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Abstract: Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), causing the coronavirus
disease 2019 (COVID-19), has provoked more than six million deaths worldwide and continues to
pose a major threat to global health. Enormous efforts have been made by researchers around the
world to elucidate COVID-19 pathophysiology, design efficacious therapy and develop new vaccines
to control the pandemic. To this end, experimental models are essential. While animal models and
conventional cell cultures have been widely utilized during these research endeavors, they often
do not adequately reflect the human responses to SARS-CoV-2 infection. Therefore, models that
emulate with high fidelity the SARS-CoV-2 infection in human organs are needed for discovering
new antiviral drugs and vaccines against COVID-19. Three-dimensional (3D) cell cultures, such as
lung organoids and bioengineered organs-on-chips, are emerging as crucial tools for research on
respiratory diseases. The lung airway, small airway and alveolus organ chips have been successfully
used for studies on lung response to infection by various pathogens, including corona and influenza
A viruses. In this review, we provide an overview of these new tools and their use in studies on
COVID-19 pathogenesis and drug testing. We also discuss the limitations of the existing models
and indicate some improvements for their use in research against COVID-19 as well as future
emerging epidemics.

Keywords: SARS-CoV-2; 3D cultures; organ-on-a-chip; organoids; lung models; airways; alveolus;
viruses

1. Introduction

Coronavirus disease 2019 (COVID-19), caused by the severe acute respiratory syn-
drome coronavirus 2 (SARS-CoV-2), is one of the most serious pandemics in human history.
In addition to the respiratory system, this virus can impair the function of multiple organs,
leading to death, particularly of older people with co-morbidities, such as cardiovascular
diseases, chronic kidney and lung disease and diabetes [1]. Soon after the start of the pan-
demic, investigators from both academia and industry have been tirelessly seeking vaccines
and treatments to combat COVID-19 [2–8]. However, the capability of the SARS-CoV-2
spike protein to mutate and therefore to increase viral transmission rate and escape im-
munosurveillance has raised additional challenges for the vaccination strategy. A key
aspect in this battle against COVID-19 is the need for appropriate experimental models that
reproduce human disease with high fidelity in order to generate data that can be rapidly
translated to the clinic. In this respect, cell lines have been useful to elucidate mechanisms of
viral invasion and infection [9], allowing the identification of the host receptor Angiotensin-
converting enzyme 2 (ACE2), Neuropilin-1 (NRP1) and transmembrane serine proteinase 2
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(TMPRSS2) as the main proteins involved in SARS-CoV-2 binding and entry into the host
cells [10–13]. However, these 2D cultures revealed major limitations for antiviral drug
testing. For example, while chloroquine (or its derivative hydroxychloroquine) showed an
antiviral effect in the Vero E6 or Huh-7 cell lines [14–16], it failed to inhibit SARS-CoV-2
entry into human cells as well as demonstrate efficacy in clinical trials [17]. On the other
hand, animal models, including primates, are not fully representative of human disease
and often fail to predict the efficacy of antivirals in humans [14,18,19].

To fill this gap, 3D cultures that recapitulate human lung structure and physiology have
been developed. In 2005, Fulcher et al. [20] reported that primary airway epithelial cells
(HAE) can be grown on transwells under an air–liquid interface (ALI) and differentiated
into a pseudostratified epithelium composed of the main airway cell types, i.e., basal, goblet,
club and ciliated cells. Airway cells can be isolated from patients and used for studies
of epithelial–stroma interaction when organized as organoids. These are self-organized
3D multicellular structures where the pseudostratified airway epithelium interacts with
the extracellular matrix and maintains its main functions, i.e., mucus production and
ciliary beating. Thus, these structures can reproduce in vitro the features of the human
airway epithelium in vivo [21,22]. The respiratory epithelium organoid culture has been
successfully used for research on cystic fibrosis (CF) and other pulmonary diseases [23,24],
including viral infections [25–27]. However, a main limitation of the organoid models is the
absence of vascularization and, therefore, the impossibility to study interactions between
the viruses and cells of the immune system [28].

