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Abstract: Oxidative stress induced by neutrophils and hypoxia in COVID-19 pneumonia leads to
albumin modification. This may result in elevated levels of advanced oxidation protein products
(AOPPs) and advanced lipoxidation end-products (ALEs) that trigger oxidative bursts of neutrophils
and thus participate in cytokine storms, accelerating endothelial lung cell injury, leading to respi-
ratory distress. In this study, sixty-six hospitalized COVID-19 patients with respiratory symptoms
were studied. AOPPs-HSA was produced in vitro by treating human serum albumin (HSA) with
chloramine T. The interaction of malondialdehyde with HSA was studied using time-resolved fluo-
rescence spectroscopy. The findings revealed a significantly elevated level of AOPPs in COVID-19
pneumonia patients on admission to the hospital and one week later as long as they were in the
acute phase of infection when compared with values recorded for the same patients 6- and 12-months
post-infection. Significant negative correlations of albumin and positive correlations of AOPPs
with, e.g., procalcitonin, D-dimers, lactate dehydrogenase, aspartate transaminase, and radiological
scores of computed tomography (HRCT), were observed. The AOPPs/albumin ratio was found
to be strongly correlated with D-dimers. We suggest that oxidized albumin could be involved in
COVID-19 pathophysiology. Some possible clinical consequences of the modification of albumin are
also discussed.

Keywords: COVID-19; oxidative stress; albumin; advanced oxidation protein products; advanced
lipoxidation end-products; chloramine T; malondialdehyde

1. Introduction

Coronavirus disease 2019 (COVID-19), caused by severe acute respiratory syndrome
coronavirus 2 (SARS-CoV-2), was proclaimed a critical global pandemic by the World
Health Organization (WHO) in March 2020. Increasingly, recent evidence indicates the
presence of higher levels of inflammatory cytokines in COVID-19 patients with critical and
severe disease than in moderately ill patients and healthy individuals. This “cytokine storm”
can also indicate a poor prognosis and may increase the mortality rate of COVID-19 pa-
tients [1–4]. The entry of SARS-CoV-2 into cells may result in the development of a cytokine
storm in the host body, characterized by a high plasma level of pro-inflammatory cytokines,
including interleukin (IL)-6, IL-2, IL-7, IL-10, monocyte chemoattractant protein-1 (MCP-1),
macrophage inflammatory protein-1A (MIP-1A), tumor necrosis factor-alpha (TNF-alfa),
and interferon-gamma inducible protein (IP10) [5,6]. A bronchoalveolar lavage taken from
patients with severe COVID-19-related pneumonia showed a high level of chemokines
being secreted from macrophages [7]. Post-mortem analysis of lung tissue of patients
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with severe COVID-19-related pneumonia also found an excessive amount of immune
cell infiltration [8]. Respiratory viral infections are, in general, associated with proinflam-
matory cytokine production, inflammation, cell apoptosis, and other pathophysiological
processes, which lead to high levels of oxidative stress [9]. Indeed, some studies have
revealed that SARS-CoV-2 infection pathogenesis is related to oxidative stress [10–12]. Fur-
thermore, COVID-19 patients with severe pulmonary involvement showed a higher level
of endogenous oxidative markers than patients with mild disease [13]. There is a strong
link between inflammatory state, activated neutrophils, oxidative stress, oxidized albumin,
and decreased albumin concentration [10]. It is still premature to confirm whether or not
lung involvement or signs of ongoing heart inflammation occur as a temporary response to
COVID-19 infection and will spontaneously be resolved over time and whether COVID-
19 affects other inflammation-related complications or basic diseases, such as intestinal
diseases [14–17]. Oxidative stress may also play an important role in the development of
symptoms from Long COVID [18].

Albumin serves as a major anti-inflammatory agent in our bodies [19,20], and one of
its properties that has been less discussed in the literature is its anti-oxidative and anti-
thrombotic activity [21,22]. It may also exhibit antiviral properties, as recent studies have
revealed that albumin specifically binds the SARS-CoV-2 spike protein S1 subunit [23].
Human serum albumin (HSA) comprises the largest thiol pool in plasma and thus de-
termines the plasma redox status [24,25]. It was determined that oxidized albumin is
the direct mediator of triggering inflammation, leading to neutrophil activation and thus
probably increasing oxidative stress [26–29]. The pro-inflammatory properties of in vivo-
oxidized albumin initiating vascular injury were also examined [27]. Furthermore, recently,
more researchers have claimed that oxidized albumin is more than an oxidative stress
biomarker and can be an aggravating factor for various diseases [30]. Recently, there has
been a paradigm shift regarding our knowledge of albumin and its role in organisms. New
observations have revealed that the form of albumin is also of great importance in the
pathogenesis of diseases [31]. It has also been observed that oxidized albumin promotes
inflammation by the modulation of platelets [32,33].

Several researchers suggested at the beginning of the COVID-19 pandemic that oxi-
dized albumin may be “an opportunity for diagnoses or treatment of COVID-19” and “a
positive predictor of mortality” [30]. Thus far, there have been few reports on the oxidation
of albumin in COVID-19 infection [34,35]. A very good association of decreased thiol
concentrations and increased amounts of advanced oxidation protein products (AOPPs)
with COVID-19 severity, intensive care unit admission criteria, and mortality has been
revealed [36]. Furthermore, the majority of investigations have only focused on the effects
of hypoalbuminemia on mortality and prognosis of COVID-19 severity [37]. It has been
observed that decreased albumin concentration may be a risk factor for mortality [37–40]
and may be related to inflammation in several diseases [41–43]. A negative relationship
between serum albumin and C-reactive protein (CRP), which is an acute-phase reactant
produced in response to inflammation state and pro-inflammatory IL-6 or TNF-alpha, is
often identified in patients hospitalized for many reasons [44–47]. However, the mechanism
of hypoalbuminemia in COVID-19 has not yet been fully explained [38,48]. It should be
noted that hypoalbuminemia may not only be associated with abnormal liver function and
diminished albumin synthesis in inflammation but may also be a consequence of a high
clearance of damaged and oxidized albumin [31,49]. One pharmacokinetic analysis showed
that albumin oxidized by chloramine T left the circulation very quickly after intravenous
injection and accumulated mainly in the liver, kidneys, and spleen [50].

AOPPs have been found to be a marker of the intensity of inflammation, used to predict
the course of the disease, determined to act as a mediator of the activation of monocytes,
and hypothesized to stimulate a respiratory burst of neutrophils [51–54]. AOPPs have also
been reported to be strongly correlated with levels of neopterin, which is produced by
macrophages upon stimulation with interferon-γ [51].
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We hypothesized that oxidized albumin could be involved in the pathophysiology
of COVID-19 infection. The aim of the study was to assess AOPPs levels in COVID-19
pneumonia patients on admission to the hospital and their correlations with inflammatory
biomarkers, radiological scores of computed tomography (HRCT), multiorgan impairment
biomarkers, and other surrogate markers of severity or mortality in COVID-19. Addition-
ally, the level of AOPPs on admission was compared with values recorded for the same
patients one week later, as long as they were in the acute phase of infection and 6 and
12 months post-infection. To demonstrate the mechanism of formation of AOPPs in vivo,
in our study, HSA was incubated with increasing concentrations of chloramine T. The
structure of AOPPs is similar to that obtained by artificial HSA oxidation by chloramine
T [50,51,55]. The chlorine compounds produced by neutrophils in inflammation are directly
associated with albumin oxidative modifications and the creation of AOPPs [29,55].

Another important modification of HSA that may alter albumin function and influence
the severity of symptoms in patients with COVID-19-related pneumonia is related to the
creation of MDA-HSA adducts, known as advanced lipoxidation end-products (ALEs). In
our study, ALEs were produced in vitro by incubating HSA with malondialdehyde (MDA).
Malondialdehyde (MDA) is generated during secondary lipid oxidation. ALEs-HSA can
induce monocyte activation and vascular complications due to its pro-inflammatory ef-
fect [56,57]. Advanced glycation end products (AGEs) as well as ALEs and AOPPs can
bind to a specific receptor called RAGE, which causes the upregulation of inflammatory
pathways [57–60]. This phenomenon has barely been examined so far. ALEs-HSA may also
be involved in increasing the production of autoantibodies in some autoimmune disorders,
such as systemic lupus erythematosus and arthritis [61,62]. It is well known that aldehydes
are capable of binding to proteins and forming fluorescent compounds with a maximum
emission wavelength of 440–480 nm [63,64]. Time-resolved fluorescence spectroscopy has
been used to study the interaction between MDA and HSA (ALEs-HSA formation). This
time-resolved measurement can reveal fluorescence intensity decay in terms of lifetimes.
The fluorescence lifetime is sensitive to the local environment of the fluorophore and
may vary, for example, due to conformational changes in molecules and during molec-
ular interactions with other molecules [65]. To the best of our knowledge, there are no
reports of the use of time-resolved spectroscopy in the study of the autofluorescence of
MDA-modified proteins.

2. Results
2.1. Clinical Study

Our results revealed that the values of most clinical parameters typically used in
predicting the mortality and severity in COVID-19 patients were significantly higher in
patients with COVID-19-related pneumonia compared to reference values. As shown
in Table 1, the level of albumin was found to be negatively correlated with the clinical
biomarkers procalcitonin (PCT), D-dimers, lactate dehydrogenase (LDH), troponin, and
aspartate transaminase (AST). The results indicate that there was also a strong negative
association between albumin and the radiological score of computed tomography (HRCT).
The AOPPs measured in COVID-19 patients upon hospital admission were found to be
positively correlated with liver enzymes (AST, alanine transaminase (ALT)), D-dimers,
LDH, CRP, PCT, and HRCT score.

During the week of hospitalization, the AOPPs levels increase significantly (p < 0.001)
(Figure 1, Table 2). Six months after COVID-19 infection, the AOPPs levels in the same
patient group decreased significantly (p < 0.001). A slight increase, though not statistically
significant, was observed at the next 6-month follow-up (p = 0.055).
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Table 1. Demographic, clinical, and laboratory parameters and their correlation with albumin,
AOPPs, and the ratio of AOPPs/albumin of studied patients with COVID-19 pneumonia on admis-
sion. Red-colored values indicate statistical significance (p < 0.05). WBC, White blood cells count;
RBC, Red blood cells count; Hgb, Hemoglobin; PLT, Platelets count; CRP, C-reactive protein; LDH,
Lactate dehydrogenase; CPK, Creatinine phosphokinase; AST, Aspartate transaminase; ALT, Alanine
transaminase; IL-6, Interleukin-6; HRCT, High-resolution computed tomography; AOPPs, Advanced
oxidation protein products.

Parameters (Units) Median Interquartile Rang Reference Values
Albumin AOPPs AOPPs/Albumin

