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Abstract: The main aim of this work is to review the mechanisms via which high-density lipoprotein
(HDL)-mediated cholesterol trafficking through the central nervous system (CNS) occurs in the
context of Alzheimer’s disease (AD). Alzheimer’s disease is characterized by the accumulation of
extracellular amyloid beta (Aβ) and abnormally hyperphosphorylated intracellular tau filaments
in neurons. Cholesterol metabolism has been extensively implicated in the pathogenesis of AD
through biological, epidemiological, and genetic studies, with the APOE gene being the most repro-
ducible genetic risk factor for the development of AD. This manuscript explores how HDL-mediated
cholesterol is transported in the CNS, with a special emphasis on its relationship to Aβ peptide
accumulation and apolipoprotein E (ApoE)-mediated cholesterol transport. Indeed, we reviewed all
existing works exploring HDL-like-mediated cholesterol efflux and cholesterol uptake in the context
of AD pathogenesis. Existing data seem to point in the direction of decreased cholesterol efflux and
the impaired entry of cholesterol into neurons among patients with AD, which could be related
to impaired Aβ clearance and tau protein accumulation. However, most of the reviewed studies
have been performed in cells that are not physiologically relevant for CNS pathology, representing a
major flaw in this field. The ApoE4 genotype seems to be a disruptive element in HDL-like-mediated
cholesterol transport through the brain. Overall, further investigations are needed to clarify the role
of cholesterol trafficking in AD pathogenesis.

Keywords: Alzheimer’s disease; apolipoprotein E; cholesterol trafficking; HDL; cholesterol efflux;
central nervous system; dementia

1. Introduction
1.1. Alzheimer’s Disease

The World Human Organization estimates that 135 million people will have dementia
by the year 2050 [1]. Among dementia cases, the most common form is Alzheimer’s disease
(AD), a progressive and devastating neurodegenerative disorder, usually related to aging,
that represents 60–80% of all dementia cases [2]. Alzheimer’s disease is a disorder that
triggers difficulty in communicating and reasoning; mood changes; progressive memory
loss; and, in due course, the loss of independent living. Histologically, AD is character-
ized by the pathologic accumulation of extracellular amyloid beta (Aβ) and abnormally
hyperphosphorylated intracellular tau filaments in neurons, leading to senile plaques
and neurofibrillary tangles, respectively, with neuropathological lesions preceding clinical
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signs by many years [3–5]. Currently, there is still no successful therapeutic strategy for
disease mitigation.

1.2. Involvement of Lipids in AD Pathology

The majority of the brain is composed of lipids, which can be grouped into three
main categories, sphingolipids, glycerophospholipids, and cholesterol [6]. Lipids have
been associated with a healthy brain, participating in the function of the blood–brain
barrier (BBB), the processing of amyloid precursor protein (APP) in lipid rafts, myelination,
membrane remodeling, receptor signaling, oxidation, inflammation, and energy balance [7].
Specifically, cholesterol plays an important role during the developmental stage and in adult
life in terms of the overall maintenance of brain health, including neuron repair, membrane
remodeling, and plasticity [8]. The brain is considered a cholesterol-rich organ because it
contains about 25% of the entire body’s cholesterol [9], which is present in the membranes
of neurons, glial cells, and myelin membranes [10]. Due to the incapacity of cholesterol to
traverse the BBB, the central nervous system (CNS) depends almost exclusively on de novo
endogenous synthesis, which, in adults, is mostly performed by astrocytes [11].

Cholesterol metabolism has been extensively implicated in the pathogenesis of AD
through biological, epidemiological, and genetic studies [12–21]. In this sense, genome-
wide association studies have identified several cholesterol-metabolism-related genes as top
risk factors for late-onset AD. The strongest AD cholesterol metabolism susceptibility loci
include genes such as APOE, BIN1, CLU (alias APOJ), PICALM, ABCA7, ABCG1, SREBF2,
and SORL1, among others [7,12,15,22,23]. Nonetheless, only APOE has been considered
significantly associated with amyloid or tangle pathologies in AD [24]. In this sense and as
discussed below, the E4 allele of the APOE gene encoding apolipoprotein E (ApoE) was
described, more than three decades ago, as the most robust and reproducible genetic risk
factor for the development of AD [18,25]. Other lipids such as fatty acids, glycerolipids,
glycerophospholipids, and sterols and sphingolipids such as ceramides and sphingomyelin
have also been involved in AD pathogenesis. For instance, ceramides promote the pro-
duction and accumulation of Aβ as they stabilize the beta-site APP-cleaving enzyme,
and sphingomyelins have a binding motif to Aβ, displaying a role in its aggregation.
Furthermore, its imbalance has also been shown to contribute to AD development [7,26].

In the periphery, high-density lipoprotein (HDL) particles are the main physiological
acceptors of cellular cholesterol from all extrahepatic body compartments, including the
intimal macrophage foam cells of atherosclerotic lesions [27]. Cholesterol efflux initiates
the reverse cholesterol transport pathway, which conveys cholesterol from peripheral cells
to the liver for its fecal excretion, representing a major anti-atherosclerotic pathway in the
organism [28]. Regarding the CNS, HDL cholesterol trafficking seems to undergo processes
similar to those observed for plasma HDL, with significant modifications.

In the present review, we aim to describe the mechanisms by which HDL-like traf-
ficking through the CNS occurs, with special emphasis on HDL-like-mediated cholesterol
efflux and uptake processes and their potential implications in AD pathogenesis.

1.3. Literature Search Strategy

A literature review was performed based on the “Preferred Reporting Items for Sys-
tematic Reviews and MetaAnalyses” (PRISMA) statement. Relevant studies from peer-
reviewed journals were identified from three electronic databases (PubMed, Google Scholar,
and Web of Science) up to 1 June 2022, without any language restriction. Four groups of
medical subject terms were applied, including “Alzheimer disease”, “cholesterol traffick-
ing”, “central nervous system”, and “cholesterol efflux”. To identify additional studies and
reviews, combinations of specific keywords were also performed: dementia, ApoE, and
HDL. The hand searching of reference lists in the included reviews was also performed.
Three of the authors (C.B., J.C.E-G. and M.T.) independently screened articles, extracted
relevant data, and assessed the quality of the studies. For the works exploring cholesterol
efflux and cholesterol uptake processes regarding AD in different cell types, a uniform table
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was prepared to collect related characteristics, including the first author, year of publication,
cell culture, sample used (cholesterol acceptor), mechanism tested, activation, and main
findings. All papers describing findings related to the mechanisms underlying HDL-like-
mediated cholesterol trafficking in the CNS and its implications in AD pathogenesis were
included, whereas similar papers related to non-AD dementia were excluded. The process
was agreed upon by all authors.

2. HDL-Mediated Cholesterol Trafficking in the CNS
2.1. Transporters of Cholesterol in the Brain

Cholesterol trafficking in the CNS involves several transporters with similar roles to
those in the peripheral cells [29], reinforcing the relevance of the control of lipid homeostasis
in the brain. Identically to peripheral tissues, cholesterol efflux in the brain takes place
through aqueous diffusion facilitated by scavenger receptor class B type I (SR-BI) and by
active pathways involving the ATP-binding cassette (ABC) transporters A1 and G1 (ABCA1
and ABCG1) [30]. In contrast to the periphery, where SR-BI is ubiquitous, in the brain,
it is only expressed in astrocytes, neurons, and capillary endothelial cells [31,32], as it is
regulated by the sterol regulatory element-binding protein 2 (SREBP-2) transcription factor
binding sites [33,34]. In the CNS, ABC transporters have been found in neurons, astrocytes,
and capillary endothelial cells, participating in protein secretion and lipidation [35,36].
Specifically, ABCA1 acts as the main cholesterol efflux regulatory protein, interacting
with mildly lipidated ApoE particles to form small HDL-like lipoproteins containing
phospholipids (PL) and unesterified cholesterol (UC) [29]. SR-BI and other transporters
from the ABC family, such as ABCG1 and ABCG4, interact with already-lipidated forms [37],
thereby completing the lipidation of small HDL-like particles and generating larger ones
via the addition of more cholesterol as well as other lipids [38]. Once in the extracellular
space, lipoproteins can be further enriched with ApoE [39–41].

ABCA1, ABCG1, and ApoE gene transcription can be modulated by the liver X re-
ceptors (LXRs) α and β, ligand-activated transcription factors that bind to DNA and form
heterodimers with retinoid X receptors (RXRs) to exert their functions [42,43]. Oxysterols
and 9-cis-retinoic acid (RA) are, in turn, endogenous ligands for LXRs and RXRs, respec-
tively [44,45]. Thus, a high concentration of intracellular cholesterol or its derivatives in
astrocytes activates LXR/RXR-mediated transcription for cholesterol transport proteins
to facilitate efflux [46,47]. In this sense, the co-expression of ApoE with ABCA1 by the
LXR/RXR system reinforces the important role of ApoE lipidation in the efflux process [48].
ABCA1 may also play a critical role in removing excess cholesterol from neurons, which
can either be converted into cholesterol esters and kept in the cytoplasm or converted to
24S-hydroxycholesterol (HC) by 24-hydroxylase [49,50], as discussed below. 24-HC may
reach the astrocytes and, through the activation of LXR, inhibit cholesterol synthesis and
upregulate ABCA1, ABCG1, and ApoE levels [44]. Alternatively, it can be exported from the
brain through the BBB [41,51–53]. Concerning ABCA7, this transporter is highly expressed
in the brain, sharing significant homology with ABCA1 [35]. However, its transcription is
downregulated when intracellular cholesterol concentrations are high [51] and upregulated
through the SREBP-2 pathway when they are low [54]. Its role in cholesterol efflux is less
known and seems to be less relevant than those of the other ABC proteins [55].

In addition to endogenous LXR/RXR agonists, exogenous ligands have also been
described. T0901317 is a synthetic and highly selective agonist for LXRs, with a demon-
strated enhancing effect on the ABCA1 and ABCG1 transporters and cholesterol efflux [42].
Similarly, ABCA1 activity can also be modulated by cyclic adenosine monophosphate
(cAMP) via a protein kinase A (PKA)-dependent pathway. Protein kinase A increases
ABCA1 gene transcription and phosphorylates ABCA1 protein, increasing its ability to
export cholesterol [56].

Regarding cholesterol uptake, mature HDL-like particles deliver cholesterol to brain
cells through the interaction of ApoE with specific lipoprotein receptors [57], including the
low-density lipoprotein (LDL) receptor (LDLR), LDL-receptor-related protein 1 (LRP1), the
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very low density lipoprotein (VLDL) receptor (VLDLR), and the ApoE receptor (ApoER2),
which is mainly expressed in the brain [58]. All of them bind ApoE and lipidated ApoE
with different degrees of affinity [29,59]. Characteristically, nascent lipoproteins secreted
by astrocytes show a higher affinity for LDLR, whereas CSF ApoE-containing HDL-like
particles adhere strongly to LRP1 [60]. Despite being present in both neurons and astro-
cytes, LDLR is most highly expressed in glia, whereas LRP1 is more highly expressed in
neurons [61–65]. Specifically, LRP1 is a critical source of cholesterol for neurite outgrowth,
synaptogenesis, and remodeling; however, it may also exert negative feedback to limit the
intracellular cholesterol concentration [66,67]. Regarding VLDLR and ApoER2, they are
structurally very similar to the LDLR; however, they mainly bind other ligands involved in
neurodevelopment and synaptic functions, such as reelin [68]. The information regarding
cholesterol transporters and receptors potentially involved in cholesterol processes in the
brain is summarized in Table 1.

Table 1. Cholesterol transporters and receptors potentially involved in cholesterol efflux and uptake
processes in the brain.

Cholesterol Transporters
and Receptors Cellular Expression Regulation Main Functions

SR-BI Astrocytes, neurons, and capillary
endothelial cells SREBP-2 pathway Cholesterol diffusion to lipidated

ApoE forms

ABCA1 Astrocytes, microglia, neurons, and
capillary endothelial cells

LXR/RXR
heterodimer/PKA-pathway

Cholesterol efflux to poorly
lipidated ApoE

ABCG1 Astrocytes, neurons, and capillary
endothelial cells LXR/RXR heterodimer Cholesterol efflux to lipidated

ApoE forms

ABCG4 Astrocytes, microglia, neurons, and
capillary endothelial cells LXR/RXR heterodimer Cholesterol efflux to lipidated

ApoE forms
ABCA7 Astrocytes, neurons, and microglia SREBP-2 pathway Less known roles

LDLR Astrocytes, microglia, neurons, and
capillary endothelial cells PCSK9 Cholesterol uptake regulator

LRP1 Astrocytes, microglia, neurons, and
capillary endothelial cells PCSK9 Cholesterol uptake regulator

VLDLR Astrocytes, microglia, neurons, and
capillary endothelial cells PCSK9

Bind ligands for
neurodevelopment and synaptic

functions

ApoER2 Neurons PCSK9
Bind other ligands involved in

neurodevelopment and synaptic
functions

ABC: ATP-binding cassette; Apo: apolipoprotein; ApoER2: apoE receptor 2; LDLR: low-density lipoprotein
receptor; LRP1: LDL-receptor-related protein 1; LXR: liver X receptor; PCSK9: protein convertase subtilisin/kexin
type 9; PKA: protein kinase A; RXR: retinoid X receptor; SR-BI: scavenger receptor class B type I; SREBP-2: sterol
regulatory element-binding protein 2; VLDLR: very low density lipoprotein receptor.

With respect to lipid movement through the central and peripheral compartments,
the BBB and the blood–cerebrospinal fluid barrier (BCSFB) act as semipermeable mem-
branes, regulating the exchange of solutes between the blood and CNS [69]. Therefore, all
lipoproteins, including LDL, VLDL, and chylomicrons, are excluded from the brain [70].
ApoA-I’s presence in the CSF derives from the blood circulating HDL [71,72]. The ABCA1
and ABCG1 transporters present on epithelial cells of the BBB can mediate the lipidation of
peripheral apolipoproteins after their entry into the CNS [48,73], facilitating the formation
of ApoE/ApoA-I small HDL-like particles [34]. Moreover, small HDL plasma particles can
enter the brain via SR-BI-mediated uptake and transcytosis [34].

In contrast to cholesterol, the oxysterols 24-HC and 27-hydroxycholesterol (27-HC)
(oxidized cholesterol metabolites) can cross the BBB and BCSFB at no energetic cost [74]. In
that sense, 27-HC is synthesized by CYP27A1, representing the major cholesterol metabolite
in the circulation. Its expression takes place in most of the organs and tissues [75] and
can be transported by diffusion from the circulation into the brain [76]. Recent works
support the idea that the pool of 27-HC contributes to cholesterol-related metabolite uptake
in neurons [77]. On the other hand, due to the limited capacity of neurons and glial cell
to eliminate cholesterol, spare cholesterol must reach the liver for further conversion to
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bile acids and final excretion. As previously stated, this function can rely on 24-HC, the
main available hydrophilic form of cholesterol in the brain, to be transferred through
the BBB [42,51–53]. 24-HC is originally released by neurons through the neuron-specific
enzyme CYP46A1 [53]. A secondary excretion pathway through the BBB may involve
cholesterol efflux mediated by ABCA1 and ABCG1 [34,78]. The steady-state levels of both
oxysterols are tightly regulated in the brain. Therefore, disturbances in their concentrations
have been associated with different forms of dementia [79]. In that sense, several works
have evaluated plasma or CSF oxysterol levels in patients with AD, with evidence of
impaired concentrations [80–82]. Particularly, 24-OHC has been found to regulate APP
via the production of the amyloidogenic fragment [83], whereas 27-HC may contribute to
amyloid deposition [74]. Higher levels of the metabolites 24-HC and 27-HC in the CSF
suggest an increase in the cerebral cholesterol load, as observed in AD brains in postmortem
examinations [84]. Overall, these results suggest a key role of these cholesterol metabolites
in AD pathology. However, the relationship of HDL-like lipoproteins with these metabolites
in the CNS remains largely unknown.

2.2. Apolipoprotein E in the CNS in the Context of AD

Excellent reviews focusing almost exclusively on ApoE and AD exist [85–94]. As
previously stated, liver-synthesized ApoE cannot cross the BBB [95]. Thus, the ApoE in
the CNS is synthesized by astrocytes and microglia [96]. In stressful situations, neurons
can also produce ApoE [97]. It is worth noting that despite the fact that some authors
refer to ApoE as a relevant AD component on its own, it is indeed a relevant part of the
HDL-like lipoprotein structure that transports multiple proteins and lipid species, thereby
affecting their CNS metabolism. Accordingly, ApoE is the main lipid carrier in the CNS,
with functions that include the transport of lipids (mainly cholesterol) between neurons
and glial cells via interactions with transporters such as ABCA1 and ABCG1 [98], the
regulation of lipid metabolism [99], and the enhancement of axonal growth through LDLR
interactions [60]. ApoE is also essential for the brain homeostasis-regulating processes of
Aβ clearance as well as for the inhibition of inflammatory pathways, both functions of great
importance in the AD brain, where Aβ oligomers and neuroinflammatory metabolites tend
to accumulate [100]. Specifically, lipidated ApoE clears Aβ peptides from the brain [101].
In that sense, it is a well-established fact that the ApoE lipidation degree is positively
associated with its affinity for soluble Aβ, with poorly lipidated ApoE obstructing Aβ

clearance and stimulating Aβ deposition [25,102–104], thus representing a risk factor for
AD, as developed below.

2.2.1. Aβ Peptides, Cholesterol Transporters, and ApoE Interplay

Extracellular Aβ clearance occurs through different mechanisms. In that regard, the
interplay between ApoE, Aβ peptides, transporters, and receptors is crucial. In brief, Aβ

clearance involves three main mechanisms: glial phagocytosis, protease degradation, and
transport to the periphery through the BBB/BCSFB or to cervical lymph nodes [105,106].
Glial phagocytosis consists of the phagocytosis of Aβ by astrocytes and microglia through
ABCA7 [107], whereas proteolytic degradation involves enzymes such as neprilysin, insulin-
degrading enzyme, and endothelin-converting enzyme [106]. Ultimately, Aβ transport to
the periphery allows Aβ clearance by blood components or even by tissues and organs
such as the liver and kidneys [105]. Specifically, transport through the BBB and BCSFB
involves the LRP1, ABCB1, ABCG4, ABCA7, and VLDLR transporters [106,108,109].

Beyond these mechanisms, some studies demonstrated that ABCA1 may positively
influence Aβ clearance [43,45], despite Aβ not directly binding to this receptor. As such, a
recent work demonstrated that the greater propensity of ApoE4 to aggregate decreased
ABCA1 membrane recycling and its ability to lipidate ApoE, thus displaying a negative
regulation loop that may enhance AD progression [110]. Significantly, enhancing ABCA1
activity to lipidate ApoE reduced ApoE and ABCA1 aggregation [110]. Similarly, another
work demonstrated that a biomimetic HDL was able to cross the BBB in vitro and com-
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pensate for reduced levels of ABCA1 due to Aβ-induced astrogliosis, thus promoting
cholesterol efflux from astrocytes [111].

2.2.2. ApoE4 and AD Pathogenesis

ApoE is a protein composed of 299 amino acids divided into three domains: the
N-terminal domain (residues 1–191), responsible for binding to the LDLR family; the
C-terminal domain (residues 206–209), containing the lipid-binding region; and the un-
structured hinge regions that allow protein mobility [112]. In humans, ApoE can be found
in three isoforms, E2, E3, and E4, all with different molecular and functional properties and
determined by three different alleles at a single genetic locus. The three isoforms differ by
a change in one or two amino acids at residues 112 or 158 [113]. The importance of these
isoforms in modulating the pathogenesis of AD is a well-known fact. In this sense, ApoE3
is the most common isoform in humans, accounting for around 80% in some ethnic groups,
but it is without any effect on AD predisposition [114]. In contrast, the relatively rare ApoE2
is considered neuroprotective [29,115], whereas ApoE4 is considered the strongest genetic
risk factor for sporadic late-onset AD [97,116,117]. In this regard, ApoE4 demonstrates
a lower affinity for lipids, limiting their transport through the CNS, which is needed for
repair and neuronal remodeling [118]. Additionally, ApoE4 carriers are more susceptible to
oxidative stress and lipid peroxidation [112].

The involvement of ApoE4 isoforms in AD pathogenesis occurs through various
mechanisms, including, among others, effects on Aβ metabolism, tau protein, and lipid
metabolism regulation [86], as summarized in Table 2. These pathogenic mechanisms add
to additional ApoE effects, including oxidative stress and neuroinflammation [119]. The
main effects of the ApoE4 isoform on Aβ metabolism include the impairment of the follow-
ing processes: altered Aβ production by the beta-site APP-cleaving enzyme 1 (BACE-1),
altered ApoE binding, altered clearance, and altered aggregation and deposition. