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Abstract: Spinal strokes may be associated with tremendous spinal cord injury. Erythropoietin (EPO)
improves the neurological outcome of animals after spinal cord ischemia (SCI) and its effects on
ischemia-induced endoplasmic reticulum (ER) stress and the unfolded protein response (UPR) are
considered possible molecular mechanisms. Furthermore, sphingosin-1-phosphate (S1P) is suggested
to correlate with SCI. In this study, the effect of recombinant human EPO (rhEPO) and carbamylated
EPO (cEPO-Fc) on the outcome of mice after SCI and a prognostic value of S1P were investigated.
SCI was induced in 12-month-old male mice by thoracic aortal cross-clamping after administration of
rhEPO, cEPO-Fc, or a control. The locomotory behavior of mice was evaluated by the Basso mouse
scale and S1P serum levels were measured by liquid chromatography-tandem mass spectrometry.
The spinal cord was examined histologically and the expressions of key UPR proteins (ATF6, PERK,
and IRE1a, caspase-12) were analyzed utilizing immunohistochemistry and real-time quantitative
polymerase chain reaction. RhEPO and cEPO-Fc significantly improved outcomes after SCI. The
expression of caspase-12 significantly increased in the control group within the first 24 h of reperfusion.
Animals with better locomotory behavior had significantly higher serum levels of S1P. Our data
indicate that rhEPO and cEPO-Fc have protective effects on the clinical outcome and neuronal tissue
of mice after SCI and that the ER is involved in the molecular mechanisms. Moreover, serum S1P
may predict the severity of impairment after SCI.

Keywords: stroke; spinal cord ischemia; spinal cord injury; erythropoietin; endoplasmic reticulum;
unfolded protein response; sphingosine-1-phosphate; biomarker

1. Introduction

The anterior spinal artery syndrome, as well as surgical procedures on the aorta, are
common causes of spinal strokes, potentially resulting in irreversible paraplegia. Many
surgical and pharmacological strategies have been tested to protect the spinal cord during
procedures on the aorta [1–4]; however, no generally accepted regimen was established.

Over the last years, the use of erythropoietin (EPO) and its carbamylated derivates
(cEPO) have slipped into focus. It was shown in animal models, that EPO and cEPO may
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attenuate damage after spinal cord ischemia (SCI) [5–7]. However, it is unclear how EPO
or cEPO might mediate their protective effects during spinal ischemia and reperfusion
sequence (IRS).

The endoplasmic reticulum (ER) is crucial in the neuronal response to IRS via the
unfolded protein response (UPR) [8]. A key role herein is played by the 78-kDa glucose-
regulated protein (GRP78) maintaining the ER homeostasis [9]. GRP78 binds to the ER
transmembrane proteins activating transcription Factor 6 (ATF6), protein kinase RNA-like
endoplasmic reticulum kinase (PERK), and inositol-requiring enzyme 1α (IRE1α) [10].
Upon accumulation of misfolded protein within the ER, the UPR is initiated by dissociation
of ATF6, IRE1α, and PERK from GRP78 [8,11] inducing different pathways, such as the
activation of caspase-12 [12].

Furthermore, sphingosine-1-phosphate (S1P) was the focus of research on the neuro-
logical outcomes after ischemic stroke and SCI [13–15]. It was reported that S1P is elevated
at the site of SCI in rats and enhances the plasticity of neuronal progenitor cells [16]. Addi-
tionally, the S1P receptor 1 (S1PR1) agonist FTY720 promotes spinal cord recovery after
injury [17,18].

This study now investigates the hypothesis of whether EPO or cEPO attenuate the
neuronal damage that is caused by spinal IRS in mice via modulation of the UPR and
whether serum levels of S1P correlate with neurological function after SCI.

2. Results
2.1. Neurological Outcome

The results of the Basso mouse scale (BMS) are shown in Table 1. Among the animals
with a total reperfusion time of 96 h significantly lower values of BMS were found in the
control group (CG) compared to rhEPO and cEPO-Fc at all time points (p < 0.05) (Table 1).

Table 1. Evaluation of the neurological status using the Basso-mouse-scale.