r p r p r p

Age (years) 64.5 51–72 −0.260 0.035 −0.021 0.868 0.068 0.585

Symptoms (days) 7 5–10 −0.142 0.256 0.318 0.009 0.295 0.016

WBC (103/µL) 6.8 5.1–9.6 4.0–10.0 −0.214 0.084 −0.035 0.778 0.055 0.661

Neutrophils (103/µL) 4.8 3.6–7.5 2.5–5.0 −0.192 0.125 0.005 0.969 0.075 0.553

Lymphocytes (103/µL) 0.9 0.7–1.2 1.5–3.5 −0.031 0.805 −0.115 0.363 −0.072 0.571

RBC (106/µL) 4.45 4.2–4.8 4.5–5.5 0.194 0.118 −0.162 0.195 −0.201 0.106

Hgb (g/dL) 13.7 12.7–14.5 14.0–18.0 0.113 0.365 −0.172 0.168 −0.181 0.146

PLT (103/µL) 211 172–292 130–350 −0.163 0.192 −0.012 0.923 0.048 0.702

CRP (mg/L) 84 42–138 <5.0 −0.235 0.058 0.323 0.008 0.357 0.003

Procalcitonin (ng/mL) 0.08 0.05–0.15 <0.05 −0.480 <0.001 0.309 0.012 0.388 0.001

LDH (U/L) 645 543–885 225–450 −0.437 <0.001 0.362 0.003 0.459 <0.001

D-Dimers (ng/mL) 941 735–1574 <500 −0.477 <0.001 0.453 <0.001 0.534 <0.001

Troponin (ng/L) 10.6 6.2–21 <19.0 −0.268 0.030 0.238 0.054 0.309 0.012

Creatinine (mg/dL) 0.97 0.87–1.14 0.8–1.3 −0.067 0.591 0.162 0.195 0.177 0.155

CPK (U/L) 142 76–231 25–200 0.008 0.952 0.147 0.238 0.120 0.336

AST (U/L) 53 36–70 <37 −0.307 0.012 0.362 0.003 0.417 <0.001

ALT (U/L) 43 30–66 <40 −0.193 0.120 0.245 0.047 0.282 0.022

IL-6 (pg/mL) 13.1 4.8–36 <7.0 −0.009 0.942 −0.171 0.177 −0.166 0.189

HRCT score 0.25 0.14–0.41 −0.423 <0.001 0.348 0.004 0.433 <0.001

Albumin (g/L) 34 31–37 39–51 1.000 - −0.323 0.008 −0.593 <0.001

AOPPs (µM) 13.5 11.4–16.3 −0.323 0.008 1.000 - 0.932 <0.001

AOPPs/Albumin (µM/g) 0.39 0.33–0.50 −0.593 <0.001 0.932 <0.001 1.000 -

Table 2. The level of significance (p-values) between the study group. A—COVID-19 patients on
admission to hospital; 1W—COVID-19 patients one week upon admission; 6M—COVID-19 patients
after 6 months from infection; 12M—COVID-19 patients after 12 months from infection. Red-colored
values indicate statistical significance (p < 0.05). For data comparison, we used AOPPs measurements
from the same patients but recorded at different times.

A 1W 6M 12M

A <0.001 <0.001 0.016

1W <0.001 <0.001 0.004

6M <0.001 <0.001 0.055

12M 0.016 0.004 0.055

2.2. In Vitro Study

To investigate the impact of oxidative stress and carbonyl stress on the properties of
HSA, several experiments were performed. In our study, AOPPs-HSA were produced
in vitro by treating HSA with oxidants (chloramine T).

It can be seen in Figure 2 that the addition of chloramine T to HSA resulted in the
formation of AOPPs. In this figure, one can also observe the exponential nature of the
relationship between the level of AOPPs and the concentration of chloramine T.
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Figure 3a shows the normalized fluorescence decay curves of ALEs-HSA at 450 nm for
different lengths of incubation after the addition of MDA to HSA, which was carried out at
37 ◦C. The decay curves were fitted to a three-exponential fluorescence model (χ2 = 1). The
estimated mean fluorescence lifetime is presented in Figure 3b. The changes were observed
over 15 h of incubation before equilibrium was established.
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3. Discussion

On the basis of the results presented in Figure 1 and Table 1, it can be unequivo-
cally concluded that elevated levels of AOPPs are associated with inflammation during
the course of COVID-19-related pneumonia. Six and twelve months after infection, sig-
nificantly decreased levels of AOPPs were observed when compared to the COVID-19
patients during the acute infection phase. It can be ruled out that the AOPPs levels long
after the diagnosis were lower than prior to the infection due to long-term chronic symp-
toms following COVID-19. The role of oxidative stress in the pathophysiology of Long
COVID has not been yet elucidated, and further research is needed. The level of AOPPs
is raised in many diseases, including renal failure, diabetes, and atherosclerosis, but also
increases with age [66–68]. Very often, a severe course of COVID-19 is associated with
comorbidities [69,70]. Therefore, an elevated AOPPs level prior to infection may also be a
risk factor for severe COVID-19. Interestingly, the level of AOPPs in this study showed
an increasing dependence on time from the onset of symptoms prior to the admission
of patients to their arrival in the hospital department (r = 0.318). It is suggested that
activated neutrophils in conditions of infection and inflammation are the main cause of
the enhanced production of free radicals (e.g., hypochlorous acid (HOCl)) and increased
oxidative stress observed in critically ill COVID-19 patients. The accumulation of reactive
oxygen species (ROS) within neutrophils is considered a key process in the initiation of
neutrophil extracellular traps (NETs), which are able to entrap a wide variety of pathogens
and prevent their dissemination into the blood circulation [71]. In one study, sera from
patients with COVID-19 triggered the release of NETs from control neutrophils in vitro.
Another interesting finding was that the oxidation of albumin also activated the release
of NETs from control neutrophils [72]. In a previous study, neutrophil activation and the
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formation of NETs were reported as major risk factors for acute lung injury [73]. Early CT
findings from COVID-19 patients may correspond to viscous secretions seeping through
the pulmonary alveoli due to hyperinflammation in the lung and the overproduction of
NETs [74]. Interestingly, we found a weak but significant positive correlation between the
level of AOPPs and HRCT scores (r = 0.348).