To overcome this limitation, more complex in vitro multicellular cultures have been
developed. Today, the respiratory organ-on-a-chip technology represents the in vitro
system with the highest structural and functional complexity. In addition to the 3D culture
of lung cells under ALI, it includes vascular structures, allowing perfusion of drugs and
immune cells under controlled shear, and it can be subjected to mechanical strain to
mimic the respiratory cycle. This technology has been successfully applied to studies on
COVID-19 [14,29], leading to significant advances in our knowledge of viral pneumonia
and its treatment.

The main goal of the present work is to provide an updated review of the organoid
and the organs-on-chip technologies, focusing on COVID-19 research. Challenges and
improvements of these systems will be also discussed.

2. Lung 3D Cultures

The advent of porous membrane supports, such as transwells, has enabled the de-
velopment of ALI cultures that reproduce in vitro with high fidelity the structure of the
airway epithelium (Figure 1A). Indeed, all cell types found in the human airway in vivo,
including ciliated, goblet, basal and club cells, as well as ionocytes can be observed in these
cultures [20–22]. In addition, transwell cultures allow the investigation of the interactions
among cell and tissue types, pathogens and the immune system [30–32]. These models have
been extensively exploited to study CF, chronic obstructive pulmonary disease (COPD)
and airway infections by bacterial and viral pathogens [33–36].

Compared to transwell cultures of airway epithelial cells, the culture of primary
alveolar epithelial cells is less explored, partly because of limited cell availability. Primary
alveolar type II cells (ATII) can only be cultured under 2D conditions for a limited period
(3–7 days) before differentiation into alveolar type I (ATI)-like cells [37]. In addition, unlike
airway epithelial cells, a consistent method to passage and expand primary ATII cells under
2D conditions has not yet been established. A few studies have investigated the culture of
alveolar epithelial cell lines (such as A549 and NCI-H441) or inducible pluripotent stem
cells (iPSC)-derived ATII cells under ALI, showing increased cell polarization, barrier
formation, ion transport, and cell maturation [38–40]. However, none of these models
supports both the maintenance of the ATII phenotype and the differentiation into ATI
cells. Other efforts by coculturing alveolar epithelial cells with other cell types present in
the lung alveolus, such as fibroblast and microvascular endothelial cells (MVEC), have
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obtained limited success [41–43]. Lung 3D cultures have also been used to study the
immune response, monitored as cytokine production and lymph/monocyte, neutrophil
migration [43,44].
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Figure 1. Graphic representation of the 3D structures discussed in this manuscript: (A) Airway
Epithelial cells in ALI culture on transwells. (B) Airway organoids composed of all cell types,
differentiated and oriented towards the inner lumen. (C) Differentiated lung-airway (top) and
lung-alveolus (bottom) chips. The differentiated Airway-on-a-Chip is composed of ciliate, basal,
goblet and club cells in the top channel, interfaced with pulmonary microvascular endothelial cells
perfused using a microfluidic device. The differentiated alveolus chip is composed of ~45% type
II and ~55% type I lung alveolar cells, forming together an in vitro surfactant-producing human
alveolar structure.

Another 3D culture model that has attracted great interest in the field of lung biology
and respiratory medicine is represented by lung organoids. These are 3D structures that
can derive from pluripotent stem cells or adult stem cells undergoing spontaneous self-
organization and differentiation in sphere structures with the apical side oriented toward
the lumen or outward the medium [45–47] (Figure 1B). Organoids have been used to model
the upper respiratory tract and even the distal alveoli in various lung diseases, including
viral infections [48–50]. These 3D structures offer the advantage of allowing the study of the
relationships between the epithelial tissue and the stromal component [51]. Furthermore,
an organoid model that combines proximal and distal organoids, thus simulating in a
certain way the crosstalk between the bronchi and the distal lungs has been recently
developed [50,52]. Moreover, the inclusion of vascular networks by the incorporation of
mesodermal progenitor cells has been recently described [53].

