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Abstract: Endoplasmic reticulum-associated degradation (ERAD) is highly conserved in yeast. Recent
studies have shown that ERAD is also ubiquitous and highly conserved in eukaryotic cells, where it
plays an essential role in maintaining endoplasmic reticulum (ER) homeostasis. Misfolded or unfolded
proteins undergo ERAD. They are recognized in the ER, retrotranslocated into the cytoplasm, and
degraded by proteasomes after polyubiquitin. This may consist of several main steps: recognition
of ERAD substrates, retrotranslocation, and proteasome degradation. Replication and transmission
of the virus in the host is a process of a “game” with the host. It can be assumed that the virus has
evolved various mechanisms to use the host’s functions for its replication and transmission, including
ERAD. However, until now, it is still unclear how the host uses ERAD to deal with virus infection
and how the viruses hijack the function of ERAD to obtain a favorable niche or evade the immune
clearance of the host. Recent studies have shown that viruses have also evolved mechanisms to use
various processes of ERAD to promote their transmission. This review describes the occurrence of
ERAD and how the viruses hijack the function of ERAD to spread by affecting the homeostasis and
immune response of the host, and we will focus on the role of E3 ubiquitin ligase.
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1. Introduction

The ER, the principal location for protein synthesis and maturation in eukaryotic cells,
is rich in various molecular chaperones and enzymes that help with protein folding and
modification. The host uses multiple methods to help proteins fold correctly [1]. Although
all resources are devoted to protein folding, many of the nascent proteins entering the
ER fail to obtain their natural conformation [2]. Eukaryotic cells regulate ER pressure
mainly through the unfolded protein response (UPR) and ERAD [3,4]. UPR enhances
protein folding ability by upregulating the expression of molecular chaperones and folding
enzymes through a series of intracellular signal transduction responses [5], while ERAD
transports the proteins that cannot be folded correctly out of the ER and further degrades
them by the cytoplasmic ubiquitin-proteasome system [6,7]. Disruption of ERAD can lead
to many diseases, such as Parkinson’s disease, Alzheimer’s disease, cancer, and infection,
confirming its importance in correct cell functioning [8]. The genetic ablation of many
ERAD components leads to the death of mouse embryos [9–11], which also highlights the
importance of ERAD in cell and organism homeostasis. ERAD is exploited by viruses with
two main features: one is that secretory proteins or membrane proteins (including many
immune proteins) can be degraded by ERAD so that the virus can escape the surveillance
of the immune system [12]; second, the process of ERAD transport from the ER to the
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cytoplasm is utilized by the virus [13], which is conducive to virus invasion. At present,
many studies have revealed how viruses use ERAD. In this review, we examined the
occurrence and development of ERAD and the mechanism by which different viruses use
ERAD to promote its transmission.

2. The Occurrence and Development of ERAD
2.1. Substrate Recognition

Substrate recognition is the initial step of ERAD. How can the substrate of ERAD be
selected from the proteins that are folded correctly or are being folded? The current under-
standing is still minimal. Most glycoproteins transported to the ER may cotranslate and
modify a high mannose core oligosaccharide containing GlcNAc2-Man9-Glc3 (Glc: glucose,
Man: mannose, GlcNAc: N-acetylglucosamine) sequence on the aspartic acid residue con-
taining Asn-X-Ser/Thr (X represents any amino acid) at its N-terminus [14]. Glycosylation
of core glycans under the action of glucosidases leads to the entry of new glycoproteins
into the calnexin (CNX)/calreticulin (CRT) cycle (Figure 1A). The “CNX/CRTcycle” refers
to the nascent N-linked glycoproteins that can bind to CNX and CRT in the ER through
glucose residues. When binding to CNX and CRT, the glycoprotein starts to fold, and
the folded protein with the correct structure will be released from CNX and CRT, while
the protein without the correct structure will recycle and repeatedly fold until it can fold
correctly [15]. For correctly folded proteins, further deglycosylation removes N-glycans to
produce glycoproteins containing GlcNAc2-Man9, which prevents them from binding to
CNX or CRT again, causing glycoproteins to flow out (Figure 1B). Proteins that do not have
the correct conformation will be recognized by UDP-glucose: glycoprotein glucosyltrans-
ferase (UGGT). Under the action of UGGT, a glucose molecule is added to N-glycans to be
glycosylated so that they can preferentially return to the CNX/CRT cycle for further folding
(Figure 1C) [16,17]. Glycoproteins that cannot fold correctly must be transferred from the
CNX/CRT cycle to ERAD for degradation, and mannosidases accomplish this detachment.
Mannosidase removes terminal mannose residues from core polysaccharides so that they
can interact with other mannose-specific lectins to combine them with ERAD [18]. Under
the action of ER mannosidase I (ERManI) [19], ER degradation-enhancing α-mannosidase
like protein 1 (EDEM1) [20,21], EDEM2, and EDEM3 [22,23], glycoproteins are incompati-
ble with UGGT-mediated glycosylation, and misfolded glycoproteins are separated from
CNX/CRT to produce glycan signals for ERAD system identification (Figure 1D). Soluble
ER-resident proteins, OS-9 and XTP3B, play a vital role in recognizing mammalian ERAD
substrates [24]. The possible mechanism for this is that OS-9 and XTP3B can recognize
oligosaccharides modified by ERMan I and EDEM1-3 through the mannose-6-phosphate
homologous receptor domain (MRH). The pruned oligosaccharides expose their terminal
α-1 mannose and are recognized by the MRH regions of OS-9 and XTP3B. OS-9 and XTP3B
bind to SEL1L through their MRH domain, and the misfolded protein is guided to the next
step of reverse translocation (Figure 1E) [25–27]. There are many molecular chaperones
involved in this process. GRP94, a metazoan-specific Hsp90 in the ER lumen, acts upstream
of OS-9 to further recognize misfolded α1 subunits in a glycan-dependent manner [28].

