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Abstract: Potential drug toxicities and drug interactions of redundant compounds of plant com-

plexes may cause unexpected clinical responses or even severe adverse events. On the other hand, 

super-additivity of drug interactions between natural products and synthetic drugs may be utilized 

to gain better performance in disease management. Although without enough datasets for predic-

tion model training, based on the SwissSimilarity and PubChem platforms, for the first time, a fea-

sible workflow of prediction of both toxicity and drug interaction of plant complexes was built in 

this study. The optimal similarity score threshold for toxicity prediction of this system is 0.6171, 

based on an analysis of 20 different herbal medicines. From the PubChem database, 31 different 

sections of toxicity information such as “Acute Effects”, “NIOSH Toxicity Data”, “Interactions”, 

“Hepatotoxicity”, “Carcinogenicity”, “Symptoms”, and “Human Toxicity Values” sections have 

been retrieved, with dozens of active compounds predicted to exert potential toxicities. In Spatholo-

bus suberectus Dunn (SSD), there are 9 out of 24 active compounds predicted to play synergistic 

effects on cancer management with various drugs or factors. The synergism between SSD, luteolin 

and docetaxel in the management of triple-negative breast cancer was proved by the combination 

index assay, synergy score detection assay, and xenograft model. 

Keywords: herbal bioinformatics; in-silico toxicity prediction; drug-drug interaction; ligand-based 

virtual screening; synergism; triple-negative breast cancer 

 

1. Introduction 

For the treatment of some advanced cancer such as triple-negative breast cancer 

(TNBC), there are still seldom medications, but chemotherapeutic drugs can achieve mod-

erate effects on patient overall survival according to the latest therapy guidelines and clin-

ical trials [1–3]. More than 20 potential severe adverse events can be incurred during 

chemotherapy [4]. So, it’s important to discover strategies to reduce the negative effects 

of chemotherapy to improve patients’ quality of life. The synergistic effects of natural sub-

stances combined with chemotherapy medications may shed light on this [5–7]. Moreo-

ver, the paradigm shift from a “one-target, one-drug” mode to a “network-target, multi-

ple-component-therapeutics” mode like network pharmacology will offer much more po-

tential for cancer management. Nonetheless, conventional network pharmacology is 

based on simple additivity of the potencies and efficacies of individual active compounds 

of herbal medicines [8,9]. There are potentially super-additive (synergistic) effects and 

subadditivity (antagonism) in terms of drug combination [10], which may cause unex-

pected pharmacologic or clinical responses. Plus, conventional network pharmacology is 

lacking in toxicity analysis for plant complexes. Pharmacological and toxicological assess-

ments for compound combinations by experiments would be exceedingly time- and cost-

intensive. Similar compounds may be conferred by similar bioactivities [11]. This funda-

mental idea allows for the integration of chemical informatics and bioinformatics tools 

into hypotheses constructs for drug discovery. Advancements in Big Data management 
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have opened up access to massive public datasets and powerful tools, e.g., virtual screen-

ing. In-silico drug targets, toxicity, and drug-drug or drug-food interaction predictions 

based on chemical similarity through virtual screening and machine learning will offer us 

many preliminary outcomes efficiently for natural products research. 

The concept and framework of network toxicity in Traditional Chinese Medicine 

(TCM) were first proposed by Fan et al. in 2011. They claimed to employ network phar-

macology approaches to reconstruct the network of “compound-protein/gene-toxicity” to 

identify dangerous chemicals and anticipate the harmful side effects of existing com-

pounds [12]. However, no successful practice has been reported based on this concept, 

which may because of the knowledge gap between compound-target and compound tox-

icity. And limited information about the toxicity and drug interactions of natural com-

pounds can be found in the public databases for model training. But there are many expert 

systems (DEREK [13], AMBIT [14], DSSTox [15], Derek Nexus [16], Meteor [17], Haz-

ardExpert [18], PASS [19], cat-SAR [20], Toxmatch [21], VEGA [22], ChemIDplus [23]) 

built for toxicity prediction of synthetic drugs [24]. All of them are based on two different 

methodologies: The quantitative structure-activity relationship (QSAR) and molecular 

docking [25]. There are huge knowledge gaps between the molecular docking result and 

drug toxicity for the distinguished roles of one protein in systematic toxicity and the roles 

of compound-protein interactions in the activation or degradation of proteins are elusive. 

So, QSAR-based systems are the most employed computational approaches to predict 

drug toxicity. However, most QSAR-based systems employing models trained by datasets 

of FDA-approved synthetic drugs may show less confidence in the prediction of natural 

products. The performance of some expert systems for toxicity prediction such as 

TOPKAT, DEREK, and HazardExpert has been reported to be poor [26–29]. In addition, 

most toxicity prediction systems only offer limited endpoint alerts without any insight 

interpretation. Hence, this study aims to construct a prediction workflow (Figure 1) for 

natural products to alert comprehensive endpoints with detailed information for the first 

time. Although there are no qualified datasets for “one-step” alert model training for tox-

icity and drug interaction prediction of natural products. Many models for quantitative 

structure-activity relationship analysis are available. Firstly, based on one of the best 

QSAR models and platforms, the basic information about the similar bioactivity com-

pounds of active compounds can be mined. Then the comprehensive toxicity and drug 

interaction information of similar compounds was collected as the indicator for active 

compounds. The toxicity and drug interaction prediction can be conducted based on a 

reasonable similarity score threshold. 

PubChem (https://pubchem.ncbi.nlm.nih.gov/) (Accessed on 31 December 2021) is 

the world’s largest repository of publicly available chemical data at the National Institutes 

of Health. It provides detailed information on chemical and physical properties, biological 

activity, safety and toxicity, patents, and literature citations. It houses data on about 111 

million chemicals, 295 million bioactivities, 34 million publications, and 42 million patents 

[30]. So, it is the most popular database for chemical-related data mining with detailed 

research protocols and insights. SwissSimilarity (http://www.swisssimilarity.ch/) (Ac-

cessed on 30 December 2021) is run by the Molecular Modelling Group of the SIB Swiss 

Institute of Bioinformatics and the University of Lausanne. It is a user-friendly tool for 

ligand-based virtual screening from several libraries of small compounds using various 

methodologies. This platform can work based on various structure descriptors such as 

FP2 [31], ECFP4 [32], MHFP6 [33], Pharmacophore [34,35], ErG [36], Electroshape [37], 

and E3FP [38,39]. Even an in-house combined model on this platform can be available to 

show better performance for structure-activity prediction compared to an independent 

fingerprint similarity-based or shape similarity-based prediction model [40]. 
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Figure 1. Workflow of in-silico toxicity and drug interaction analysis based on chemical similarity. 

Active compounds of herbal medicines are screened out based on some criteria. Then, as a query 

for mining similar compounds, the SMILES of active compounds will be collected. Based on the 

properties of similar compounds, the information on toxicity and drug interactions of similar com-

pounds are retrieved. The final predictions and interpretations of active compounds will be made 

on a reasonable similarity score threshold. Experiments will be conducted to demonstrate the pre-

diction results. 

2. Results 

2.1. Similarity Score Threshold Analysis 

To build a workable and dependable in-silico prediction workflow, the similarity 

threshold setting plays an important role in the balance of prediction precision and pre-

diction yield. Presumably, there is a positive correlation between the similarity score and 

a true prediction, which means a “strict” threshold will eliminate the false predictions. 

But it does not mean that a “strict” similarity threshold is better than a “low” similarity 

threshold in terms of prediction yield because there is a significantly negative correlation 

between the number of active compounds predicted and the similarity threshold (Figure 

2). The similarity score in this workflow was regarded as a kind of descriptor of active 

compounds but not the final probability of a prediction model. Further analysis will be 

made based on the similarity threshold. 
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Figure 2. Similar compounds properties retrieved through computer programming for 20 herbal 

medicines. (a) Retrieve number curve of similar compounds properties dependent on similarity 

threshold. There is a significantly negative correlation between similar compounds retrieved and 

the similarity threshold. (b) Number curve of active compounds in herbal medicines for which the 

corresponding similar compounds were retrieved dependent on similarity threshold. 

Twenty herbal medicines, 495 active compounds, and 84,056 similar compounds 

were involved in similarity threshold analysis. The lower the similarity threshold is the 

more distinct retrieves can be collected. There is a significantly negative correlation be-

tween similar compounds retrieved and the similarity threshold (Figure 2a). There is a 

significantly negative correlation between the number of active compounds with similar 

compounds retrieved and the similarity threshold when the similarity score is higher than 

0.56 (Figure 2b). Similarly, there is a linear (negative) correlation between the total toxicity 

information retrieved and the similarity threshold (Figure 3a). And there is a significantly 

negative correlation between the number of active compounds with toxicity prediction 

retrieved and the similarity threshold. 

 

Figure 3. Toxicity information retrieved for 20 representative herbal medicines on different similar-

ity thresholds. (a) Retrieve curve of toxicity information dependent on similarity threshold. There is 

a significantly negative correlation between the total toxicity information retrieved and the similar-

ity threshold. (b) Number curve of active compounds in the 20 representative medicinal plants with 

toxicity information retrieved on different similarity thresholds. There is a negative correlation be-

tween the number of active compounds with toxicity information retrieved and the similarity 

threshold. 
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However, elusive information or even contrast information about the toxicities of the 

same compound can be retrieved due to a low similarity score. For example, in Table 1, 

the first elusive retrieve regarding hepatotoxicity of 3-Hydroxystigmast-5-en-7-one com-

pared to the retrieve with the largest similarity score occurred when the similarity score 

decreased to 0.498, while the first contrast retrieves for beta-sitosterol and campesterol 

occurred when the similarity score decreased to 0.588 and 0.594, respectively. Herein, we 

introduced two different concepts: FEP-SS and FCP-SS (Defined in Box 1) which can be 

utilized to set an optimal similarity score threshold for predictions to balance the predic-

tion precision and yield. The FCP-SS of one active compound is the threshold for retrieves 

without any controversial results, while the FEP-SS is the threshold for that all the re-

trieves are consistent. Based on two different toxicity aspects: hepatotoxicity and carcino-

genicity, the optimal similarity score threshold analysis for consistent retrieves was con-

ducted. The representative FEP-SS and FCP-SS data of four different herbal medicines can 

be referred to in Table 2. The sum of all the FEP-SS and FCP-SS values of 20 herbal medi-

cines can be referred to in Supplementary Table S1. Low FCP-SS and FEP-SS values prob-

ably were gained because of insufficient information from PubChem, herein, values of 

FCP-SS or FEP-SS ≤ 0.3 were excluded in the descriptive analysis of FCP-SS and FEP-SS 

values (Figure 4a). Generally, the FCP-SS is numerically less than FEP-SS (Figure 4b). The 

mean value of FCP-SSs and FEP-SSs are 0.6171 and 0.6181, respectively, and the third 

quartile value of FCP-SS is 0.759. Given the prediction yield and precision, the similarity 

score threshold of this prediction project was set at the concentrated value of FCP-SS, the 

representative value of FCP-SS, 0.6171. 

Table 1. The toxicity information summary of similar compounds of representative active com-

pounds. 

Active Compound Name 
Similarity 

Score 

PubChem CID of Similar Com-

pounds 
Hepatotoxicity Carcinogenicity 

3-Hydroxystigmast-5-en-7-one 0.992 6010 0 N.A. 

3-Hydroxystigmast-5-en-7-one 0.986 10631 0 N.A. 