A further step towards the in vitro reconstitution of a human respiratory unit is
represented by organ-on-chip technology. Ingber and his team pioneered the development
of the lung-on-a-chip by growing lung epithelial cells and microvascular endothelial cells
(MVEC) in two parallel microfluidic channels made of polydimethylsiloxane (PDMS),
separated by a porous membrane [54,55]. Fluid shear stress and other mechanical forces,
such as lung rhythmic breathing motions, can be introduced. Moreover, immune cells
can be perfused through the vascular channel [29,56] (Figure 1C). This model has been
optimized and utilized for studies on respiratory diseases, including CF, COPD, and
lung infections [14,29,57,58]. Additional respiratory organ-on-chips with slightly different
structures have been built by other groups. These are based on varying microfluidics
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platforms, mostly in PDMS, and composed of one or more channels or supports where to
grow cells for differentiation into mature tissues [59–62]. These chips have been used for
modeling viral infections and lung cancer or for studies on nanoparticle toxicity/transport
in the lungs [59–62].

3. Three-Dimensional Systems in COVID-19 Research

Since the beginning of the COVID-19 pandemic, 3D in vitro cultures including airway
organoids, static 3D co-cultures and organs-on-chip have been used for mechanistic studies
on SARS-CoV-2 infection, as well as for drug repurposing, and testing of novel antiviral
therapeutics. Compared to animal models, these systems demonstrated a higher fidelity to
human disease and a high prediction rate of drug efficacy [14,63].

3.1. Lung Organoids

Organoids have been a reference model during the fight against COVID-19. It has
been reported that both airway and alveolar organoids can be successfully infected with
influenza and SARS-CoV-2 viruses [64,65]. Primary cell-based organoids provided a useful
system for understanding SARS-CoV-2 pathogenesis and identifying effective antiviral
drugs. Indeed, several SARS-CoV-2 inhibitors have been identified using the organoid
model. Han et al. reported the efficacy of imatinib, mycophenolic acid and quinacrine
dihydrochloride, against SARS-CoV-2 in a human physiologically relevant setting [66].
The in vivo antiviral efficacy of these drugs has been explored and confirmed, leading
to the conclusion that hPSC-organoids can be useful to study SARS-CoV-2 infection and
provide a valuable model for the identification of anti-COVID-19 molecules. This work
and other studies have led to clinical trials to evaluate the efficacy of imatinib against
COVID-19 [67]. Another study by Sano et al. [68] describes the anti-SARS-CoV-2 efficacy of
camostat, remdesivir and EIDD-2801 in bronchial organoids. The organoid models also
allowed the study of airway regeneration after SARS-CoV-2 infection by monitoring the re-
placement of ciliated cells destroyed by the virus with new ciliated cells differentiated from
basal cells [68]. Of note, remdesivir is currently administered to patients with COVID-19.
Spitalieri et al. [69] developed 3D complex lung organoid structures (hLORGs) starting from
human iPSCs. Using the hiPSC-derived hLORGs, they identified two immunotherapeutic
candidates for COVID-19 treatment, a tetravalent neutralizing antibody (15033-7) target-
ing the spike protein, and a synthetic peptide homologous to the dipeptidyl peptidase-4
(DPP4) receptor on host cells. Both Ab15033-7 and DPP4 significantly inhibited infection by
SARS-CoV-2 S pseudovirus in hLORGs. Although the efficacy of these molecules against
native SARS-CoV-2 needs further exploration, this study demonstrates that hiPSC-derived
hLORGs could provide an alternative system for testing therapeutics against COVID-19.
Tindle et al. [50] created adult lung organoids (ALOs) that are composed of both proximal
airway and distal alveolar epithelium for modeling the SARS-CoV-2 infection and associ-
ated host immune responses. They demonstrated that the ALO model of the SARS-CoV-2
infection better recapitulates the transcriptomic signatures of respiratory samples from
diverse cohorts of COVID-19 patients, compared with other existing SARS-CoV-2-infected
lung models, due to the fact that this model contains both proximal and distal alveolar
signatures. In this respect, this model could serve as a preclinical screening system for the
identification of drugs that target both local and immune responses. Along these lines,
Lamers et al. [49] described a human 2D ALI culture system wherein alveolar, basal and
rare neuroendocrine cells are derived from 3D self-renewing fetal lung bud tip organoids.
They showed that SARS-CoV-2 can readily infect these cultures mainly targeting surfactant
protein C-positive alveolar type II-like cells and that it can be inhibited by a low dose
of interferon lambda 1. Distal lungs were also successfully infected by SARS-CoV-2, in-
dicating that this model can be useful to study alveolar pathogenetic processes. On the
other hand, Salahudeen et al. [48] developed a long-term feeder-free culture system of
human distal lung organoids derived from single adult human alveolar epithelial type II
(AT2) or KRT5+ basal cells. They demonstrated that the organoids enabled the analysis of
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SARS-CoV-2 infection of the distal lung and revealed that SCGB1A1+ club cells are targeted
by SARS-CoV-2.