Reperfusion
Group (h)

Reperfusion
Time (h) BMS Control BMS rhEPO BMS cEPO-Fc

6 6 2.8 ± 2.4 1.8 ± 1.2 0.5 ± 1.1
24 12 5.6 ± 4.2 8.5 ± 0.6 5.4 ± 4.4
24 24 5.6 ± 4.2 8.6 ± 0.5 5.4 ± 4.4
96 12 1.3 ± 2.8 7.1 ± 3.5 * 7.1 ± 2.7 §

96 24 1.1 ± 2.4 7.1 ± 3.4 * 6.9 ± 3.0 §

96 36 1.2 ± 2.4 7.5 ± 3.2 * 7.2 ± 3.1 §

96 48 1.3 ± 2.4 7.0 ± 3.7 * 7.3 ± 3.1 §

96 60 1.2 ± 2.4 7.3 ± 3.6 * 7.2 ± 3.1 §

96 72 1.3 ± 2.4 7.3 ± 3.6 * 7.2 ± 3.1 §

96 84 1.2 ± 2.4 7.3 ± 3.6 * 7.3 ± 3.1 §

96 96 1.3 ± 2.4 7.3 ± 3.6 * 7.4 ± 3.2 §

Data are listed from left to right according to reperfusion group (6, 24, and 96 h), measurement after reperfusion
time (6–96 h) and treatment group (control, rhEPO, cEPO-Fc). The data shown in means and standard deviation.
BMS = Basso mouse scale; cEPO-Fc = carbamylated erythropoietin FC fusion protein; h = hours; rhEPO = recom-
binant human erythropoietin. * rhEPO vs. control—p < 0.05. § cEPO-Fc vs. control—p < 0.05 (Multiple group
comparison via Kruskal–Wallis test and post hoc analysis using Dunn’s test).

2.2. Histological and Immunohistochemical Tissue Analysis

The results of the hematoxylin-eosin (HE) and Luxol Fast Blue (LFB) stainings are
shown in Figure 1a–h. In the HE staining, significantly higher levels of necrosis (LON)
were obtained in the CG compared to rhEPO and cEPO-Fc, at 96 h (p < 0.001) (Figure 1c).
The LFB staining showed significantly fewer neurons per area in the CG when compared
to rhEPO (p < 0.001) or cEPO-Fc (p = 0.01), at 96 h (Figure 1g).



Int. J. Mol. Sci. 2022, 23, 9558 3 of 13

Int. J. Mol. Sci. 2022, 23, x FOR PEER REVIEW 3 of 14 
 

 

2.2. Histological and Immunohistochemical Tissue Analysis 

The results of the hematoxylin-eosin (HE) and Luxol Fast Blue (LFB) stainings are 

shown in Figure 1a–h. In the HE staining, significantly higher levels of necrosis (LON) 

were obtained in the CG compared to rhEPO and cEPO-Fc, at 96 h (p < 0.001) (Figure 1c). 

The LFB staining showed significantly fewer neurons per area in the CG when compared 

to rhEPO (p < 0.001) or cEPO-Fc (p = 0.01), at 96 h (Figure 1g). 

 

Figure 1. The results of the histopathology. The control group is in dark grey, the rhEPO group is 

in semi-dark grey, and the cEPO-Fc group is in light grey. Boxes indicate the upper and lower quar-

tile, the line indicates the median, and the upper and lower whiskers indicate 2.5%- and 97.5% quan-

tile. (a): Results of the scoring of the level of necrosis (LON) in the hematoxylin eosin (HE) staining 

after 6 h (h) of reperfusion time (RT). (b): LON in HE after 24 h RT. (c): LON in HE after 96 h RT. * 

p < 0.05 (Multiple group comparison via Kruskal–Wallis test and post hoc analysis using Dunn’s 

test). (d): HE in 10×. Necrotic spinal cord in the control group and healthy spinal cord in the rhEPO 

group after 96 h RT. (e): Results of the counting of the neurons/area (N/A) in the ventral horn of the 

spinal cord after 6 h RT. (f): N/A in the ventral horn of the spinal cord after 24 h RT. (g): N/A in the 

ventral horn of the spinal cord after 96 h RT * p < 0.05 (Multiple group comparison via Brown–

Forsythe test and post hoc analysis using Bonferroni test). (h): LFB in 20×. Loss of neurons in the 

control group healthy spinal cord in rhEPO group after 96 h RT. 