The recognition of nonglycoproteins may be facilitated by chaperones. Folding of
nonglycoproteins in the ER is assisted by the “chaperone cycle” (cycle of substrate binding
and release). The ER-localized Hsp70 chaperone Bip, which is composed of the ATP-bound
form and ADP-bound form, plays an important role in protein folding homeostasis [29].
Similar to Hsp70s in other compartments, Bip does so by the reversible binding and
releasing of unfolded client proteins. A substrate containing a hydrophobic region exposed
on the surface binds to the ATP-bound form, which is converted to the ADP-bound form
by cochaperone-mediated stimulation of intrinsic ATPase activity to grab the substrate.
The ADP-bound form is converted to the ATP-bound form by the action of nucleotide
exchange factor (NEF) Lhs1/Grp170 to release the substrate [30]. This cycle continues
until the folding is completed. Disulfide bond formation catalyzed by protein disulfide
isomerase Pdi1/PDI family proteins also helps productive folding [31,32]. At present, it is
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known that several nonglycoproteins can be degraded through the ERAD pathway [33–37],
and Bip plays an important role. However, how Bip plays a role in this process and how
nonglycoproteins are transported to the retrotranslocation channel are still unclear.
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Figure 1. The recognition process of glycoproteins. (A) Glycosylation of core glycans under the
action of glucosidases leads to the entry of new glycoproteins into the calnexin (CNX)/calreticulin
(CRT) cycle. (B) The protein folded correctly and exudes to the Golgi. (C) Under the act of UGGT,
misfolded proteins run back to interact with CNX/CRT for further folding. (D) With the act of
ERMan\EDEM1\EDEM2\EDEM3, misfolded glycoproteins are separated from CNX/CRT to pro-
duce glycan signals for ERAD system identification. (E) OS-9/XTP3B recognizes misfolded glycopro-
teins and submits them to the next step.

2.2. Retrotranslocation and Ubiquitination

After recognition, the substrate retrotranslocates into the cytoplasm according to
its specific position in the ER, which is closely combined with the ubiquitination of the
substrate. In most cases, the classic E3 ligase enzyme involved in ERAD is itself a multitrans-
membrane protein, where the RING domain responsible for ligase activity is located in the
cytoplasm, and the substrate is ubiquitinated at the same time as its reverse translocation.
Subsequently, the ubiquitin substrate is extracted from the membrane in an ATP-dependent
manner and released into the cytoplasm to be degraded by proteasomes. For many years,
the identity of the retrotranslocation channel has been controversial. With the development
of technology and the deepening of research, mainly in budding yeast but also in mam-
malian cells, an increasing number of components of retrotranslocation channels have been
identified, and most are E3 ligase enzymes. Based on the analysis of some model substrates,
the specificity of the E3 ligase enzyme complex seems to depend on the location of the mis-
folded lesion on the substrate relative to the ER membrane: proteins with lumen (ERAD-L
substrate) or intramembrane (ERAD-M substrate) misfolded domains are targeted to HRD1
complexes; proteins with misfolded domains on the cytoplasmic side of the membrane
(ERAD-C) are degraded by Doa10 complexes [38–40].