3.2. Three-Dimensional Cultures on Transwells

ALI cultures provide a more physiologically relevant environment compared to con-
ventional 2D cell cultures. The main advantage of epithelial ALI cultures is the possibility
to deliver viral particles through the airway route, thus allowing viral replication and
transmission at the apical sides of the lung epithelium. Thanks to these research tools, the
main mechanisms of SARS-CoV-2 viral entry, which involve the binding of the receptor
binding domain (RBD) of the SARS-CoV-2 spike protein to ACE2, were identified soon
after the onset of the pandemic. Zhang et al. developed recombinant human ACE2-Fc
fusion protein (hACE2-Fc) and constructed an ALI model, consisting of lung epithelial
cells, obtained by fiberoptic bronchoscopy and brushing of the airway walls, grown in
ALI using transwells [70]. These investigators demonstrated that hACE2-Fc potently neu-
tralized the SARS-CoV-2 virus as efficiently as neutralizing antibodies. Along these lines,
Djidrovski et al. [71] obtained basal-like cells by differentiating iPSCs and used these cells
to generate airway epithelial equivalents by ALI culture. They seeded the basal airway-like
cells onto the apical side of 24-well plate cell culture inserts with a transparent membrane
and fed them from the basal chamber to induce differentiation. The differentiated cell
types included functional ciliated cells, capable of secreting mucus, which were readily
infected by SARS-CoV-2. The infected cells secreted cytokines at levels comparable to those
detected in the airway epithelium in vivo following SARS-CoV-2 infection. In another
study, two models were constructed: ALI cultures of proximal airway epithelium and
alveolarsphere of distal lung AT2 cells [52]. The distal lung epithelial cells were mixed with
human lung fibroblast cells and resuspended in Matrigel. Both models were susceptible to
SARS-CoV-2 infection, resulting in an autonomous pro-inflammatory response. Remdesivir
strongly inhibited SARS-CoV-2 infection and/or replication in both models. However, a
limitation of these constructs is the lack of immune and endothelial components. Notably,
SARS-CoV-2 clinical isolates infected a 3D human respiratory epithelial cell model, which
was developed using primary respiratory epithelial cells differentiated on transwells at ALI,
with the highest expression of SARS-CoV-2 viral RNA at 24 h post infection. Interestingly,
two long noncoding RNAs, LAS1 and TOSL were upregulated in both nasal swabs from
COVID-19 patients and this 3D culture model [72], suggesting that these innate immune
modulators may play a role in SARS-CoV-2-induced innate airway mucosal responses.