The results of our in vitro studies shown in Figure 2 indicate that chloramine T pro-
duces AOPPs-HSA in an exponential dose-dependent manner. The shape of this curve
may explain the rapid course of the “cytokine storm” observed in COVID-19 patients. This
experiment provides insight into the mechanism underlying severe COVID-19 pathology.
HSA modified by chlorine compounds is considered a pro-inflammatory mediator due
to its induction of a neutrophil respiratory burst [29]. Chlorine-induced albumin damage
appears to play a key role in exacerbating respiratory problems in COVID-19 patients. It
should also be emphasized that the contribution of individual AOPP products is probably
not the same for different concentrations of chloramine T, and that dityrosine crosslinks are
formed only at high concentrations of chloramine T in relation to HSA.

We hypothesize that the production of ALEs-HSA may also contribute to the aggrava-
tion of inflammation in COVID-19, as some pro-inflammatory effects of ALEs have been
identified [56–60,75]. ROS are produced in cells more rapidly due to their viral entry into
the cytoplasm of the host epithelial cells. ROS production might be activated either by viral
components or by cytokines [12]. Oxidative stress in cells leads to lipid peroxidation, which
in turn produces aldehyde products. In some studies, higher lipid peroxidation levels and
increases in the concentration of aldehydes were found to be associated with an increased
severity of disease in COVID-19 patients [76]. Furthermore, protein adducts of the lipid
peroxidation product 4-hydroxynonenal (HNE) were found to be present at higher volumes
in the plasma of COVID-19 patients who did not survive [77]. Albumin has the ability to
conjugate with aldehydes to form Schiff bases or Michael adducts by generating covalent
adducts [78]. Aldehydes can react with protein and the sulfhydryl group of cysteine, thiols,
and amine groups in both oxidative (lipoxidation) and non-oxidative reactions [78–81].
Furthermore, the addition of toxic lipid peroxidation by-product (e.g., MDA) to proteins
results in an increase in carbonyl contents [82]. To better understand the formation of
ALEs-HSA, time-resolved fluorescence spectroscopy was used in our study. MDA modi-
fies HSA and generates fluorescent products exhibiting a specific fluorescence emission
wavelength between 400 and 550 nm when the sample is excited at 360 nm. The results
shown in Figure 2 reveal that the stable ALEs-HSA were not formed immediately after the
addition of MDA to the HSA solution but instead after about 15 h of incubation. These
results suggest that the interaction between MDA and HSA involves more than the simple
formation of covalent MDA-HSA adducts and is likely to occur in several steps, giving
rise to more complex ALEs-HSA. It is likely that many products with unknown molecular
structures are created.

The degree of inflammation caused by virus entry into cells is linked to the over-
production of poly(ADP-ribose) polymerase 1 (PARP-1), which is a key regulator of the
virus life cycle. The PARP-1-mediated synthesis of ADP-ribose chains reduces the level
of nicotinamide adenine dinucleotide (NAD+) [83,84]. The alteration of NAD+ may im-
pair the detoxification of aldehydes by dehydrogenases, as NAD+ is a redox cofactor for
these enzymes. This can lead to an increase in the modification of albumin by aldehy-
des in infected cells. It should be noted that the NAD+ level also declines with age due
to inflammatory responses related to senescent cells, which produce a permanent alarm
signal [85–87]. Many comorbidities are also associated with chronic inflammation, which
causes a reduction in the level of NAD+ [88]. Some researchers directly suggest that NAD+
deficiency may be a major mortality risk factor in COVID-19 patients [83,84,89]. As NAD+
is considered to be a regulator of immune responses during viral infections, its use as a
drug in the treatment of COVID-19 has been proposed [83,90].

Shortness of breath progressing to hypoxic respiratory failure is a common clinical
manifestation observed in patients with pneumonia. A fall in oxygen saturation (hypox-
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emia) and higher respiratory rate (tachypnea) are associated with increased mortality
risk in COVID-19 patients [91,92]. Hypoxia can occur even without dyspnea, and this
phenomenon is called silent hypoxia [93,94]. Hypoxic cells produce larger amounts of
aldehydes and ROS, leading to an even greater molecular modification of albumin [95].
Interestingly, some studies have revealed connections between AOPPs and hypoxia. Higher
amounts of AOPPs have also been found in hypoxic newborn infants than in controls [96].