The results of the immunohistochemistry are shown in Figure 2a–l. In the CG, signif-

icantly less caspase-12 was detected at 6 h than at 24 h (p = 0.004) or 96 h (p = 0.005) (Figure 

2a). In contrast, in the rhEPO (Figure 2b) and cEPO-Fc groups (Figure 2c) no time-depend-

ent changes in caspase-12 expression were found. In the cEPO-Fc group, ATF6 expression 

is significantly higher after 6 h than after 96 h (p = 0.003) (Figure 2k). No further significant 

differences were detected for GRP78 or ATF6 between the groups or reperfusion time pe-

riods (Figure 2e–l). 

Figure 1. The results of the histopathology. The control group is in dark grey, the rhEPO group is in
semi-dark grey, and the cEPO-Fc group is in light grey. Boxes indicate the upper and lower quartile,
the line indicates the median, and the upper and lower whiskers indicate 2.5%- and 97.5% quantile.
(a): Results of the scoring of the level of necrosis (LON) in the hematoxylin eosin (HE) staining after
6 h (h) of reperfusion time (RT). (b): LON in HE after 24 h RT. (c): LON in HE after 96 h RT. * p < 0.05
(Multiple group comparison via Kruskal–Wallis test and post hoc analysis using Dunn’s test). (d): HE
in 10×. Necrotic spinal cord in the control group and healthy spinal cord in the rhEPO group after 96
h RT. (e): Results of the counting of the neurons/area (N/A) in the ventral horn of the spinal cord
after 6 h RT. (f): N/A in the ventral horn of the spinal cord after 24 h RT. (g): N/A in the ventral
horn of the spinal cord after 96 h RT * p < 0.05 (Multiple group comparison via Brown–Forsythe test
and post hoc analysis using Bonferroni test). (h): LFB in 20×. Loss of neurons in the control group
healthy spinal cord in rhEPO group after 96 h RT.

The results of the immunohistochemistry are shown in Figure 2a–l. In the CG, sig-
nificantly less caspase-12 was detected at 6 h than at 24 h (p = 0.004) or 96 h (p = 0.005)
(Figure 2a). In contrast, in the rhEPO (Figure 2b) and cEPO-Fc groups (Figure 2c) no
time-dependent changes in caspase-12 expression were found. In the cEPO-Fc group, ATF6
expression is significantly higher after 6 h than after 96 h (p = 0.003) (Figure 2k). No further
significant differences were detected for GRP78 or ATF6 between the groups or reperfusion
time periods (Figure 2e–l).
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Figure 2. The results of the immunohistochemistry. The control group is in dark grey, the rhEPO
group in semi-dark grey, and the bcEPO-Fc group is in light grey. Boxes indicate the upper and lower
quartile, and the line indicates the median, and the upper and lower whisker indicate 2.5%- and 97.5%
quantile, and black circles indicate values that are outside 2.5%- and 97.5% quantile. (a): Results of
the immunohistochemical (IHC) evaluation of caspase-12 in the control group after 6 h, 24 h, and 96 h
RT. * 6 h vs. 24 h p = 0.005 and 6 h vs. 96 h p < 0.001 (Multiple group comparison via Brown–Forsythe
test and post hoc analysis using Bonferroni test) (b): IHC of caspase-12 in the rhEPO group after 6 h,
24 h, and 96 h RT. (c): IHC of caspase-12 in the cEPO-Fc group after 6 h, 24 h, and 96 h RT. (d): IHC
of caspase-12 in 10×. Caspase-12 is detected in only few neurons after 6 h RT in the control group.
Caspase-12 is detected in most neurons after 96 h RT in the control group. (e) IHC of GRP78 in the
control group after 6 h, 24 h, and 96 h RT. (f): IHC of GRP78 in the rhEPO group after 6 h, 24 h, and
96 h RT. (g): IHC of GRP78 in the cEPO-Fc group after 6 h, 24 h, and 96 h RT. (h): IHC of GRP78 in
10×. GRP78 is detected in neurons after 6 h and 96 h RT in the control group. (i): IHC of ATF6 in the
control group after 6 h, 24 h, and 96 h RT. (j): IHC of ATF6 in the rhEPO group after 6 h, 24 h, and
96 h RT. (k): IHC of ATF6 in the cEPO-Fc group after 6 h, 24 h, and 96 h RT. * 6 h vs. 96 h p = 0.003
(Multiple group comparison via Brown–Forsythe test and post hoc analysis using Bonferroni test).
(l): IHC of ATF6 in 10×. GRP78 is detected in neurons after 6 h and 96 h RT in the control group.