3-Hydroxystigmast-5-en-7-one 0.976 5997 N.A. −1 

3-Hydroxystigmast-5-en-7-one 0.917 6917715 0 N.A. 

3-Hydroxystigmast-5-en-7-one 0.540 54454 0 N.A. 

3-Hydroxystigmast-5-en-7-one 0.520 53232 0 N.A. 

3-Hydroxystigmast-5-en-7-one 0.498 5280453 −1 N.A. 

3-Hydroxystigmast-5-en-7-one 0.302 445354 1 N.A. 

beta-sitosterol 0.999 5997 N.A. −1 

beta-sitosterol 0.804 5280453 −1 N.A. 

beta-sitosterol 0.588 445354 1 N.A. 

beta-sitosterol 0.588 445354 1 N.A. 

campesterol 0.999 5997 N.A. −1 

campesterol 0.836 5280453 −1 N.A. 

campesterol 0.594 445354 1 N.A. 

1: Toxic; 0: Ambiguous; −1: Non-toxic or anti-toxic; N.A.: Not applicable. 
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Table 2. Similarity score corresponding to the first elusive or contrast prediction for certain toxicity 

of active compounds of four herbal medicines. 

Active Compound Name 
PubChem CID of 

Similar Compound 

FEP-SS 

(Hepatotoxi-

city) 

FCP-SS 

(Hepatotoxi-

city) 

FEP-SS (Car-

cinogenicity) 

FCP-SS (Car-

cinogenicity) 

(+)-catechin 2369 0.472 - - - 

(20S)-Dammar-24-ene-3beta,20-diol 

3-acetate 
5280453 0.31 - - - 

18alpha-hydroxyglycyrrhetic acid 10133 0.331 - - - 

3,22-Dihydroxy-11-oxo-delta(12)-

oleanene-27-alpha-methoxycar-

bonyl-29-oic acid 

5281004 0.265 - - - 

3-Hydroxystigmast-5-en-7-one 5280453 0.498 - - - 

DFV 4764 -  0.558 - 

Glabranin 16078 0.703 - - - 

Glabrene 3005573 - - - 0.353 

Kanzonol F 441140 0.212 - - - 

Medicarpin 441140 - 0.561 - - 

Olitoriside 54687/12560 0.337 0.449 - - 

Psi-Baptigenin 6237 - 0.176 - - 

Stigmasterol 445354 - 0.468 - - 

Aloe-emodin 42890/3059 0.463 0.413 - - 

Beta-sitosterol 445354 - 0.588 - - 

Campesterol 445354 - 0.594 - - 

Hederagenin 10133 0.486 - - - 

Liquiritin 30323 - - 0.379 - 

Naringenin 5281576 - - 0.477 - 

Sitosterol 445354 - 0.588 - - 

FEP-SS: First elusive prediction-similarity score; FCP-SS: First contrast prediction-similarity score; -

: Not applicable. 
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Figure 4. Statistical analysis of in-silico drug toxicity and interaction prediction for 20 different 

herbal medicines. (a) Histogram of FEP-SS and FCP-SS values of > 0.3; (b) Box plots of FEP-SS and 

FCP-SS values of > 0.3 for toxicity prediction; (c,d) The different amounts of active compounds with 

similar compounds or toxicity predictions based on different Swiss combined similarity score 

thresholds. AC: The group of toxicity information mining using active compounds of medicinal 

plants on PubChem platform, ST-0.759: Toxicity prediction group based on similarity score thresh-

old of the third quartile value of FCP-SS (0.759), ST-0.6171: Toxicity prediction group based on a 

threshold of the mean value of P-SS (0.6171). 

2.2. Toxicity Prediction Interpretation 

After the construction of the prediction workflow and similarity threshold setting, 

the toxicity and drug interaction predictions were made for several herbal medicines. 

From the PubChem database, for the four representative herbal medicines, thirty-one dif-

ferent sections of toxicity information of active compounds such as “Acute Effects”, 

“NIOSH Toxicity Data”, “Interactions”, “Hepatotoxicity”, “Evidence for Carcinogenic-

ity”, “Symptoms”, “Human Toxicity Values”, and “TSCA Test Submissions” sections 

have been retrieved (See Supplementary Table S2, with 26 active compounds predicted to 

exert various potential toxicities. 
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(20S)-Dammar-24-ene-3beta,20-diol 3-acetate was predicted to possess potential 

hepatotoxicity and reproductive developmental toxicity. Cajinin, calycosin, formo-

nonetin, glyzaglabrin, hederagenin, jaranol, kaempferol, luteolin, odoratin, olitoriside, 

psi-Baptigenin, quercetin, 3-Hydroxystigmast-5-en-7-one and so on may have potentially 

reproductive developmental toxicity. Olitoriside is an analog of digoxin with a relatively 

high similarity score of 0.992, which means it may also exert similar toxicity to digoxin. In 

addition, 3-Hydroxystigmast-5-en-7-one, glycyrrhiza flavonol A, isolicoflavonol, jaranol, 

kaempferol, luteolin, isoflavanone, and quercetin are probably genotoxic predicted by the 

toxicity information retrieve of their similar compounds, respectively. Presumably, repro-

ductive and developmental toxicity should be paid enough attention to the consumption 

of all these four herbal medicines. It is also warranted that digoxin toxicity may occur 

when Fructus ligustri Lucidi is taken at toxic doses. Besides, the prediction results of acute 

toxicity, antidote and emergency treatment, protein binding, ecotoxicity values, ongoing 

test status, skin symptoms, eye symptoms, and target organs of some active compounds 

can be available in Supplementary Table S2. 

2.3. Drug Interaction Prediction Interpretation 

The prediction of drug interaction of plant complexes is another important role of 

this workflow. There are 41 different active compounds involved in the 4 representative 

herbal medicines, of which the detailed information can be referred to Supplementary 

Table S3. Many active compounds may have significant super-additive or sub-additive 

effects on drug pharmacokinetics, cancer management, cell survival, drug-induced repro-

ductive developmental toxicity, antibacterial, anticoagulation, or/and cardiovascular 

function. 