In the case of damage to the liver and other organs involved in the removal of modi-
fied albumin, high amounts of AOPPs-HSA and ALEs-HSA may not be cleared from the
bloodstream as quickly as they would be in a healthy person. Liver function test abnormal-
ities are very common in COVID-19-related pneumonia patients [92,97,98]. This may be
related to liver injury by the virus itself, inflammatory responses, hepatic ischemia, hepatic
hypoxia, or even tissue damage and muscle breakdown. In particular, an elevated activity
of LDH reflects tissue destruction and is regarded as a prognostic marker of outcomes in
COVID-19 patients [92,99]. Regarding our biochemical parameters, LDH levels were also
found to be markedly above normal, indicating tissue injury. A significant correlation of the
liver enzyme AST with LDH (r = 0.395) was found. AST was also found to be moderately
negatively associated with albumin (r = −0.307) and positively associated with AOPPs
(r = 0.362). In conditions of both inflammation and liver damage, the synthesis of albumin
may also be disturbed, as albumin is produced exclusively by liver cells.

It should also be noted that high-molecular-weight AOPPs can influence the aggre-
gation of red blood cells (RBCs) and the formation of blood clots. High-molecular-weight
AOPPs are formed due to the tendency of albumin to form aggregates via disulfide bridges
and/or dityrosine cross-linking [52]. An in vitro study showed that chlorine active species
induce the formation of high-molecular-weight proteins [55]. The modification of HSA with
MDA can also result in the aggregation of albumin [64]. It has been found that an increase in
dextran molecular mass causes an increase in RBCs aggregation, and this may also be true
for conglomerates of oxidized albumin such AOPPs and ALEs [100]. Furthermore, in one
study an increase in the aggregation of RBCs and platelets was found to be associated with
the degree of albumin oxidation [101]. There is a strong link between the aggregation of
RBCs and thrombosis [102–104]. Thrombotic events are frequently observed in COVID-19
patients and are associated with increasing disease severity, as well as contributing sig-
nificantly to death [105,106]. It has been found that AOPPs can also directly contribute
to coagulation abnormalities by activating platelets via a CD36-mediated signaling path-
way [32,33]. Many studies have revealed that serum albumin is inversely associated with
artery and venous thrombosis events [107]. It has been hypothesized that albumin has
anticoagulant and antiplatelet activities, probably due to its antioxidant effect [107]. Al-
bumin increases fibrinolysis and inhibits erythrocyte aggregation. In addition, albumin
neutralizes fibrinogen binding to endothelial cells, thus antagonizing several prothrombotic
effects of fibrinogen [108]. Additionally, endothelial dysfunction and blood viscosity are
increased in patients with hypoalbuminemia [109]. During inflammatory states, the coagu-
lation cascade favors thrombus formation due to the decreased synthesis and increased
catabolism of albumin. Hypoalbuminemia and hypercoagulability also coexist in patients
with severe COVID-19 [103]. Our results revealed that D-dimers were moderate negatively
correlated with albumin concentration (r = −0.477), positively associated with AOPPs level
(r = 0.453), and positively associated with the AOPPs/albumin ratio (r = 0.534) in COVID-
19-related pneumonia patients. D-dimers are products of the degradation or breakdown
of fibrin, which are formed during blood clotting processes. This study provides the first
evidence that oxidized albumin may be involved in hypercoagulability in patients infected
with SARS-CoV-2.

The therapeutic effect of the drug is determined by its unbound fraction. In one
of our studies, it was found that the oxidation of HSA by chloramine T reduced the
binding activity of HSA [110]. Similar conclusions can be drawn from the studies of other
researchers [111,112]. Some studies have also reported a reduction in the binding ability of
HSA due to aldehyde modification [113]. Moreover, we observed that the free fraction of
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drugs increased in healthy patients depending on the amount of AOPPs present. Therefore,
the pharmacokinetics of drugs used in the treatment of COVID-19 patients should be
investigated. This study highlights the issues of drug treatment during COVID-19 infection,
as medications may cause toxic effects. These issues seem to be very important for drugs
that are closely bound to HSA and that have a narrow therapeutic index. Some observed
abnormities in the levels of liver enzymes may be directly associated with drug-induced
liver injury. Because the SARS-CoV-2 spike protein binds to albumin, this affinity may be
influenced by oxidative stress, aldehyde modification, or the glycation of albumin. Indeed,
it was recently observed that glycation reduced the binding ability of albumin [25]. These
findings should be extended to the testing of virus binding to AOPPs or ALEs.