Based on the mutation, pull-down experiments, and interaction with the proteasome,
it is speculated that the Sec61 channel, which usually allows peptides to enter the ER cavity
from the cytoplasm, can work in reverse [41]. However, subsequent studies have shown
that there is only a weak interaction between the ERAD substrate and Sec61, and its role
as a retrotranslocation channel of ERAD has been rejected [42]. With the deepening of
study, the voice of the HRD1 complex as a candidate for the retrotranslocation channel is
getting louder [43], and the fact that the HRD1 complex can be used as a retrotranslocation
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channel of the ERAD substrate has also been proven by photocrosslinking [44]. HRD1 is
a multitransmembrane protein with E3 ubiquitin ligase activity and a cytoplasmic ring
finger domain that can mediate the ubiquitination of reverse transcriptional translocation
substrates and act as a retrotranslocation channel. The HRD1 complex consists of the
E3 ubiquitin ligase HRD1 and four other proteins (SEL1L, Der1, Usa1, and OS-9) [26,45].
SEL1L plays an important role in the HRD1 complex, and SEL1L is an important link to
coordinating ERAD substrate recruitment, translocation, and ubiquitination [46]. SEL1L
combines with OS-9/XTP3B [25,26], EDEM1 [47], and EDEM3 [48]. SEL1L is necessary
to transfer the substrate from ER lectin to HRD1 [18,26,49]. One of the ERAD ubiquitin
ligases, SEL1L, forms a nucleation complex with intact membrane ERAD components,
including Derlin-1, Derlin-2, AUP1, UBXD8, VIMP, and Herp [26,27,50,51]. This, in turn,
recruits the VCP/p97 complex necessary to drive substrate dislocation. The UBXD family
is a diverse group of UBX (ubiquitin-regulatory X) domain-containing proteins in mam-
malian cells. The UBX domain enables all members of the UBXD family to bind to the
multifunctional AAA-ATPase p97/VCP protein [52] via the amino terminal domain of
p97 [53]. Several analyses in yeast show that to a large extent, the Hrd1-SEL1L complex
itself is the retrotranslocation channel through which the substrate is brought back from the
ER to the cytoplasm [54]. The self-ubiquitination of HRD1 is considered the trigger of sub-
strate retrotranslocation, which is similar to the “door” of the substrate retrotranslocation
channel [45,55–58]. Recently, the structural analysis of the HRD1 complex by cryo-EM from
Saccharomyces cerevisiae showed that Hrd1 and Der1 were connected on the cytoplasmic
side of the membrane through Usa1. Both Hrd1 and Der1 have a lateral door that regulates
substrate entry, and these also face each other in the membrane; at the same time, Hrd1
and Der1 each have a hydrophilic groove on one side of the cytoplasm and one side of the
ER, respectively. Both proteins distort the lipid membrane structure near the lateral door,
making it thinner than a normal phospholipid bilayer [59].

Doa10 is located throughout the ER, including the inner and outer nuclear membranes.
Localization of the Doa10 inner nuclear membrane is necessary for the degradation of
its nucleoprotein substrate [60]. A recent study has shown that ubiquitin ligase Doa10
(Teb-4/MARCH6 in mammals) is a reverse transcriptase that promotes the extraction
of membrane proteins. It helps to overcome the energy barrier of membrane protein
extraction [61]. A recent study in yeast showed that Derlin paralog Dfm1 might also act
as a core mechanism in the degradation of ERAD-M (ERAD substrates located in the
membrane) [62].

In addition to the channel, the retrotranslocation of the ERAD substrate requires a
force to pull them into the cytoplasm, which p97/VCP provides [63]. P97/VCP is a member
of the family of ATP enzymes (AAA+ATP enzymes) related to various cellular activities,
which consists of an N-terminal domain (N-domain) and two ATPase domains (D1 and D2)
and contains a central pore. The ubiquitin substrate must be pulled out of the ER by the
p97/VCP complex before entering the 26S proteasome for degradation [64,65]. At present,
one of the generally accepted models of ERAD substrates using the p97/VCP complex is
that the ubiquitin substrates are bound to the N-terminal Ufd1-Npl4 cofactor complex of
p97/VCP through the ubiquitin chain and pulled into the central hole formed by the D1
domain [52], which may be exited through the sequential interaction with the monomer
and the central hole of D2 [66–69]. In contrast, the C-terminal domain interacts with its
adaptor proteins through the P97/VCP-binding region, P97/VCP-interacting motif, or SHP
box [70]. The mechanism of this process may be that VCP provides energy for binding and
hydrolysis by extracting or “shifting” the ubiquitinated substrate from the ER membrane.
Ufd1, through the recognition of the K48 Ub chain, combined with the ubiquitin substrate
Npl4, stabilized UFD1L [71].