3.3. The Organ-on-a-Chip Technology

Dynamic models such as Lung-on-a-Chip have several advantages over static 3D mod-
els. First, some of them allow the application of mechanical forces that simulate alveolar
contraction and expansion, which is crucial for the activation of innate immunity [29]. Fur-
thermore, the possibility of perfusing leukocytes through the vascular channel allows the
analysis of the anti-viral immune response [73]. A recent work used this model to monitor
influenza virus evolution during multiple serial passages, identifying relevant clinical muta-
tions and allowing the resistance to antiviral drugs to be studied [74]. Si et al. exploited the
Airway-on-a-Chip, built with human-differentiated ciliated bronchial epithelium and lined
with microvascular endothelial, to study SARS-COV-2 and the influenza virus infection as
well as the neutrophilic responses to viral infection [14]. The use of Airway-on-a-Chip also
demonstrated the ineffectiveness of hydroxychloroquine and chloroquine, contrary to what
was seen in vitro [75], but consistent with the observations in non-human primates [76]
and data from clinical trials [77–79]. In addition, Si et al. [14] revealed that clinically rel-
evant doses of amodiaquine inhibited infection of human airway chips by pseudotyped
SARS-CoV-2. The differences between amodiaquine and the other related antimalarial
drugs, hydroxychloroquine and chloroquine, could be partially explained by their effects
on the proteome of airway epithelial cells. In fact, quantitative proteomics analysis revealed
that amodiaquine has different and broader effects on the host proteome, especially in
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relation to the proteins involved in the regulation of ciliary functions, compared with hy-
droxychloroquine and chloroquine. The in vivo prophylactic and therapeutic efficacies of
amodiaquine were validated in hamsters challenged with native SARS-CoV-2. Artesunate-
amodiaquine is being tested in a clinical trial for the treatment of COVID-19 in Africa [80].

The organ-on-chip has been used by several groups to study the response to SARS-CoV-2
infection in the distal lungs [29,81,82]. Epithelial cells are not the only cell types at-
tacked by SARS-CoV-2. Indeed, microvascular thrombi and endotheliitis were found
in lungs of patients who had died from COVID-19 [83–86]. Moreover, lung microvascu-
lar endothelial cells (LMVEC) express high levels of NRP1 [10], an alternative receptor
for SARS-CoV-2 entry [13]. Thacker et al. [81] used the Lung-on-a-Chip model to study
SARS-CoV-2 infection and its effects on endothelial cells (EC). They observed damage to the
endothelial barrier integrity, confirming the pro-coagulant effects of SARS-CoV-2 observed
in animal models and autoptic evidence from human subjects. Of note, ACE2 expression
increased by ~10-fold in LMVEC on-chip co-culture conditions under shear stress, high-
lighting the relevance of a physiological microenvironment to studying viral infection, thus
confirming on chip the alveolar-capillary injury during SARS-CoV-2 infection observed in a
co-culture transwell model [30]. Finally, Bai et al. [29] examined tissue-level host responses
of a human alveolus chip, including barrier injury, ATII cell death, tissue regeneration, and
recruitment of B and T lymphocytes and monocytes, following infection with respiratory
viruses such as H3N2, H5N1 and coronaviruses. This study revealed a critical role of
mechanical forces in shaping lung innate immunity and identified the receptor for the
glycation end product (RAGE) pathway as a major drive during mechanotransduction, in
addition to being an amplifier of aberrant host responses in viral pneumonia. The antiviral
properties of the RAGE inhibitor azeliragon and its synergist effect with molnupiravir were
also uncovered by this study. A summary of the main findings obtained with these models
is reported in Table 1.

Table 1. Summary of 2D/3D in vitro cultures in COVID-19 research.