For cancer management, there are roughly seven different activities (Enhanced radi-

otherapy, metastasis inhibition, carcinogenesis inhibition, enhanced chemotherapy, en-

hanced genotoxicity, enhanced bioavailability, and weakened target therapy) influenced 

by potential drug interactions predicted based on the similarity score threshold of 0.6171. 

Cajinin, calycosin, formononetin, glyzaglabrin, isotrifoliol, luteolin, odoratin, and psi-

Baptigenin may potentiate the sensitivity of cancer cells to ionizing radiation. Isorham-

netin, isotrifoliol, jaranol, kaempferol, luteolin, quercetin, and sitosterol were predicted 

with the same similar compound, apigenin or lupeol, to inhibit cancer metastasis. Heder-

agenin may inhibit carcinogenesis by 1,2-dimethyl-hydrazine, 12-O-tetradecanoylphorbol 

13-acetate, or azoxymethane. Gadelaidic acid and icos-5-enoic acid were predicted to in-

hibit carcinogenesis caused by methyl nitrosourea. Glycyrrhiza flavonol A, 8-C-alpha-L-

arabinosylluteolin, isolicoflavonol, isorhamnetin, jaranol, kaempferol, luteolin, and quer-

cetin probably suppress UV-induced skin tumorigenesis. 8-C-alpha-L-arabinosylluteolin, 

Glycyrrhiza flavonol A, hederagenin, isorhamnetin, isotrifoliol, jaranol, licochalcone B, 

kaempferol, liquiritin, luteolin, mairin, olitoriside, quercetin, and sitosterol may have po-

tential synergistic effects when treated in combination with many chemotherapeutic 

drugs on cancer management. 

However, mairin may also be a promoter of N-Nitrobis(2-hydroxypropyl)amine and 

N-methyl-N’-nitro-nitrosoguanidine triggered cancer progression. There is a theoretical 

risk of enhanced genotoxicity using cisplatin with isorhamnetin, isotrifoliol, kaempferol, 

luteolin, quercetin, or 8-C-alpha-L-arabinosylluteoli. In addition, weakened target ther-

apy of bortezomib may occur due to the combined treatment of 8-C-alpha-L-arabino-

sylluteolin, glycyrrhiza flavonol A, isorhamnetin, jaranol, kaempferol, luteolin, or querce-

tin. 
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2.4. Synergism Detection 

Based on the drug interaction prediction, in Spatholobus suberectus Dunn (See Figure 

5), 3-Hydroxystigmast-5-en-7-one, 8-C-alpha-L-arabinosylluteolin, beta-sitosterol, cajinin, 

calycosin, campesterol, formononetin, luteolin, and psi-Baptigenin (9 out of 24 screened 

active compounds) may play synergistic effects on cancer metastasis inhibition, carcino-

genesis inhibition, chemotherapy, or/and radiotherapy with various chemotherapeutic 

drugs or factors. Cajinin, calycosin, luteolin, and psi-Baptigenin, similar to kaempferol, 

were predicted to enhance the chemotherapeutic drug bioavailability because of the inhi-

bition effects on P-glycoprotein (P-gp) and cytochrome P450 (CYP) (See Supplementary 

Table S4). These two enzyme families play important role in the neutralization and efflux-

ion of various chemotherapeutic drugs including docetaxel [41–43], the first-line chemo-

therapeutic drug in TNBC management [44]. Collectively, there may be potential syner-

gism between SSD and docetaxel in TNBC therapy. Luteolin, extremely similar to apig-

enin, myricetin, genistein, and kaempferol which have been proved to play synergistic 

effects on cancer metastasis inhibition, carcinogenesis inhibition, chemotherapy, drug bi-

oavailability enhancement, and radiotherapy with various drugs or factors, attracted our 

special interests. To prove the efficacies of SSD when treated in combination with docet-

axel, a combination index assay, synergy score of matrix assay, and xenograft model were 

conducted. 
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Figure 5. The network of cancer management-related interactions of active compounds in Spatholo-

bus suberectus Dunn with drugs, ionizing radiation, or carcinogens, predicted through chemical sim-

ilarity. Cajinin, calycosin, formononetin, luteolin, and psi-Baptigenin may potentiate the sensitivity 

of cancer cells to ionizing radiation. Luteolin enjoying similarity of 0.999 to apigenin was predicted 

to inhibit cancer metastasis. 8-C-alpha-L-arabinosylluteolin, and luteolin probably not only sup-

press UV-induced skin tumorigenesis but also have potential synergistic effects when treated in 

combination with many chemotherapeutic drugs. Cajinin, calycosin, luteolin, and psi-Baptigenin, 

similar to kaempferol, were predicted to enhance the chemotherapeutic drug bioavailability because 

of the inhibition effects on P-glycoprotein (P-gp) and cytochrome P450 (CYP). However, there is a 

theoretical risk of enhanced genotoxicity using cisplatin with luteolin or 8-C-alpha-L-arabino-

sylluteolin supplements. In addition, weakened target therapy of bortezomib may occur due to the 

combined treatment of 8-C-alpha-L-arabinosylluteolin or luteolin. 
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In the Combination Index assay (Figure 6), the IC50 values of SSP and docetaxel in 

anti-MDA-MB-231 cells are 70.48 μg/mL, and 1.85 nanomolar, respectively. When treated 

simultaneously, the IC50 values of SSP and docetaxel decreased to 4.73 μg/mL, and 1.18 

nanomolar, respectively. The Combination Index is 0.70, which means there is a syner-

gism of SSP and docetaxel in anti-MDA-MB-231 cells. The consistent results can be gained 

by the Synergy score detection assay where the mean value of the synergy score calculated 

by the ZIP method is 5.79, with the most synergistic area score of 20.68. In the combination 

of luteolin and docetaxel, the mean value of the synergy score is 7.217, and the synergy 

score of the most synergistic area (White rectangle) is 19.58 (Figure 7). 

 

Figure 6. Combination index analysis for the synergistic effects of SSP and docetaxel. (a) MDA-MB-

231 cells treated with different doses of docetaxel independently for 48 h, IC50 (DTX) = 1.85 nM, R 

square = 0.9805. (b) MDA-MB-231 cells treated with different doses of SSP independently for 48 h, 

IC50 (SSP) = 70.48 μg/mL, R square = 0.9854. (c,d) MDA-MB-231 cells treated with different doses of 

SSP (μg/mL)/docetaxel (nM) (100/25; 50/12.5; 25/6.25; 12.5/3.13; 6.25/1.56; 3.13/0.78; 0.78/0.20) for 48 

h, IC50 (DTX) = 1.18 nM, IC50 (SSP) = 4.726 μg/mL, R square = 0.9424. CI ≈ 0.70, which means there is 

a synergism between SSP and docetaxel. 
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Figure 7. Quantitative analysis of the synergistic effect of SSP or luteolin combined with docetaxel 

through the ZIP method on the growth inhibition of MDA-MB-231 cells. (a,c) 2-D heat map of the 

dose-response matrix (Inhibition ratio) of drugs. (b,d) 2-D heat map of synergy score. In the combi-

nation of SSP and docetaxel, the mean value of the synergy score is 5.79, and the synergy score of 

the most synergistic area (White rectangle) is 20.68; In the combination of luteolin and docetaxel, 

the mean value of the synergy score is 7.217, the synergy score of the most synergistic area (White 

rectangle) is 19.58. The data were gained from two independent experiments. 
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In-vivo assay (Figure 8), there are no significant differences among the Vehicle con-

trol group, DTX group, and SSP-L group in terms of tumor volume. However, the tumor 

volume of the combination group of docetaxel treatment at low dose plus the SSP treat-

ment at low dose was significantly less than that of the Vehicle control group, which 

means there is supper-additivity between SSP and docetaxel in anti-TNBC. 

 

Figure 8. Qualitative analysis of the synergistic effects of SSP and docetaxel in anti-TNBC. (a) Rep-

resentative pictures of mice xenograft with different treatments for 21 days. (b) Tumor volume 

curve. The Vehicle Control group received oral administration of Milli-Q water; The SSP-L group 

received oral administrations of SSP (0.4 g/kg/day); The SSP-H group received oral administrations 

of SSP (0.8 g/kg/day). The DTX group received administration of docetaxel (i.p., 2.5 mg/kg/week). 

The DTX & SSP-L group received oral administrations of SSP (0.4 g/kg/day) and docetaxel (i.p., 2.5 

mg/kg/week). Data are shown as mean ± SEM (n = 6) with two independent experiments. (c) Statis-

tical analysis of tumor volume at the endpoint of different mice with different treatments aforemen-

tioned. Data are shown as mean ± SEM (n = 6). * p < 0.05 (Vehicle control vs. SSP-H; Vehicle control 

vs. SSP-L + DTX; DTX vs. SSP-H), ** p < 0.01 (SSP-L vs. SSP-L + DTX) and ***p < 0.001 (SSP-L vs. SSP-

H). (d) Bodyweight detection of the xenograft model experiment. Data are shown as mean ± SD (n 

= 6) with two independent experiments. (e) Statistical analysis of mice body weight at the endpoint 

of different groups. Data are shown as mean ± SD (n = 6). * p < 0.05 (DTX vs. SSP-L), ** p < 0.01 

(Vehicle control vs. SSP-L + DTX), ***p < 0.001 (Vehicle control vs. SSP-H; DTX vs. SSP-L + DTX), 

**** p < 0.0001 (DTX vs. SSP-H). 
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3. Discussion 

For the first time, a workflow (Figure 1) for both toxicity and drug interaction pre-

diction of herbal medicine based on virtual screening and text mining [45,46] was con-

structed. For studies on drug toxicity, drug-drug interactions, and drug-food interactions, 

with detailed related information retrieved, this workflow is beneficial for hypothesis con-

struction and insight interpretation. Moreover, it has many superiorities over fixed pre-

diction models. First, no prediction model can predict the toxicity and drug interactions 

like this workflow at the same time, which is important for a comprehensive safety assess-

ment of complex drug mixture. Second, drug-drug interaction prediction models can only 

be utilized for drug pairs of interest, where the name of the interested drug pair should 

be offered in advance. However, this workflow can show some insights into drug combi-

nations of >2 compounds without any pre-purpose needed. Even, the interaction between 

active compounds and some other factors such as ionizing radiation or carcinogens can 

be indicated by this workflow. Third, no detailed insights or interpretations of any toxicity 

prediction model are available. But this text mining-based procedure will include data 

resources, clinical trial details, and even experiment protocols for a result assessment in 

addition to the endpoint alert. Forth, as more and more information is documented in the 

chemical databases, a flexible workflow show much more potential and comprehensive 

assessment of the compound toxicity and interactions compared to a fixed prediction 

model which is only trained for specific toxicities prediction and utilized in limited sce-

narios. Fifth, this workflow is based on a combined SwissSimmlarity score, which has 

been proved to show better performance compared to fingerprint as the unique structure 

descriptor in activity prediction. 

There is limited information about toxicity and drug interactions of natural active 

compounds (Table 3) documented in public databases. In PubChem, the most powerful 

database of chemical information regarding toxicity, only 23 out of 495 active compounds 

of 20 representative herbs can be retrieved. So, it is not feasible to make a safety assess-

ment on herbal medicines by searching through public databases. Although there are 

many expert systems constructed for drug toxicity prediction based on QSAR or molecu-

lar docking, most QSAR-based systems employing models trained by FDA-approved 

drugs may show less confidence in the prediction of natural products. Plus, there are huge 

knowledge gaps between the molecular docking result and drug toxicity for the distin-

guished roles of one protein in systematic toxicity and the roles of compound-protein in-

teractions in the activation of proteins are elusive. To solve this problem, this workflow 

tries to predict the properties of the unknown compounds by their similar bioactive com-

pounds based on optimal QSAR on the SwissSimilarity platform. 

Table 3. Toxicity and drug interaction data mining in PubChem by active compounds of Fructus 

ligustri Lucidi, Spatholobus suberectus Dunn, Hedysarum multijugum Maxim, and Licorice. 

PubChem CID Active Compound name AE Is AET HTE NHTE CC PSR HT EC NHTV OTS NTPS 

5280448 Calycosin - + + + + - - - - - - - 

9064 (+)-catechin + - - - - - - - - - - - 

222284 Beta-sitosterol + - - - - - - - - - - - 

73299 Hederagenin + - - - - - - - - - - - 

5280863 Kaempferol - + + + + + + - - - - - 

5280445 Luteolin + - - - - - - - - - - - 

5280343 Quercetin + + + + + + + + + + + + 

5280794 Stigmasterol - - + + - - - - - - - - 

439533 Taxifolin + - - - - - - - - - - - 

AE: Acute Effects; Is: Interactions; AET: Antidote and Emergency Treatment; HTE: Human Toxicity 

Excerpts; NHTE: Non-Human Toxicity Excerpts; CC: Carcinogen Classification; PSR: Populations 

at Special Risk; HT: Hepatotoxicity; EC: Evidence for Carcinogenicity; NHTV: Non-Human Toxicity 

Values; OTS: Ongoing Test Status; NTPS: National Toxicology Program Studies. +: with retrieves; -

: no retrieves. 
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There are no available models for toxicity or drug-drug interaction prediction for a 

mixture of more than two different compounds because no dataset can be gained for this 

kind of model training. All drug interaction prediction models are just trained for drug 

pairs of interest [47–49]. Although there is some interaction information of three-com-

pound combinations retrieved in this study, even based on the most powerful database 

for chemical information-PubChem, most drug interaction retrieves are also documented 

for drug pairs. So, there is still a knowledge gap between the predictions of this workflow 

and the final clinical performance of plant complexes. All the predictions should be 

proved by experiments. The prediction result should be treated as preliminary hypothe-

ses. 

For a logistic regression model evaluation, metrics of sensitivity and specificity are 

the most introduced. Receiver operating characteristic curves (ROC), graphs of the speci-

ficity vs. the sensitivity, dependent on different thresholds, can show the performance of 

various models trained by the same dataset. Moreover, the area under the ROC curve can 

be used to compare different models trained by various algorithms and strategies. How-

ever, for the toxicity and drug interaction prediction of natural compounds, there are in-

sufficient data for a logistic regression model training. Here we employed a combined 

system as beforementioned. To evaluate this system, two new concepts FEP-SS and FCP-

SS (Defined as Box 1) were introduced to find the similarity range corresponding to con-

sistent predictions or uncontroversial predictions compared to the retrieve with the high-

est similarity, respectively. More similar compounds and the toxicity and drug interaction 

information can be retrieved for active compounds with a relatively large similarity range 

because there is a significantly negative correlation between information retrieved and the 

similarity threshold (Figure 2a). The higher the similarity threshold is set, the more precise 

the prediction of this system is, but the less active compounds can be predicted (Figures 

3b and 4c,d). Ambiguous predictions are acceptable for the toxicity prediction of natural 

compounds, so the mean value of FCP-SS was set as the similarity score threshold. As 

more and more data are documented in the PubChem database, theoretically, a “stricter” 

similarity threshold for the prediction of most active compounds can be set in the future. 

There are no distinct conclusions about the relationship between the content of an 

active compound and the weight of the compound on the activity of plant complexes. 

Some compounds accounting for a small proportion of the total herbal medicine may still 

exert remarkable activities, while some compounds accounting for a large proportion of 

total extracts may show little bioactivities. Given the drug interactions, situations will be 

much more complex, that is where the significance of this manuscript comes from. It filled 

a vacancy in conventional network pharmacology which lacks drug toxicity and interac-

tions analysis in a complex system. 

In QSAR analysis, chemical similarities such as fingerprints [50,51] and shape simi-

larity [37] are the most popular descriptors for the structure of small molecules. In general, 

fingerprint similarity performs better than shape similarity in terms of bioactivity predic-

tion [40]. That is why most toxicity prediction-expert systems take fingerprints of mole-

cules as the structure descriptors. But shape similarity, independent of fingerprint simi-

larity, can bring some extra information for indicating the chemical structure of drugs. So, 

a combined model trained by machine learning plays better performance in terms of struc-

ture-activity relationship prediction [40]. Herein, we tended to employ the combined 

model offered by the SwissSimilarity platform, a user-friendly platform with the “Bioac-

tive”-compound class and several compound libraries for natural compound-data min-

ing, to find the similar compounds with similar bioactivities [38]. For the stage of endpoint 

alert, most expert systems show limited information, which is difficult for prediction and 

insight interpretation. To solve this problem, ligand-based virtual screening outperforms 

an ambitious prediction model. However, this workflow was much more time-consuming 

for manual prediction interpretation compared to conventional expert systems. And it 

needs professional knowledge to interpret toxicity information to avoid an interpretation 
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error. Text-classification and interpretation models trained via machine learning may 

solve this problem someday. 

There are synergistic effects of crude extracts of SSD combined with docetaxel in anti-

TNBC. Luteolin in concomitant use of docetaxel was also proved to show super-additive 

effects in anti-TNBC cells at certain doses (Figure 7). These experimental results are con-

sistent with the prediction results. Till now, there are no effective medications but chemo-

therapeutic drugs for the management of triple-negative breast cancer [52,53]. However, 

most chemotherapy will incur more than 20 different severe adverse events such as ane-

mia, diarrhea, fatigue, nausea, vomiting, and hair changes [4]. Based on the potential syn-

ergism of SSD and docetaxel, with less toxicity, lower therapeutic doses of combination 

treatment of docetaxel and SSD may accomplish the counterpart even better efficacies 

compared to the independent treatment of docetaxel or SSP. 

4. Conclusions 

For the first time, a workable and dependable workflow of in-silico drug toxicity and 

interaction prediction for plant complexes was built. From the PubChem database, 31 dif-

ferent sections of toxicity information such as “Acute Effects”, “NIOSH Toxicity Data”, 

“Interactions”, “Hepato-toxicity”, “Carcinogenicity”, “Symptoms”, and “Human Toxicity 

Values” sections have been retrieved, with dozens of active compounds predicted to exert 

potential toxicities. In Spatholobus suberectus Dunn (SSD), there are 9 out of 24 active com-

pounds predicted to play synergistic effects on cancer management with various drugs or 

factors, which is consistent with the experimental data. 

5. Materials and Methods 

5.1. Dataset Assembly 

A dataset containing the active compounds of 20 herbal medicines was gathered from 

the TCMSP database [54], based on the ADME criteria ((“Oral bioavailability” ≥ 0.3 and 

“Drug-likeness” ≥ 0.18), given all the herbal medicines are presumed to be administrated 

orally. Finally, the dataset “active_comp_pool_tcmsp.csv” contained 561 active com-

pounds in total (495 distinct active compounds), 13 active compounds of Fructus ligustri 

Lucidi, and 24 active compounds of Spatholobus suberectus Dunn, 20 active compounds 

of Hedysarum multijugum Maxim, and 92 active compounds of Licorice, respectively. 

5.2. Similar Compound Data Mining 

From the PubChem database, the mining of properties of active compounds was con-

ducted firstly through a script coded in Python 3 (version 3.8.10) called “compound_prop-

erties_mining.py” using pubchempy (version 1.0.4) and pandas (version 1.2.5) packages. 

This script iterates over the “active_comp_pool_tcmsp.csv” dataset, specifically, the “Mol-

ecule Name” column, while fetching one “Molecule Name” at a time. The gathered prop-

erty data of active compounds were written to a CSV file named “ac-

tive_comp_proper_pubchem.csv”. After duplicate values deletion, the mining of similar 

compounds of active compounds was done through the web scraper script called “simi-

lar_comp_crawler.py”. This script iterated the “Active_compound_name” column and 

the “isomeric_smiles” column of the dataset storing the properties of active compounds. 

The isomeric SMILES code is posted as a query to the SwissSimilarity website (updated 

version issued in Dec. 2021), selecting “Bioactive” compound class, choosing “ChEMBL 

(actives only)” natural product library [55], based on combined methods [40]. All the data 

of similar compounds were stored in the file named “similar_comp_pool_swiss.csv”. 
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5.3. Toxicity and Drug Interaction Information Mining 

Before toxicity and drug interaction information mining, using a script called “simi-

lar_compound_properties_mining.py”, the properties of similar compounds were col-

lected with a similar method as the mining of properties of active compounds beforemen-

tioned and were stored in the file named “similar_comp_properties_sum.csv”. Then the 

toxicity and drug interaction information mining was conducted through the web scraper 

script called “toxicity_mining_pubchem.py”. After redundant-value deletion, all the tox-

icity and drug interaction information were stored in the file named “Toxi_in-

for_sum.csv”. Screened from the “Toxi_infor_sum.csv” file, the drug interaction infor-

mation retrieved was separated and split into one “interaction” retrieve per row using a 

script named “drug_interactions_split.py” for further manual interpretation. The split 

data was stored in the file named “drug_interaction_pred_0.6171.csv”. 

5.4. Prediction Interpretation 

The final prediction of the toxicity or drug interactions of active compounds of 4 rep-

resentative herbal medicines was interpreted manually, based on the toxicity information 

and drug interaction data of its similar compounds, with a reasonable similarity score 

threshold. The definitions of “Active compound”, “Prediction yield”, “Drug interaction”, 

“First elusive prediction-similarity score”, and “First contrast prediction-similarity score” 

can be referred to Box 1. Every row in the dataset “Toxi_infor_sum.csv” was regarded as 

one retrieve. In a retrieve, for certain toxicity annotation, the similar compound was an-

notated as toxic if there was at least one in 32 sections clarifying the certain toxicity of 

similar compounds, or regarded as ambiguously toxic if there were controversial insights 

about the certain toxicity, or regarded as non-toxic or anti-toxic if all the available infor-

mation indicating it was non-toxic or anti-toxic, or documented as “N.A.” if there were no 

related insights or evidence in all sections. The prediction results of active compounds 

were indicated by the indicators (Similar compounds with a similarity score above the 

similarity score threshold). For certain toxicity predictions, the active compound was re-

garded as toxic if major indicators were annotated toxic, or regarded as ambiguously toxic 

if there were controversial insights about indicators, or regarded as non-toxic or anti-toxic 

if all the indicators were non-toxic or anti-toxic, or documented as “N.A.” if there were no 

related insights or evidence about all the indicators of one active compound. The basic 

statistical analysis of this prediction study was done through the scripts named “parame-

ter_similar_comp_properties.py”, and “parameter_comp_toxicity.py”. The predicted 

drug interaction network of active compounds in Spatholobus suberectus Dunn for cancer 

management was made by Cytoscape (Version 3.8.2) [56]. 
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Box 1. Definition of the basic concept in the prediction system. 