At 96 h, regardless of group affiliation, animals with a BMS > 7 show significantly
lower caspase-12 levels than animals with a BMS < 3, (p = 0.009) (Figure 3d).
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Figure 3. Serum level of S1P and immunohistochemistry for caspase-12 of animals with a BMS > 7
and < 3. Basso mouse scale (BMS) > 7 in dark grey and BMS < 3 in light grey. Boxes indicate the upper
and lower quartile, the line indicates the median, the upper and lower whisker indicate 2.5%- and
97.5% quantile, and black circles indicate values that are outside 2.5%- and 97.5% quantile. (a): Serum
levels of S1P of after 24 h RT. * BMS > 7 (n = 11) vs. <3 (n = 4) p < 0.001 (t-test). (b): Serum levels of
S1P after 96 h. (c): Results of the immunohistochemical (IHC) evaluation of caspase-12 after 24 h.
(d): IHC of caspase-12 after 96 h. * BMS > 7 (n = 18) vs. <3 (n = 16) p = 0.009 (t-test).

2.3. Serum Levels of Sphingosine-1-Phosphate

Animals with a BMS > 7 showed significantly higher S1P serum levels after 24 h than
animals with a BMS < 3 (Figure 3a) (p < 0.001). This difference was no longer present after
96 h, as S1P serum levels increased in animals with a BMS < 3 (Figure 3b).

2.4. Gene Expression

The results of the analysis of IRE1α, PERK, and ATF6 by RT-qPCR are shown in Table 2.
Within the c-EPO-Fc group, expression of IRE1α (p = 0.028) as well as of PERK (p = 0.035)
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at 6 h was significantly lower than at 24 h (Table 2). Furthermore, after 24 h, there were
significantly higher expressions of IRE1α in the cEPO-Fc group than in the rhEPO group
(p = 0.033), and significantly higher expressions of PERK in the cEPO-Fc group than in the
rhEPO group (p = 0.012) and the CG (p = 0.032).

Table 2. RT-qPCR measurements of ATF6, IRE1α, and PERK in the spinal cord of the animals of the
control, recombinant human erythropoietin (rhEPO), and carbamylated erythropoietin FC fusion
protein (cEPO-Fc) group after 6 and 24 h of reperfusion.

Detected Gene Reperfusion Time (h) Control rhEPO cEPO-Fc

ATF6 6 1.16 ± 0.75 1.11 ± 0.32 1.29 ± 0.99
24 1.20 ± 0.61 2.20 ± 1.77 1.48 ± 1.16

IRE1α 6 1.06 ± 0.45 0.95 ± 0.21 0.93 ± 0.29 *
24 1.10 ± 0.47 0.80 ± 0.21 2.35 ± 1.31 &

PERK 6 1.13 ± 0.64 1.08 ± 0.28 1.04 ± 0.61 *
24 1.05 ± 0.36 0.80 ± 0.08 2.40 ± 1.17 §

Data are shown in means and standard deviation (Fold change). cEPO-Fc = carbamylated erythropoietin FC
fusion protein; h = hours; rhEPO = recombinant human erythropoietin. * Within one group 6 h vs. 24 h—p < 0.05
(two-tailed t-test). & cEPO-Fc vs. rhEPO at 24 h—p = 0.033 (Multiple group comparison via Brown–Forsythe test
and post hoc analysis using Tukey test). § cEPO-Fc vs. rhEPO and control at 24 h—p = 0.012 (cEPO-Fc vs. rhEPO
and p = 0.032 (cEPO-Fc vs. control) (Multiple group comparison via Brown–Forsythe test and post-hoc analysis
using Tukey test).

