N, 117◦25′ E) in Shandong, China. The experiments were carried out at Hebei Agri-
cultural University located in Baoding (38◦23′ N, 115◦28′ E), Hebei, China. The seeds were
treated with low-temperature stratification for about 30 days in early February 2021. Seeds
hidden in the sand were sown in early March 2021 and watered regularly to ensure growth.

4.2. Experimental Design

Seedlings of a similar size (7–8 leaves, about 8 cm high) were transferred to hydroponic
pots filled with 10 L 1/2 strength Hoagland nutrient solution. The pots were left in
hydroponic culture for 15 days to adapt to the new growing environment. The nutrient
solution was ventilated through an air pump to prevent hypoxic necrosis of the roots.
The pH of the nutrient solution was adjusted to 6.0 ± 0.1 with H3PO4 and refreshed
every five days. On day 12 of pre-culture, the materials were evenly divided into two
groups; one group was the control group, and the other group was treated with melatonin
(0.1 µM). After the end of pre-culture, the defective seedlings were removed and treated for
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nutrient deficiency. The experimental materials were divided into four new experimental
groups: 1/2 Hoagland nutrient solution (CK); 1/2 Hoagland nutrient solution + 0.1 µM
melatonin (MCK), 1/20 Hoagland nutrient solution (ST), and 1/20 Hoagland nutrient
solution + 0.1 µM melatonin (MST). The experiment lasted 20 days with three replicates
in each treatment and 80 plants in each group. After 20 days, a total of 10 seedlings were
selected and 3–4 uniform, healthy, mature leaves from each plant were harvested and
frozen in liquid nitrogen for further analysis.

4.3. Measurement of Growth Characteristics and Root Architecture

After 20 days of hydroponic treatment, six uniform and healthy seedlings were selected
for each treatment and final PL and TD were measured. Then, the whole plant was divided
into roots, stems, and leaves; washed with deionized water to remove all impurities; and
dried with a paper towel. The plants were fixed at 105 ◦C for 30 min, then dried at 65 ◦C for
three days. TDW and RSR of the plants were determined, as described by Liang et al. [8].
RGR was calculated with the formula, [(lnDW2 − lnDW1)/(T2 − T1)], where DW1 is the
dry weight of the plant on day 0 (T1), and DW2 is the dry weight of the plant on day
20 (T2) [43]. WinRHIZO® image analysis software (V4.1C; Regent Instruments, Quebec
City, QC, Canada) was used to analyze total root length, diameter, surface area, volume,
tips, and forks [6].

4.4. Determination of TCC, TTC, REL, MDA, and Antioxidant Enzyme Activity

TCC was determined via 80% acetone calorimetry, as described by Liang et al. [8].
Root activity was measured using the TTC method [2]. REL was measured with a thun-
dermagnetic DDS-307 conductivity meter [44]. MDA content was determined using the
thiobarbituric acid method [14]. Fresh leaves (0.2 g) were ground with 10% trichloroacetic
acid (1.6 mL), centrifuged, and 1.5 mL 0.67% thiobarbituric acid was added to 1.5 mL
supernatant. After boiling in water for 30 min, the absorbance values at 450 nm, 532 nm,
and 600 nm were determined via spectrophotometry.

Fresh leaves (0.2 g) were washed and placed in a pre-cooled mortar. A 1.6 mL aliquot
of 0.05 mmol phosphoric acid buffer (pH = 7.8) was added and the leaves were ground.
After centrifugation, SOD, POD, and CAT of leaves were measured. SOD was determined
using the photochemical nitroblue tetrazolium method [14]. POD was determined using the
guaiacol method [14]. CAT was determined using the ultraviolet absorption method [14].
APX was determined according to the kit instructions (Suzhou Keming Biotechnology Co.,
Ltd., Suzhou, China) by adding 1 mL reagent to 0.1 g fresh leaves followed by grinding on
ice. After centrifugation, APX was determined by spectrophotometry [45].

4.5. Determination of the Stomatal Configuration

Ten leaves were collected from the same position per treatment group. The leaves
were cut from both sides of the main veins with a knife (5 mm × 5 mm sample squares)
and quickly placed in 4% glutaraldehyde prepared with 0.1 mm phosphate buffer (PBS,
pH 6.8) for overnight fixation; twenty cubed leaves were obtained for each treatment. The
leaves were rinsed, dried, and vacuum gilded. An S-4800 microscope (Hitachi Ltd., Tokyo,
Japan) was used for scanning electron microscopy (SEM). Stomatal length and width,
stomatal density, and stomatal opening were analyzed with ImageJ software (25 random
sections) [46].

4.6. Determination of Minerals

Nine uniform and healthy seedlings were selected for each treatment. The dried root,
stem, and leaf samples were ground and mixed, sieved, and reserved. A sample (0.3 g) was
accurately weighed and placed in 100 mL digestion tubes, and 5 mL concentrated sulfuric
acid was added to determine the N concentration. Then the tube was heated at 220 ◦C for
4 h in an electric digestion furnace (Multiwave PRO; Anton-Paar GmbH, Graz, Austria).
Ten drops of hydrogen peroxide were added every 30 min until the solution was clear and
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transparent. After cooling, deionized water was added to the digestion tube at a constant
volume. The 1 mL solution was diluted to 5 mL, and the minerals were determined using
a segmented flow analyzer (AA3; SEAL Analytical, Norderstedt, Germany). A 0.15 g
sample was accurately weighed and added to a digestive tube to determine K, Ca, and
Mg concentrations. Then, 5 mL concentrated nitric acid and 1 mL perchloric acid were
added. The digestion was completed in an electric digestion furnace, and inductively
coupled plasma source mass spectrometry (ICAP Q; Thermo Fisher Scientific, Waltham,
MA, USA) was performed after a constant volume was attained. The absorption, transfer,
and distribution of the minerals were determined following the methods of Liang et al. [19].