Infusions of human albumin solution can reduce the more severe or life-threatening
events that take place in COVID-19 patients [38,114]. However, there is no consensus as to
whether simply administering albumin to patients with hypoalbuminemia reduces their
morbidity and mortality [48,115–117]. Hypoalbuminemia itself is not always considered a
cause of the underlying pathology [48]. On the other hand, some studies have revealed that
therapy with intravenous albumin may improve organ function, respiratory status, and
ventilation-perfusion matching in critically ill patients with hypoalbuminemia or patients
with acute respiratory distress syndrome [118,119]. One study revealed that albumin
supplementation is able to reduce hypercoagulability in SARS-CoV-2, which was confirmed
by the observation of a marked reduction in D-dimers [108]. Clinical trials and extensive
studies on infusions of serum albumin in COVID-19 patients are urgently needed.

As albumin is taken up by endocytosis in infected cells in greater volumes in conditions
of inflammation, the use of conjugate serum albumin with antiviral drugs to effectively
target the extracellular and intracellular viral components is highly recommended in the
treatment of patients infected with SARS-CoV-2.

The co-existence of hypoalbuminemia and oxidative stress in many diseases may
lead to the hypothesis that oxidative modifications of albumin decrease its detection and
influence albumin quantification. In our patient group, albumin was found to be weakly
but significantly negatively correlated with AOPPs (r = −0.323). Some in vitro studies
have shown the decreased detection of oxidized albumin by commonly used clinical
assays [26,27,30,120]. This may explain the close association observed between a lower
concentration of albumin and increased disease severity and mortality in patients with
COVID-19 in many studies. This “apparent” hypoalbuminemia should be clarified and
checked. Aldehydes and endogenous substances formed during COVID-19 infection by
binding to albumin can also compete for binding sites with bromocresol green or purple,
which are commonly used in the detection of albumin concentration. The effect of aldehyde
interactions on albumin detection is currently unknown.

The strength of our study was to compare AOPPs levels for the same COVID-19
patients during and long after passing the acute stage of infection. Such a comparison
allowed us to formulate the suggestion that oxidized albumin is closely linked to the
pathophysiology of COVID-19 infection as the demographic characteristics and comorbid
conditions remain similar. This study also has some limitations. The blood samples were
taken from a single-center donation. Critically ill patients demanding invasive mechanical
ventilation were excluded from this study. The sample size of examined patients was
decreased in the following blood collections. Some patients recovered during the first week
after being admitted and left the hospital before the second blood sampling. After 6- and
12-months post infection, some patients died, were hospitalized due to comorbidities, or
were unwilling to continue participating in the study.

4. Materials and Methods
4.1. Clinical Study

In this study, we included patients hospitalized in the Department of Lung Diseases,
Neoplasms, and Tuberculosis of the Regional Center of Pulmonology in Bydgoszcz, Poland,
from April to December 2021. Patients who had been hospitalized with COVID-19 pneumo-
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nia that had been confirmed by a positive reverse-transcription polymerase-chain-reaction
(RT-PCR) test result from a nasopharyngeal swab according to the World Health Organi-
zation (WHO) criteria [121] and radiographic imaging (HRCTs were performed using a
64-slice Siemens Somatom Sensation (Siemens Healthcare, Erlangen, Germany) system
with a slice thickness ≤0.5 mm) or chest X-ray were eligible for enrolment. Patients had
a blood oxygen saturation below 94% while breathing ambient air but were excluded if
they were receiving continuous positive airway pressure, bilevel positive airway pressure,
or mechanical ventilation. There were 13 women and 53 men among the subjects, and the
mean age of all patients was 62.3 years. Most of the patients had a history of comorbidi-
ties. The most common were cardiovascular diseases (in 51% of patients), type 2 diabetes
(in 21%), previous lung diseases (in 9%), and cancer (in 6%). All patients had undergone
basic laboratory tests assessing the advancement of inflammation, the function of their liver
and kidneys, and the parameters of their coagulation system. The mean percentage of lung
involvement as assessed by the application of CT pneumonia analysis was 28%. The study
group of COVID-19 patients was also tested one week after their admission to the hospital,
as long as they were in the acute phase of infection. The group consisted of 11 women and
33 men, and the mean age of the patients was 62.7 years. The study group of COVID-19
patients was invited back for us to take another round of blood samples after 6 months. A
total group of 30 people applied—5 women and 25 men—and the mean age of all patients
was 60.6 years. After another 6 months, the AOPPs tests for 27 patients (3 women and
24 men, mean age 60.3 years) were repeated.

4.2. Sample Preparation

A 4 mL blood sample was taken for examination from each subject included in the
study. For each COVID-19 patient, the sample was drawn on the same day or the next upon
admission to the hospital department. All samples were processed within 2 h of collection.
Blood samples were added to standard sterile polystyrene tubes containing EDTA and
then centrifuged at 3500 rpm at 4 ◦C for 5 min to obtain plasma. The plasma fraction
was collected and stored at −80 ◦C until measurement. Multiple freeze–thaw cycles were
avoided. Measurements were taken within 1 h of defrosting the sample.

4.3. In Vitro Study

Chloramine T hydrate, sodium thiosulfate, malondialdehyde tetrabutylammonium
salt (MDA), and HSA were received from Sigma-Aldrich. ALEs-HSA were obtained by
the in vitro incubation of HSA (100 µM) with MDA (10 mM) at 37 ◦C. Solutions were
suspended in PBS at pH = 7.4. AOPPs-HSA were produced in vitro by treating purified
HSA (100 µM) with chloramine T at different concentrations from 0.37 to 4 mM in a volume
of 1 mL. Chloramine T hydrate was added immediately after dissolution. The time of
incubation was 60 min. Then, sodium thiosulfate (20 µL) at a concentration 4 times higher
than that of chloramine T was added to eliminate the residue of unreacted chloramine T
hydrate molecules. The experiments with chloramine T were repeated 3 times.

4.4. AOPPs Measurements

The level of AOPPs was determined by measuring the absorbance at 340 nm, according
to the modified method described for the first time by Witko-Sarsat [51]. Briefly, the reactant
mixture used for the AOPPs assay contained 1.875 mL of 0.2 M citric acid and 25 µL of
1.16 M potassium iodide. Then, 1.9 mL of this mixture was added to 100 µL of the test
sample (plasma, HSA, modified has, or PBS-blank), and the absorbance was recorded
immediately. In contrast with the original method, citric acid was used instead of acetic
acid. This modified method is characterized by a greater stability over time [122]. The
results were expressed as chloramine T equivalents.
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4.5. Time-Resolved Fluorescence Spectroscopy Measurements

A time-resolved spectrofluorometer Life Spec II (Edinburgh Instruments Ltd., Liv-
ingston, United Kingdom) with a sub-nanosecond pulsed EPLED® diode emitting light at a
wavelength of 360 nm was used to measure the fluorescence lifetime of the plasma. Plasma
samples were not diluted. The exposure time of the samples was 5 min. Fluorescence
measurements of the plasma were conducted at wavelengths of 450 nm. The measurements
were carried out with the use of quartz 3.5 × 10 mm cuvettes. The fluorescence lifetimes
were obtained by the deconvolution analysis of the data using the multiexponential model
of fluorescence decay, and the instrument response function was taken into account. Then,
the mean fluorescence lifetime value was calculated as the weighted average of fluorescence
lifetimes obtained from the three-exponential model of fluorescence decay. As averaging
weights, the contributions of individual components (areas under decay curves) to the total
fluorescence were calculated. The appropriate number of exponents was determined on
the basis of Chi-square (χ2) statistical analysis and the visual assessment of residual plots.

4.6. Statistical Analysis

The preliminary step of the statistical analysis was the Shapiro–Wilk test of the nor-
mality of the distribution of the measured parameters. Due to the non-normality of the
part-analyzed variables, the dependencies were determined by Spearman’s rank correlation
coefficients (r values). The differences between the measurements of AOPPs recorded at
different times (on admission, one week later, 6- and 12-months post infection) in the
COVID-19 group were compared with the Wilcoxon signed-rank test and were considered
significant at p < 0.05.

5. Conclusions

Serum albumin measurement may serve as a predictor of disease severity in patients
with COVID-19. Our findings enhance the knowledge of the role of oxidized albumin in
SARS-CoV-2 infection. The correlations observed between the level of albumin or AOPPs
with inflammatory parameters or surrogate markers of COVID-19 severity as well as
with lung HRCT score confirm the involvement of oxidative stress in COVID-19. Our
in vitro study with chloramine T-induced albumin oxidation provides further insight into
the mechanisms of the “cytokine storm” observed in COVID-19-related pneumonia. The
modifications of albumin by ROS and aldehyde in the bloodstream and tissue cells outside
the vascular bed caused by COVID-19 infection may have significant clinical implications
and should be further explored at the earliest possible opportunity. The detection of
“apparent” hypoalbuminemia should also be clarified.
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