3. Discussion

The major findings of this study are (1) presurgical treatment with rhEPO and cEPO-Fc
both significantly improve the neurological outcome of mice; (2) compared to the controls, a
significantly higher number of intact neurons was found in both EPO treatment groups after
96 h; (3) the expression of the ER-specific proapoptotic caspase-12 significantly increases
within the CG during the first 24 h of reperfusion; and (4) regardless of treatment, there is
an association between BMS and serum-S1P concentrations.

Recently, it was shown that rhEPO and cEPO-Fc have beneficial effects on SCI in large
and small animal models [5,7,19]. In this study, preoperative conditioning using rhEPO and
cEPO-Fc was shown to be associated with a significantly improved neurological outcome
of mice after SCI compared with CG. Furthermore, histopathology was used to quantify the
effects of the treatment with rhEPO and cEPO-Fc. By HE and LFB staining, necrosis, and
loss of neurons in the spinal cord were detected after more than 24 h. As described before,
destruction of motoneurons after SCI takes place from 2 to 7 days (d) of reperfusion [20,21].
In this study, the animals that were treated with rhEPO and cEPO-Fc showed significantly
less tissue damage in the spinal cord after 96 h, confirming previous observations [7,20,22].

The loss of neurons in ischemic damaged neuronal tissue might indicate involve-
ment of the proapoptotic caspase-12; caspase-12 is specifically activated by ER-stress
(ERS) [23–25]. After activation, caspase-12 is capable of activating other Caspases, (e.g.,
Caspase 3 and 9), triggering a chain reaction finally resulting in apoptosis [26]. The expres-
sion of caspase-12 correlates with the extent of damage of the spinal cord after an injury [21]
and inhibition of caspase-12 protects the spinal cord [27] and improves neurological re-
covery [28]. In this study, the expression of caspase-12 in the tissue of the CG increases
significantly between 6 and 24 h. Previously, it was described that caspase-12 is strongly
detectable after 8 h after SCI but already decreased after 1 d of reperfusion [21,29].

The rise of expression of caspase-12 in the CG corresponds with the results of the
HE and LFB staining, as it goes ahead in time of the formation of necrosis and a loss of
neurons. The higher expression of caspase-12 in the CG is associated with a lower number
of intact neurons and impaired neuronal function. Furthermore, regardless of the group
affiliation, animals with a good neurological outcome (BMS > 7) showed significantly less
caspase-12 than animals with a poor neurological outcome (BMS < 3), at 96 h. From the
current findings, it can be concluded that high expression of caspase-12 correlates with the
formation of necrosis in the spinal cord and an impaired neurological outcome.
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The induction of GRP78 expression in ERS and a positive correlation between the
expression of GRP78 and caspase-12 has previously been described [23,25,29]. However,
although GRP78 expression was detectable in the CG and treatment groups after 6, 24, and
96 h, the expression did not show significant differences between the groups. Although
it was described that intravenous administration of sodium 4-phenylbutyrate in rabbits
during spinal IRS prevented the expression of GRP78 in the spinal cord of the animals [29],
these effects could not be demonstrated for rhEPO and cEPO-Fc in this study.

Upon the onset of ERS, GRP78 dissociates from ATF6, PERK, and IRE1α. Subsequently,
these three key proteins can initiate different pro- or anti-apoptotic cascades and the UPR
is activated [8,11]. However, after 6 h, no significant differences in the expression of any of
the three proteins were detected between the three study groups. After 24 h, the cEPO-Fc
group showed significantly higher expression of IRE1α when compared to the rhEPO
group and significantly higher expression of PERK when compared to the rhEPO group
and CG, respectively. An elevation of IRE1α expression at 1 day after traumatic spinal
cord injury in rats [30] and the potential of IRE1α activating caspase-12 were described
before [24]. Therefore, we expected the increased expression of IRE1α after 24 h in the
cEPO-Fc group to be associated with an increased expression of caspase-12 in the tissue.
However, after 24 h, a significantly lower expression of caspase-12 was detected in the
cEPO-Fc group compared to the other groups. It can be hypothesized that an elevation of
IRE1α does not necessarily lead to an increased expression of caspase-12. Since PERK is
thought to have mainly proapoptotic effects in the context of the UPR [10], we expected to
find lower expression of PERK in animals of the EPO treatment groups. This, however, was
not the case. But, before, it was also reported that the PERK branch of the UPR promotes
neuronal function via the suppression of translation after stroke in mice [31]. This supports
the current findings, as elevated levels of PERK do not necessarily lead to increased damage
of tissue and impaired neurologic function. The analysis of ATF6 gene expression did
not yield any significant findings between the study groups. Recently, it was shown in
adult zebrafish that ATF6 levels increase at 12 h after traumatic spinal cord injury and it
was suggested that ATF6 improves neurological function [32]. In general, the expression
of ATF6 might be important in SCI as it is preserved in many species. Overall, the exact
processes that are involved in mediating the beneficial effects of rhEPO and cEPO-Fc remain
to be fully elucidated. However, the influence of ERS appears to be paramount and further
studies in animal models should be performed in this regard.