Technology Major Findings Culture Type Reference Date

Conventional
cell cultures

Identification of ACE2 as a binding receptor
for SARS-CoV-2. 2D cultures [11] 2020

SARS-CoV-2 receptor ACE2 and TMPRSS2 are
primarily expressed in bronchial transient

secretory cells.
2D cultures [12] 2020

Neuropilin-1 is a host factor for
SARS-CoV-2 infection. 2D cultures [13] 2020

Neuropilin-1 facilitates SARS-CoV-2 cell entry
and infectivity. 2D cultures [10] 2020

Transwells

Confirmation of the endothelial damage and
increased epithelial and endothelial

inflammatory status related to
SARS-CoV-2 infection.

Co-culture on transwell [30] 2020

Identification of increased levels of LAS1 and
TOSL lnc RNAs in both nasal swabs from

COVID19 patients and 3D cultures.

3D bronchial
epithelium on transwell [72] 2021

Proof of SARS-CoV-2 infection of surfactant
protein C-positive alveolar type II-like cells and

efficacy of interferon lambda 1.

2D ALI culture system
alveolar cells [49] 2021

Development of recombinant human ACE2-Fc
fusion protein using cells obtained by brushing

of the airway walls.
3D ALI culture [59] 2021
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Table 1. Cont.

Technology Major Findings Culture Type Reference Date

Organoids

Description of anti-SARS-CoV-2 efficacy of
camostat, remdesivir, and EIDD-2801. 3D airway organoids [68] 2022

Description of imatinib, mycophenolic acid and
quinacrine dihydrochloride efficacy

against SARS-CoV-2.
Distal lung organoids [66] 2020

Description of SCGB1A1+ club cells as targets
for SARS-CoV-2. Distal lung organoids [48] 2020

Identification of a tetravalent neutralizing
antibody targeting SARS-CoV-2 spike protein

and of a synthetic peptide homologous to
dipeptidyl peptidase-4 receptor on host cells as

candidates for COVID-19 treatment.

Distal Lung-organoids
from iPSCs [69] 2022

A combined model susceptible to
SARS-CoV-2 infection.

3D airway + 3D
aleolarspheres [52] 2020

Development of lung organoids composed of
both proximal airway and distal alveolar

epithelium for SARS-CoV-2 infection.

Complete
lung organoid [50] 2021

Organ-on-a-chip

Drug efficacy against SARS-COV-2 and
influenza viruses and study of neutrophil
responses to the viral infection. Proof of

hydroxychloroquine and chloroquine inefficacy
and amodiaquine efficacy.

Lung-airway-chip [14] 2021

Monitoring influenza virus infection during
multiple serial passages, identifying relevant

clinical mutations and resistance to
antiviral drugs.

Lung-airway-chip [74] 2021

Description of Endotheliitis in the
lung-on-a-chip model after

SARS-CoV-2 infection.
Lung-alveolus-chip [81] 2021

Analysis of the innate response to H3N2, H5N1
and coronaviruses during breathing and

identification of azeliragon and molnupiravir as
potential antiviral drugs.

Lung-alveolus-chip [29] 2022

4. Discussion

In this review, we summarize the current knowledge on the use of respiratory 3D
cultures, namely, organoids and organs-on-chips, for studies on the pathophysiology and
pharmacology of viral infections. This field of investigation has become dramatically
relevant with the outburst of the COVID-19 pandemic that has so far affected more than
half a billion people causing almost six and half million deaths. A significant number of
studies have consistently demonstrated that organoids and organs-on-chip constitute a
more reliable system to model human respiratory viral infections, better than traditional 2D
cell cultures. These 3D lung tissue models, whose characteristics are illustrated in Table 2,
faithfully recapitulate human pathophysiology and host responses to the SARS-CoV-2
infection, each providing valuable information for the development of better treatment
options against the COVID-19 pandemic, especially when the limitations of the available
animal models are evident.
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Table 2. Comparison of the available in vitro lung models to study SARS-CoV-2 infection.