2.3. Degradation

Once misfolded proteins are identified, they must be transported to the cytoplasm
where the ubiquitin-proteasome system (UPS) is located, and this process must be closely
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coupled with the degradation process because most of the ERAD substrates are hydropho-
bic and can easily accumulate in an aqueous environment. Proteins with ubiquitin- and
proteasome-binding domains, such as hHR2 (Rad23 in yeast), may be used as shuttle
factors to transfer the substrate from p97/VCP to the proteasome [72]. Cellular solute
chaperone proteins, such as Hsc70 [73] and Bag6 [74], can interact with ERAD clients in
the cytoplasm after p97/VCP-mediated extraction from the ER by exposing hydrophobic
regions on these deployment clients. They may help maintain the substrate’s solubility and
prevent accumulation in the aqueous cellular solute environment, but they also help the
substrate guide the degradation mechanism [66]. Once transferred to the 26S proteasome,
the ERAD substrate is degraded in the same manner as described by all proteins. (All the
stages are shown in Figure 2, and most of the components involved in ERAD are listed in
Table 1).
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Figure 2. The processes of ERAD. Misfolded proteins are recognized in the ER by different qual-
ity control mechanisms, which escort terminally misfolded polypeptides to a putative channel.
Cytoplasm-exposed lysine residues are ubiquitinated by ubiquitin ligases. Dislocation is completed
with the help of the Cdc48p/p97 complex, and membrane-extracted substrates are conveyed to the
proteasome by accessory factors.

Table 1. List of components involved in ERAD.

Component (Yeast) Component (Mammals) Function References

Kar2 Bip Substrate recognition and
recruitment [75]

Cne1
Calnexin (CNX) Lectin chaperone [14,15]Calreticulin (CRT)

- UGGT1 Glycoprotein glucosyltransferase [17]UGGT2

Mns1 Man1B1 (ERMan I) N-glycan trimming from M9 [19]
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Table 1. Cont.

Component (Yeast) Component (Mammals) Function References

Htm1
EDEM1 N-glycan trimming fromM8 to M7 [20,21]
EDEM2 N-glycan trimming fromM9 to M8 [23]
EDEM3 N-glycan trimming fromM8 to M7 [22,23]

Yos9
OS-9 Recognize a terminal α1,6-linked mannosyl residue [24]XTP3

Hrd1
HRD1

Retrotranslocation channel [44,59]gp78

Hrd3 SEL1L Substrate recognition and
recruitment [46]

Der1
Derlin1

Retrotranslocation channel [59]Derlin2
Derlin3

Doa10 Teb-4/MARCH6 Retrotranslocation channel [60]

Cdc48 p97/VCP Substrates dislocation [63]

Ufd1 UFD1 Cofactor of p97 [52]

Npl4 NPL4 Cofactor of p97 [52]

3. Viruses Hijack ERAD to Manipulate the Host Immune Response

A variety of viruses have evolved the ability to suppress the body’s immune response
to promote persistent infection. Currently, the most in-depth examples of virus-induced
ERAD that are involved in regulating the immune response are herpesviruses and hu-
man immunodeficiency virus (HIV). Human cytomegalovirus (HCMV) induces ERAD to
accelerate the degradation of MHC-I to prevent CD8+ T lymphocytes from recognizing
virus-infected cells and promoting a persistent infection. US2 and US11 are ER-resident
type I membrane virus glycoproteins expressed in the early stage of HCMV infection.
After cotranslation and insertion into the ER, the newly synthesized MHC-I immediately
binds to US2 or US11, and US2 and US11 transport them from the ER to the cytoplasm for
degradation [76]. Although both US2 and US11 can degrade MHC-I, their mechanisms
do not seem to be precisely the same. US11 recruits TMEM129, and TMEM129 recruits
Ube2J2 for US11-induced MHC-I ubiquitin through Derlin1; thus, driving MHC- I reverse
translocation from the ER back to the cytoplasm, where MHC- I is deglycosylated by
protein N-glycanase (PNGase) and then degraded by the proteasome. The E3 ubiquitin
ligase TMEM129 plays a central role in US11-mediated MHC-I decomposition [77–80].
Unlike US11, which depends on Derlin-1, US2 usurps the E3 ubiquitin ligase TRC8, which
plays a central role in US2-mediated MHC-I decomposition. TRC8 binds to the cytoplasmic
tail of US2, resulting in rapid polyubiquitin of MHC-I, which triggers MHC-I to com-
pletely reverse into the cytoplasm [81,82]. The degradation of MHC-I was inhibited in
UBE2G2-depleted cells (UBE2G2 is a kind of E2 ubiquitin binding enzyme), indicating
that UBE2G2 plays a critical role in the ubiquitination of US2, possibly because of the
cooperation of TRC8 and UBE2G2 [83]. Although they use different E3 ubiquitin ligases
during reverse translocation, both rely on p97 to translocate MHC-I to the proteasome for
degradation. In addition to MHC-I, US2 induces the downregulation of multiple immunore-
ceptors to modulate cellular migration and immune signaling, whereas US11-mediated
degradation is restricted to MHC-I [84]. Recently, genome-wide CRISPR/Cas9 library
screening found that the ubiquitin-fold modifier 1 (UFM1) pathway is also involved in
the degradation of MHC-I, and interference with UFM1 specifically inhibits the reverse
transport of MHC-I molecules from the ER to the cytoplasm, but the effect of UFM1 on
the degradation of MHC-I molecules may be indirect [85] (For a schematic view of the
mechanism, see Figure 3a). Like herpesviruses, retroviruses can also manipulate the host’s
immune system through the ERAD pathway. HIV-I Vpu targets newly synthesized CD4
receptors and rapidly degrades CD4 through a process similar to ERAD [86,87]. Maga-
dan uses siRNA to interfere with 18 proteins related to each process of ERAD, and the
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results showed that the interference of VCP, UFD1L, and NPL4 had the best protection
on the degradation of CD4 [71] (for a schematic view of the mechanism, see Figure 3b).
Virus-infected cells are specifically eliminated through the synergistic effect of helper T
cells and cytotoxic T lymphocytes. This elimination is mainly dependent on MHC-I and
MHC-II presenting virus-derived peptide antigens on the surface of virus-infected cells.
HCMV has evolved the mechanism to use the ERAD system to eliminate MHC-I so that
the virus circumvents the monitoring of the host immune system artfully. They hijack
alternative ubiquitin ligases instead of HRD1, suggesting the necessity for a specialized
ubiquitin ligation system in pathogenic ERAD.
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for US2-induced MHC-I ubiquitin. (b) HIV-I targets newly synthesized CD4 receptors and rapidly
degrades CD4 through ERAD.
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4. Viruses Hijack ERAD as a Transport Mechanism

Studies on the use of ERAD as a transport mechanism have been reported in cholera
toxins (CTx), pertussis toxins, Shiga and Shiga-like toxins (STx), heat-labile enterotoxins,
Pseudomonas exotoxins (PEx), cytolethal distending toxins (CDT), and the plant toxin
ricin and other toxins [88–90]. Some viruses have also evolved the mechanism of using
ERAD to penetrate the membrane to reach the cytoplasm. Polyomaviruses (PyVs) are
a kind of nonenveloped DNA tumor virus. To infect cells, PyV is transported from the
cell surface to the ER, where it hijacks the elements of the ERAD mechanism to penetrate
the ER and reach the cytoplasm. The virus is transported from the cytosol to the nucleus,
resulting in lytic infection or cell transformation. How PyV is transported from the ER to
the cytoplasm is a key issue in the process of viral infection. Many studies have shown
that ERAD takes advantage of this process [91–95]. SV40 is the best-studied virus that
utilizes ERAD as a transport mechanism. After SV40 reaches the ER, under the action of
PDI, ERp57, and ERdj5, hydrophobic VP2 and VP3 proteins are exposed, and hydrophobic
virus particles are produced, which are disguised as misfolded proteins [91,96,97]. To
prevent the aggregation of hydrophobic virus particles, the ERAD molecular chaperone
BiP was recruited by SV40 [93,98]. When the SV40-BiP complex approaches the lumen
surface of the ER membrane, the virus must be released from BiP to initiate ER-membrane
transport. Glucose-regulated protein, 170 kDa (Grp170), plays an important role in this
process [99,100]. When hydrophobic SV40 is inserted into the ER membrane, the amino
terminal region of the VP2 protein binds to the ER membrane protein BAP31 to stabilize
the membrane-embedded virus and then participates in virus transport from the ER to the
cytoplasm under the action of ER transmembrane J-proteins (B12, B14, and C18) [93,101,102].
Some studies have also shown that SV40 can form a specific region on the ER, which can be
used as a selective membrane penetration site for viruses. The forms of VP2/VP3 exposure
and membrane penetration of SV40 mainly exist in these specific regions, and SV40 mutants
that cannot be transferred across the ER membrane to the cytoplasm cannot trigger the
formation of lesions [92,103]. The transfer of SV40 from the ER to the cytoplasm also
requires a “force”. In general, the driving force of the ERAD process is usually provided by
p97, but studies have shown that this “force” may be provided by Hsc70-Hsp105-SGTA
rather than p97 in SV40 [92]. Under the action of membrane-bound J proteins, Hsc70 was
transformed into high-affinity ADP-Hsc70. This enables Hsc70 to first bind to membrane-
embedded SV40, and Hsp105 then induces the nucleotide exchange of Hsc70 to produce
ATP-Hsc70 that releases viral particles. Once the virus is detached from Hsc70 and Hsp105,
it can capture SV40 and release it from Hsp105, with Hsc70 recombining the virus. The
iterative cycles of Hsc70–Hsp105 binding and releasing SV40 are considered to provide the
main driving energy for extracting viral particles from the ER membrane [104–107]. In short,
the unenveloped virus SV40 transports the virus from the ER to the cytoplasm through the
host ERAD pathway and inserts the virion into the ER by changing the structure of the
virion (Figure 4). The formation of a unique membrane penetration site in the local cell
membrane so that the virus can successfully enter the cytoplasm is a new discovery of the
virus in the process of using ERAD.
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5. Viruses Hijack ERAD to Regulate Viral Protein Expression

ERAD plays an essential role in the regulation of viral protein expression. JEV and
DENV degrade NS4B protein in convoluted membranes (CM) through the Derlin2-mediated
ERAD pathway to avoid the excessive accumulation of nonstructural proteins from dam-
aging virus replication. In addition, the researchers also found that JEV and DENV NS4B
proteins can interact with p97/VCP. The inhibition of VCP activity by VCP-specific chemi-
cal inhibitors not only inhibited the degradation of nonstructural proteins but also inhibited
the production of infectious JEV and DENV virus particles [108]. A recent study showed
that Bardoxolonemethyl (CDDO-me), an inhibitor of protein translocation mediated by
HRD1, can bind to grp94, a vital component of the HRD1 pathway, thus inhibiting the
replication of DENV and ZIKV. The knockdown of grp94 can also significantly inhibit
the replication of DENV and the synthesis of viral membrane proteins [109]. Ruan found
that CP26, another small molecular inhibitor that targets the HRD1 complex and inhibits
the process of protein dislocation from the ER cavity to the cytoplasm, can also inhibit
DENV and ZIKV infection in cells [110]. HCV, a member of Flaviviridae, can also activate
ERAD after.

Infection studies have shown that HCV infection induces the expression of EDEM1,
EDEM2, and EDEM3. When IRE1 was knocked out, the increase in XBP1 splicing and
EDEM induced by HCV was reversed, indicating that HCV-induced ERAD is caused by
IRE1. Subsequent studies showed that EDEMs could interact with HCV E1 and E2 proteins,
which significantly increased the ubiquitination of HCV glycoproteins and significantly
improved the stability of HCV E2 proteins after EDEM1 knockout, and EDEM knockout
can significantly promote the production of HCV infectious particles but does not affect the
replication of the HCV genome [48], which may play a role by controlling the posttransla-
tional modification of HCV glycoproteins. Similar to HCV, the HBV envelope protein can
also be degraded through ERAD. HBV infection upregulates the level of EDEM, especially
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EDEM1, which is the result of viral protein expression, independent of viral replication
and nucleocapsid protein expression, and EDEM1 can interact with the HBV envelope
protein. To study whether EDEM1 can affect the stability of envelope proteins, wild-type S,
M, and L envelope proteins were cotransfected with the EDEM1 plasmid or siRNA in 293T
cells. The results showed that the overexpression of EDEM1 promoted the degradation of
the HBV envelope protein, and the interference of EDEM1 promoted the stability of the
viral envelope protein, thus controlling the number of natural peptides available for SVPs
assembly and virion envelope [111]. Wang found that the level of SEL1L in the liver of
HBV carriers was significantly higher than that within immune tolerance. Overexpression
of SEL1L in cells leads to a significant decrease in the levels of HBV, RNA, DNA, core, and
envelope proteins, and the silencing of SEL1L leads to the opposite result. However, the
decrease in RNA mediated by SEL1L is not due to transcriptional inhibition but may be
related to a posttranscriptional mechanism. Treatment with inhibitors of ERAD signifi-
cantly increased the level of intracellular S protein but did not increase the level of envelope
protein, indicating that the decrease in the core protein caused by SEL1L overexpression
was not through the ERAD pathway [112].

UL148 is a viral ER (ER)-resident glycoprotein that contributes to the cellular tropism of
human cytomegalovirus (HCMV). The effect of UL148 on tropism is related to its potential
to promote the expression of glycoprotein O (gO). To study whether UL148 regulates gO
abundance by affecting ERAD, small interfering RNA (siRNA) silencing was performed on
SEL1L or its partner HRD1 in the case of an infection. The knockout of these ERAD factors
will significantly increase the level of gO but will not increase the level of glycoproteins
from other viruses, and the effect is amplified in the presence of UL148. Further studies
have shown that UL148 can interact with the ERAD adapter SEL1L in the infected state. In
addition, the pharmacological inhibition of ERAD showed similar results. The silencing
of SEL1L during infection also stabilized the interaction between gO and ER lectin OS-9,
which also indicated that gO was the substrate of ERAD [113]. The posttranslational
instability of viral glycoproteins provides a basis for the mechanism of viral regulation of
tropism and transmission.

Env is a necessary protein for HIV-I to enter cells, and HIV-I Vpr stabilizes HIV-I Env
glycoprotein by preventing the degradation of Env through the lysosomal pathway [114].
The mechanism may be that the Vpr protein enhances the redox state in the ER and
promotes the folding of Env [115]. The replication of HIV-I was severely inhibited in the
human CD4+ T-cell line CEM. NKR (NKR). Zhou suggested that this phenomenon may be
because mitochondrial translocator protein (TSPO) can induce the rapid degradation of the
HIV-I envelope (Env) through the ERAD pathway in NKR cells [116]. ERManI inhibited the
expression of HIV-I Env in a dose-dependent manner. The knockout of ERManI interferes
with TSPO-mediated Env degradation. Further studies show that ERManI can interact
with Env, and its catalytic domain and enzyme activity play a key role in the degradation
of Env [117].

When the Flaviviridae virus replicates, it first synthesizes polypeptide-containing
structural proteins and nonstructural proteins and then cleaves these into single structural
proteins and nonstructural proteins under the action of an enzyme. The infected cells
produce the same number of structural and nonstructural proteins, but the virions are
mainly composed of structural proteins, and the excessive accumulation of nonstructural
proteins will damage the replication of the virus genome. Viral structural proteins and
nonstructural proteins need to be in a state of balance, and the homeostasis of this viral
protein level is considered necessary for the stable transmission of the virus [118]. Most
viruses can control the amount of each viral protein at the transcriptional level; however,
viruses of the Flaviviridae and Picornaviridae families do not have such properties. Recent
studies have proposed a model suggesting that the cellular ERAD pathway plays a central
role in maintaining viral protein homeostasis. That is, Flaviviridae may have evolved to
usurp the ERAD system to discard extra NS proteins in virus-infected cells.
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6. Viruses Utilize EDEMosomes as an Enclosed Safe Scaffold for Their Replication

Under normal growth conditions, the activity of the ERAD mechanism must be
kept at a low level to avoid the premature interruption of folding procedures and to
obtain natural structures rather than degrade immature peptides [119]. The ERAD process
may be regulated or tuned through the disposal of its own regulating factors through
proteasomes or autophagosomes/vesicular trafficking to lysosomes [120]. It relies on the
selective sorting of EDEM1 and some other short-lived ER chaperones that are carried by
200–800 nm vesicles called EDEMosomes. Some evidence shows that there is LC3/Atg8 at
the EDEMosome limiting membrane [121]. LC3 plays a crucial regulatory role in autophagy;
when autophagy occurs, LC3-I is converted into LC3-II and located in autophagosomes.
Interestingly, unlike autophagosomes, LC3-positive EDEMosomes do not contain LC3-II;
rather, LC3-I is noncovalently associated with its limiting membrane.

Some positive-strand RNA viruses can hijack ERAD as well. Coronavirus induces
the formation of double-membrane vesicles (DMVs), CMs, and open double-membrane
spherules (DMSs) in the process of virus replication, providing sites for virus replica-
tion, transcription, and translation and avoiding recognition by the host immune sys-
tem [122,123]. EDEMosomes provide an appropriate enclosed structure. Recent studies
have found that EDEM1, OS-9, and SEL1L colocalize with mouse hepatitis virus (MHV)
double-stranded RNA and viral protein nsp2/3 (nonstructural proteins 2 and 3), which are
part of replication and transcription complexes [121]. The siRNA-mediated knockdown of
SEL1L receptor cells can reduce the acceleration of MHV transmission [124]. This suggests
that MHV hijacks ERAD to regulate vesicle replication. Subsequently, it was reported that
equine arteritis virus (EAV) hijacked ERAD regulatory vesicles like MHV, indicating that
this mechanism may be conservative in different viral strains of Nidovirales [125]. Cells
infected with SARS-CoV also showed a significant accumulation of EDEM1 [121]. Electron
tomography showed that NSP-3 and NSP-4 were coexpressed in SARS-CoV to induce
DMV vesicles. In addition, many DMVs and CMs were found near the nuclei of Huh7 cells
infected by MERS-CoV [124,125]. The consequence of coronavirus infection in the ERAD
pathway induces the formation of an encapsulated bilayer membrane covered by LC3-I;
although autophagy is not necessary for MHV infection, the loss of LC3 will prevent the
formation of DMV. Some studies have shown that the deletion of the autophagy key genes
Atg5 and Atg7 will not effectively respond to virus replication; even in the case of blocking
autophagy, MHV can maintain its transmission ability [125]. However, the depletion of
LC3-I leads to a significant decrease in viral load. The same is true in JEV. The inhibition of
JEV replication has been observed by inhibiting the expression of SEL1L and EDEM1. In
fact, JEV cannot restore its proliferation without releasing EDEMosomes [126]. However, it
is still unclear how DMVs are shaped from single-membrane EDEMosome vesicles.

7. Conclusions

As a molecular mechanism for the degradation of misfolded proteins, ERAD is highly
conserved in eukaryotes and controls the disposal of misfolded or misassembled proteins.
Deregulation of this process can lead to pathogenic conditions. Because ERAD can be used
as a method for protein degradation, during the game between the virus and the host, the
virus has evolved a mechanism to degrade MHC-I or virus proteins through ERAD; it helps
the virus escape immune surveillance to achieve sustained infection or balance the number
of viral proteins to promote viral replication. As this degradative pathway contains a portal
for a protein to reach the cytosol from the ER, it can be co-opted by viruses to gain access to
the host’s cytosol during infection. Our review analyzed how well-characterized viruses
hijack elements of the ERAD pathway to accomplish this feat (see Table 2) and focused on
the role of E3 ubiquitin ligase. As a vital site for protein biosynthesis, the ER plays a basic
role in maintaining cellular integrity, but ironically, the virus can target the organelle to
provide favorable conditions for virus replication.
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Table 2. Mechanism by which viruses hijack ERAD.

Virus ERAD Component Mechanism References

HCMV
TMEM129, Derlin1,

Ube2j2
US11 recruits TMEM129, and TMEM129 recruit Ube2J2 driving

MHC-I to cytoplasm, then deglycosylated by PNGase [77–80]

TRC8, Ube2g2 TRC8 bind to US2, resulting in polyubiquitin of MHC-I, [83]

HIV VCP, UFD1 L, NPL4 Vpu targets CD4 receptors and rapidly degrades CD4 [86,87]

SV40 PDI, ERp57, ERdj5
SV40 VP2 binds to BAP31 to stabilize the membrane-embedded

virus and then SV40 is transport to the cytoplasm under the
action of ER transmembrane J-proteins

[98,101,102]

DENV Derlin2, grp94, VCP avoid excessive accumulation of nonstructural protein [108–110]

ZIKV HRD1 avoid excessive accumulation of nonstructural protein [109,110]

JEV VCP avoid excessive accumulation of nonstructural protein [108]

HCV EDEM1, EDEM2, EDEM3 IRE1 induces ERAD to degrade nonstructural protein [48]

HBV EDEM1, SEL1L degrade nonstructural protein [111,112]

MHV EDEMosome nsp2 and nsp3 make RTC near to ER and induces EDEMosome,
DMV, CM and DMS [121,124]

EAV EDEMosome utilize EDEMosome as replication sites [125]

SARS-CoV EDEMosome nsp3/4 induces DMV construct [124,125]

Several questions remain to be answered. First, although there is evidence of a crucial
role for ERAD within virus development, the precise mechanism and identification of
ERAD substrates in this process are still limited. Second, ERAD is an important measure to
maintain the homeostasis of ER, but current studies have shown that the ERAD process can
be used by viruses to promote viral replication, and the mechanism of how viruses manip-
ulate ERAD is still limited. Third, can the ERAD pathway be modulated pharmacologically
to prevent viral infection? The role of ubiquitin in virus infection is an intriguing new topic
with great potential to provide new insights into the host machinery involved in regulating
virus infection. We presented examples of viruses belonging to a broad number of virus
genera that interact with the E3 ubiquitin ligase to either regulate its own replication cycle
or evade host defenses. The discovery of more E3 ubiquitin ligases involved in ERAD
will deepen our understanding of the ERAD process to screen out suitable antiviral drugs.
As an aggregate, this work shows that viruses can manipulate the ERAD machinery to
suppress host defenses, modulate virus replication, and regulate viral protein turnover.
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