S1P is elevated in the central nervous system at the injured site, and it might work as
a chemoattractant factor that is involved in the migration of neural stem and progenitor
cells [16]. Moreover it was shown in rodent models that (FTY-720) can promote recovery
after SCI due its immunosuppressive effects [18,33] and that modulation of S1P receptors
has beneficial effects on neuronal survival [34]. The data from this study show that after
24 h the blood levels of S1P were significantly higher in animals with a good neurological
outcome, regardless of group affiliation. The current findings suggest that high blood levels
of S1P after 24 h correlate with an improved neurological outcome after SCI, supporting
previous findings [17,33,34]. However, higher levels of S1P after 96 h were seen in all
animals regardless of outcome. It is possible that high levels in the early phase after SCI
are crucial for the subsequent neurological outcome. This finding is in line with previous
reports in clinical and experimental ischemic stroke [13,14]. In mice that were subjected
to middle cerebral artery occlusion, immediate activation of endothelial S1PR1 prevents
endothelial leakage and reduces ischemic damage and neuronal death [14]. These effects
were limited to the first hours after vascular damage and were independent of lymphopenia
that is induced by chronic activation of lymphocyte S1PR1 over several days.

Today, it is still difficult to prognose the outcome after SCI and potential biomarkers
are in the current focus of research [35]. As S1P can be determined in blood samples and
as shown by the current data, early high S1P serum levels after SCI correlate with good
neurological outcomes, S1P might be useful as a prognostic marker after SCI. Studies in



Int. J. Mol. Sci. 2022, 23, 9558 8 of 13

animal models and especially in humans must follow to further investigate the potential of
S1P as a biomarker to predict clinical outcomes after damage to the spinal cord.

4. Materials and Methods
4.1. Animal Model

All animal procedures were approved by the University Animal Care Committee and
the Federal Authorities for animal research (file number: 84-0204.201.A081). Experiments
were performed with 12-month-old male C57BL/6 mice (Janvier Labs, Le Genest-Saint-Ilse,
Frace). Preoperatively, 5000 I.U./kg of recombinant human erythropoietin (rhEPO) (Roche,
Basel, Switzerland), 50 µg/kg of carbamylated erythropoietin-Fc fusion protein (cEPO-Fc)
(Polymun Scientific Immunbiologische Forschung GmbH, Klosterneuburg, Austria) [36], or
control vehicle (phosphate buffered saline (PBS) were once administered intraperitoneally
(i.p.), after randomization by lot. A left-sided thoracotomy was performed, and the de-
scending thoracic aorta was dissected. The descending thoracic aorta distally of the left
subclavian artery and the left subclavian artery itself were then clamped for 7 min. Post-
operatively, the animals were followed up for the reperfusion periods of 6, 24, and 96 h
until sacrifice by heart puncture, in deep anesthesia. The animals were evaluated every
12 h by the Basso mouse scale (BMS) [37]. The BMS is an observational score in which
locomotion defects in mice are assessed with 0–9 points. Roughly, the mobility of the hind
limbs as well as the tail and trunk stability are assessed. 0 points correspond to a complete
loss of function in the evaluation, while 9 points indicate normal function. Animals that
were examined for a total reperfusion period of 6 h were neurologically evaluated before
sacrifice. Blood samples were collected by puncture of the left ventricle with a 1 mL syringe
(B-braun, Melsungen, Germany) and a 22 G needle (B-braun, Melsungen, Germany). Whole
blood was immediately transferred to a 1.5 mL Eppendorf tube (Eppendorf, Wesseling,
Germany) and allowed to clot at room temperature for 1 h. The blood was then centrifuged
at 1000× g for 10 min at 4 ◦C. The supernatant was pipetted into a fresh 1.5 mL Eppendorf
tube (Eppendorf, Wesseling, Germany) and stored at −80 ◦C until measurement. After
sacrifice, the spinal cord was excised and divided into three sections and each section was
again divided in half. One half was fixed in 4% buffered formalin solution and embedded
into paraffin, the other one was snap-frozen in liquid nitrogen and cryopreserved at −80 ◦C.
The study groups and animal numbers that were used are summarized in Table 3.