 

5.5. Preparation of Spatholobus Suberectus Dunn-Percolation (SSP) Extract 

SSP was prepared and made a quality control as before described, its chemical profile 

can be referred to in previous studies [57]. Dried SSD stems were ground into coarse pow-

der, then it was extracted using a percolating device with 10 times volumes (v/w) of 60% 

ethanol. The filtrate was then concentrated under reduced pressure by a rotary evapora-

tor. The concentrated percolation extracts were then freeze-dried (Percent yield 20%) and 

stored at 4 ℃ for further use. 

5.6. Cell Culture and Treatment 

MDA-MB-231 cells were obtained from American Type Culture Collection (Manas-

sas, VA, USA). All cells were maintained in glucose-containing (4.5 g/L) Dulbecco’s mod-

ified Eagle medium (Gibco, Grand Island, NY, USA), supplemented with fetal bovine se-

rum (10% v/v, Gibco, Grand Island, NY, USA), penicillin (Sigma-Aldrich, St. Louis, MO, 

USA, 100 U/mL), and streptomycin (Sigma-Aldrich, St. Louis, MO, USA, 100 μg/mL) in a 

humidified atmosphere of 5% CO2 at 37℃. Cells were seeded onto 96-well plates at the 

density of 3–5 × 103/well. After undergoing serum starvation for 24 h, they were treated 

with different concentrations of SSP, luteolin (DIECKMANN (HK) CHEMICAL INDUS-

TRY COMPANY LTD, Hong Kong, China), or docetaxel (Beijing Aosaikang Pharmaceu-

tical Co., Ltd., Beijing, China). The tumor cell growth inhibitory effects of drugs were de-

tected by CellTiter 96® AQueous Non-Radioactive Cell Proliferation Assay containing 3-

(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2- (4-sulfophenyl)- 2H-tetrazo-

lium) (MTS) kit (Promega, Wisconsin, DA, USA) as per the manufacturer’s protocol. The 

IC50 values of drugs were calculated by linear or nonlinear regression. The Combination 

Index was calculated after 40 h- of drug treatment using the formula [58]: Combination 

Index = (D)1/(Dx)1 + (D)2/(Dx)2, where (Dx)1, (Dx)2 are the concentrations of the tested 

substance 1 and the tested substance 2 used in the single treatment that was required to 

decrease the cell viability by x%, and (D)1, (D)2 are the concentrations of the tested sub-

stance 1 in combination with the concentration of the tested substance 2 that together de-

creased the cell viability by x%. The synergy score was calculated on the SynergyFinder 

1. Active compound 

The active compounds of herbal medicine defined here, are the natural products documented in the TSCSP 

database for a certain herbal medicine, screened out based on the criteria (“Oral bioavailability” ≥ 0.3 and 

“Drug-likeness” ≥ 0.18). 

2. Drug interactions 

Drug interactions, in such a prediction system, include drug-food interactions, drug-drug interactions, and 

interactions of drugs with other factors such as carcinogens and ionizing radiation. 

3. Prediction yield 

In such a prediction system, the prediction yield is defined as the number of active compounds of herbal 

medicines with at least one kind of toxicity or drug interaction information predicted. 

4. First elusive prediction-similarity score (FEP-SS) 

Among all the information retrieved of similar compounds, for a certain toxicity prediction of an active 

compound based on such a system, as the similarity score decreases, the first elusive prediction-similarity score 

is the similarity score corresponding to the first elusive, arguable, or equivocal toxicity information retrieve 

compared to the toxicity information retrieve with the largest similarity score. 

5. First contrast prediction-similarity score (FCP-SS) 

Among all the information retrieves of similar compounds, for a certain toxicity prediction of an active 

compound based on such a system, as the similarity score decreases, the first contrast prediction-similarity 

score is the similarity score corresponding to the first contrast toxicity information retrieve compared to the 

toxicity information retrieve with the largest similarity score. 
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platform (http://www.synergyfinder.org/) [59] with “Matrix” format and inhibition-Phe-

notypic Response, using the ZIP method [60] after 24 h-drug treatment. 

5.7. Xenograft Model 

The xenograft model was constructed as before described [57]. Female (BALB/c) nude 

mice (6–7 weeks old) were purchased from Harlan Laboratories, Indianapolis, IN, USA 

that were housed and maintained in the Laboratory Animal Unit, the University of Hong 

Kong, a specific pathogen-free and climate-controlled room (22 ± 2 °C, 50 ± 10% relative 

humidity) with a 12-h light/dark cycle and provided with diet and water ad libitum. 

MDA-MB-231 cells (2 × 106/site) were implanted subcutaneously into the bilateral flank of 

each mouse. Palpable and measurable tumors were initially found 10 days after cell injec-

tion. Then, the animals were randomly assigned into five groups that were received the 

following treatments: the Vehicle control group (n = 6) received Milli-Q water; the SSP-L 

group (n = 6) received SSP (0.4 g/kg/p.o, daily); the SSP-H (n = 6) group received SSP (0.8 

g/kg/p.o, daily); the DTX group (n = 6) received docetaxel (2.5 mg/kg/i.p. week); the com-

bination group (DTX & SSP-L) (n = 6) received docetaxel (2.5 mg/kg/i.p. week) plus SSP 

(0.4 g/kg/p.o, daily). The tumor size was calculated using the formula: 0.5 × lengths × 

width2. All experiments were approved by the Institutional guidelines of Laboratory An-

imal Care and Committee on the Use of Live Animals in Teaching and Research (CULATR 

No.: 4484-17). 

5.8. Statistical Analysis 

Linear or non-linear regression was operated with GraphPad Prism 7 (GraphPad 

Software, San Diego, CA, USA) choosing log(inhibitor) vs. response-Variable slope (four 

parameters) as the equation. All data were expressed as Mean ± SD or Mean ± SEM. One-

way ANOVA was employed to make a difference analysis for multiple groups’ compara-

tion. The difference between two groups was analyzed by a two-tailed Student’s t-test. 

Significance was established at p < 0.05. 
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