Model Type Ease of
Culture Cost

Possibility
of

Coculture

Duration
of Culture Throughput In-Vivo

Mimicry

Predictive
Power of

Pharmacological
Responses

2D culture Easy Low No Short High Low Low

Transwell
culture Easy/Medium Medium Yes Medium/Long Medium/High Medium Medium

3D Lung
Organoids Medium/High High No Medium/Long High Medium Medium

3D
Organ Chips High High Yes Medium/Long Low High High

Indeed, mice, ferrets, hamsters and macaques [87–89] have been used as preclinical
models of SARS-Co-2 infection; however, these models and even non-human primates
often do not fully recapitulate the human disease, due to species-specific differences in
receptors distribution, protease expression and host immune responses [18,19]. Thus, 3D
cultures have been instrumental for the study of interactions among pathogens, tissues
and the immune system, representing a significant step forward in in vitro studies of
respiratory infections. Data from different groups, using different models have consistently
confirmed that the more complex 3D cultures, namely, organoid and organ chips, have
greatly expanded our toolbox to study virology in vitro and helped understand processes,
such as viral entry, replication, and host innate and adaptive immunity, thus enabling the
identification of more effective therapeutic targets and drugs [14,29]. In the specific case
of COVID-19, the Lung and Airway-on-a-chip has provided a reliable platform to study
how SARS-CoV-2 infects human cells and triggers the complex host-virus interplay and
the immune system [14,29].

Studies with this model have proven clinical relevance. In fact, amodiaquine, which
emerged as an effective anti-SARS-CoV-2 agent in the Lung-on-a-chip [14], has been ap-
proved for clinical trial [80], likewise, remdesivir [68], which is currently used to treat
patients with COVID-19. Thus, the high predictive power of drug efficacy represents a
strong indication for the use of the Airway and Lung-on-a-chip in preclinical studies.

However, these chips are not the only ones used for research on viral diseases. Given
that COVID-19, as well as other coronaviruses, can affect several organs, including kidneys,
and the gastrointestinal, cardiovascular and nervous systems [90–93], 3D models of other
organs have been used. Bein et al. [94] recently modeled an immunocompetent human
Intestine-on-a-Chip to study enteric NL63 coronavirus infection and treatment, whereas
Helms et al. [95], using kidney organoids derived from pluripotent stem cells, showed
that SARS-CoV-2 can directly infect and damage kidney tubular epithelial cells. They also
demonstrated that kidney organoids can be used for drug testing.

In conclusion, even though a definitive cure for SARS-CoV-2 has not yet been dis-
covered, 3D tissue models, such as lung organoids and lung-on-a-chip, have been ex-
traordinarily useful in combating the COVID-19 pandemic by providing a vast amount
of data on key clinical and therapeutic aspects of this disease. However, there are some
limitations of this technology that need to be considered. Working with advanced cultures
such as organoids or organ-chips requires extreme accuracy, particularly during the phase
of cell differentiation and tissue assembly. Therefore, to obtain reliable results, an adequate
number of replicates should be planned. On the other hand, primary cells are not always
available, and, therefore, particularly in the perspective of personalized medicine, the
use of iPSC-derived cells should be considered. Another limitation, particularly in the
case of organ-on-chip technology, is the low yield of materials for conventional biological
assays, such as Western blot or flow cytometry. This, however, can be circumvented by
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combining multiple chips or using high-throughput assay technologies, such as total RNA
or single-cell sequencing [96,97].

5. Future Directions

Despite the indisputable utility of the current 3D models, the possibility of building
more complex systems that include all tissue and immune components of an airway
functional unit and to interconnect this unit with chips of other organs, affected by the same
disease, remains a fascinating perspective. For instance, the current 3D technologies related
to the respiratory system could be implemented by including fibroblasts and alveolar
macrophages to study the inflammatory immune response. Moreover, the 3D culture can
be maintained only for a few weeks. Thus, extending the culture duration will allow the
study of chronic processes associated with viral infections, for example, lung fibrosis or the
role of memory B- or T-cell responses, a crucial aspect in the field of virology [98].
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