Table 3. Study groups and the number of animals.

Reperfusion Time (h) Study Group Number of Animals (n)

6 control 5
6 rhEPO 5
6 cEPO-Fc 6
24 control 5
24 rhEPO 5
24 cEPO-Fc 5
96 control 13
96 rhEPO 10
96 cEPO-Fc 11

h = hours; n = number of animals; cEPO-Fc = carbamylated erythropoietin FC fusion protein; rhEPO = recombinant
human erythropoietin.

4.2. Histology

The formalin-fixed specimens were stained with HE and LFB to assess the general
morphology and number of neurons, respectively. Immunohistochemistry (IHC) was
performed for caspase-12 (1:500; Gene ID: 12364; Sigma-Aldrich, St. Louis, MO, USA),
GRP78 (1:250; Gene ID: 3309; Novus Biologicals, Littleton, CO, USA) and ATF6 (1:300; Clone:
70B1413.1; Novus Biologicals, Littleton, CO, USA). The IHC stainings were performed
as previously described techniques [38]. In summary, for the preparation of the IHC
stains, two paraffin sections were placed on each adhesive slide: one for labeling with the
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respective antibody, and the other served as a negative control. At the beginning of staining,
the sections were deparaffinized using a Roticlear (Carl Roth, Karslruhe, Germany) and
the water was removed in an alcohol series. This was followed by antigen unmasking
by boiling the sections for 10 min at 100 ◦C in citrate buffer (pH 6.0) and subsequent
incubation with the respective antibody (caspase-12, GRP78 or ATF6) and the negative
control (rabbit immunoglobulin G (IgG) for caspase-12 and GRP78 and mouse IgG for
ATF6). For caspase-12, antigen unmasking could be omitted. Blocking was performed using
horse serum (caspase-12) or bovine serum albumin (GRP78 and ATF6). After incubation of
the antibodies, incubation was performed using a biotinylated antibody (biotinylated rabbit
IgG for caspase-12 and GRP78 and biotinylated mouse IgG for ATF6) (Vector Laboratories
Inc., Burlingame, CA, USA) followed by streptavidin horseradish proteases (Dako, Jena,
Germany). Next, color was developed using an AEC kit (caspase-12) (Sigma-Aldrich,
St. Louis, MO, USA) or a DAB kit (GRP78 and ATF6). (Merck, Darmstadt, Germany).
Finally, counterstaining was performed using hematoxylin according to Gill II (Carl Roth,
Karslruhe, Germany).

4.3. Histological Evaluation

Using the HE-stained tissue sections, a necrosis score was developed and assessed to
quantify the level of tissue necrosis form I-V (LON) (Figure 4).
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Figure 4. Workflow of the hematoxylin eosin necrosis score. This figure shows the workflow for
evaluating the extent of necrosis in murine spinal cord based on hematoxylin eosin staining using a
semiquantitative scoring system. There were four main criteria that were defined for the evaluation
of necrosis. The arrows indicate the respective region or structure of interest for the evaluation of the
main criterion. Each of these criteria was evaluated semi-quantitatively, according to sub-criteria,
with 0–3 points (pts.). This results in a possible total score of 0–12 pts. This total score is translated
into levels of necrosis (LON) from I–V as shown in the figure.

In LFB-stained tissue sections, the number of motoneurons that were located in the
ventral horn in relation to its surface was determined. The evaluation of immunohisto-
chemical staining was performed with software that was supported with a toolbox for
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Fiji software (Version 2.5.6, BioVoxxel, Mutterstadt, Germany), by counting the number of
detections in the ventral horn in relation to its surface [38].

4.4. Gene Expression

The analysis of expression of IRE1α, PERK, and ATF6 was performed by real-time
quantitative polymerase chain reaction (RT-qPCR). The spinal cord was dissected from the
deep-frozen tissue for RNA extraction. It was homogenized in TRIzol (Ambion by Life
Technologies, Carlsbad, CA, USA) followed by the precipitation of RNA by incubation in
100% isopropanol, centrifugation, and washing of the RNA pellet in first 100% and then
75% ethanol. The synthesis of cDNA was then performed using the High-Capacity cDNA
Reverse Transcription Kit from Applied BiosystemsTM (Thermo Fisher Scientific, Waltham,
MA, USA). RT-qPCR was performed using ribosomal RNA 18S (18SrRNA) as a reference
gene. The primers that were used were purchased from Qiagen (Qiagen N.V., Venlo, The
Netherlands). The purchasing details are stated in Table 4. Data analysis and relative
quantification was performed by using the ddCt method, as described before [39].

Table 4. Primer purchasing detail.

Gene of Interest Order Number at Qiagen N.V.

ATF6 PPM33057A
IRE1α (Em1) PPM36937A

PERK (Eif2ak3) PPM26428B
18SrRNA PPM57735E

ATF6 = activating transcription factor 6, IRE1α = inositol-requiring enzyme 1α, PERK = protein kinase RNA-like
endoplasmic reticulum kinase, 18S ribosomal RNA.

4.5. Measurement of Serum Sphingosine-1-Phosphate

Serum was obtained from a puncture of the left ventricle with subsequent centrifuga-
tion and storage at −80 ◦C until analysis. S1P was measured by liquid chromatography-
tandem mass spectrometry (LC-MS/MS) as previously described [40]. In brief, 20 µL
of serum were added to 20 µL of 1 µmol/L stable isotope-labelled internal standard
d7-S1P (Avanti Polar Lipids, Alabaster, AL, USA) solved in methanol and 80 µL of acetoni-
trile/water, 80/20, vol/vol. Supernatants were cleared by centrifugation and subjected to
ultra-performance liquid chromatography on an AQUITY UPLC BEH C8 1.7 µm column
(2.1 × 75 mm, Waters, Eschborn, Germany) using an elution gradient of the two mobile
phases (A) 0.1% formic acid in water and (B) 0.1% formic acid in acetonitril, at a flow rate of
0.4 mL/min over 4.2 min. Quantification was performed on a Xevo Triple Quadrupole Mass
Spectrometer (Waters) with positive electrospray ionization in the multiple reaction mode.
Peak area ratios of analyte and internal standard were calculated for calibration (four levels)
and quality control (QC-low and -high) of the samples and used for quantification. If
coefficients of variation for QCs were above 10%, samples were re-analyzed.

4.6. Statistical Analysis

Statistical analyses were performed using SigmaPlot 13 software (Systat Software Inc.,
San Jose, CA, USA). Randomization of animals was by lot. Testing for normal distribution
was performed using Kolmogorov–Smirnov tests. In the case of comparison of two groups,
normally (non-normally) distributed datasets were analyzed by t-test (Mann–Whitney-Rank
sum test). For multiple group comparisons, statistical testing was done by Brown-Forsythe
(Kruskal–Wallis) tests with post hoc analyses using the Bonferroni or Tukey (Dunn’s) test.
The significance level was p < 0.05.

5. Conclusions

It was shown that both rhEPO and cEPO-Fc have beneficial effects on the clinical
outcome of mice after spinal IRS and attenuate damage to the spinal cord. Furthermore, it
was shown that the expression of caspase-12 is elevated with prolonged reperfusion time
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in the CG. Even though the clinical and histological effects of rhEPO and cEPO-Fc were
protective against SCI and the ER seems to be involved in this process, the underlying
pathway stayed unclear. This topic should be the aim of further investigations. Next to that,
it was shown that high S1P serum levels early after SCI are associated with good prognosis
in mice and could thus be useful as a marker for the prognosis of patients, too. Further
investigation in patients might also identify individuals that benefit from the activation of
S1PR1 by FTY-720 early after ischemic damage.
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