4.7. Extracting RNA and Transcriptome Sequencing

The transcriptome analysis was performed on nine leaf samples, including the CK,
ST, and MST. There were three replicates for each treatment, and leaves of 30 seedlings
were collected from the same position per replicate (2–3 uniform, healthy, mature leaves
from each plant). The total RNA of the apple leaves was separated using TRIzol reagent
(Invitrogen, Carlsbad, CA, USA) for transcriptome analysis. After extraction of total RNA,
Illumina RNA-Seq was performed by Metware Biotechnology Co. Ltd. (Wuhan, China).
Purified RNA (1 µg each sample) was reverse transcribed to first-strand cDNA using the
cDNA Reverse Transcription Kit (PrimeScriptTM RT Master Mix, Takara Bio, Ohtsu, Japan)
according to the manufacturer’s instructions. The raw reads were transformed from the raw
sequencing image data using CASAVA base recognition. The adapter sequences were cut,
and low-quality reads with≥ 5 uncertain bases or with more than 50% 4 Qphred≤ 20 bases
were removed using fastp to obtain the high-quality data. The GC content of the clean
reads was calculated. The Q20 and Q30 values were also determined by FastQC to evaluate
base quality. Fragments per kilobase of transcript per million fragments mapped was
calculated as an indicator to measure the transcripts or DEGs. DESeq2 is a suitable method
for differential expression analysis between sample groups with biological replicates to
obtain DEG sets between two biological conditions [47]. The conditions for allogeneic
screening were |log2 (fold change)| ≥ 1 and a false discovery rate < 0.05. The DEGs were
analyzed using gene ontology (GO) and the Kyoto Encyclopedia of Genes and Genomes
(KEGG) tools [48].

4.8. qRT-PCR Validation

Total RNA was extracted from each treated leaf using the M5 Plant RNeasy Complex
Mini Kit (Mei5 Biotechnology Co., Ltd., Beijing, China), as directed by the manufacturer.
The inverse transcription was carried out using the UEIrisIIRT-PCR System for First-Strand
cDNA Synthesis system (Suzhou US Everbright, Inc., Suzhou, China). The primers for all
genes are shown in Table S9. Three replicates were set for each treatment, and the 2−∆∆Ct

method was used to analyze the normalized expression of each sample [49].

4.9. Metabolite Analysis

The metabolome analysis was performed on nine leaf samples, including the CK, ST,
and MST. There were three replicates for each treatment, and leaves of 30 seedlings were
collected from the same position per replicate (2–3 uniform, healthy, mature leaves from
each plant). Sample preparation and extraction, metabolome profiling, and data analysis
were performed according to the standard procedures of Wuhan MetWare Biotechnology
Co., Ltd. (Wuhan, China) (www.metware.cn, accessed on 6 December 2020). The sample ex-
tracts were analyzed using an ultrahigh-performance liquid chromatography-electrospray
ionization tandem mass spectrometry system (HPLC, Shimadzu Nexera X2, Kyoto, Japan,
www.shimadzu.com.cn/, accessed on 6 December 2020; MS, Applied Biosystems 4500 Q
TRAP, Carlsbad, CA, USA, www.appliedbiosystems.com.cn/, accessed on 6 December
2020). The metabolite data were log2-transformed to improve normality for the statistical
analysis and were normalized. Principal component analysis (PCA) was carried out to
preliminarily understand the overall metabolic differences among the samples in each

www.metware.cn
www.shimadzu.com.cn/
www.appliedbiosystems.com.cn/
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group and the degree of variation among the samples within the group. Metabolites with
variable importance in projection (VIP) ≥ 1.0, |log2(fold change)| ≥ 1 were defined as
significantly changed metabolites (SCMs). A principal component analysis (PCA) of the
SCMs was performed using R [48].

4.10. Statistical Analysis

Data were analyzed using IBM SPSS Statistics 20 software (IBM Corp, Armonk, NY,
USA), and charts were plotted using SigmaPlot 10.0 software (Systat Software, Inc., San
Jose, CA, USA). Univariate analysis of variance was used to compare the mean values
between treatments, and Tukey’s multi-range test was used to detect differences between
treatments. A p-value < 0.05 was considered significant.

5. Conclusions

We conducted physiological, ionomic, transcriptomic, and metabolomic analyses
of apple plants responding to nutrient stress after applying exogenous melatonin. Our
results demonstrate that nutrient stress significantly affected the growth, stomatal structure,
physiological characteristics, and antioxidant enzyme activities of the apple seedlings.
Exogenous melatonin significantly alleviated the damage caused by nutrient stress, and
the plants showed stronger tolerance and adaptability. The absorption, distribution, and
utilization efficiencies of macroelements and microelements were different in apple plants
under different conditions. Exogenous melatonin significantly promoted the absorption and
utilization of minerals in apple plants and changed their distributions. The transcriptome
and metabolome were compared and analyzed. Apple seedlings responded to nutrient
stress by regulating the GSH pathway, upregulating some metal-ion-transporter genes and
increasing beneficial metabolites. These results provide a basis for the use of melatonin to
alleviate nutrient deficiencies during agricultural production.
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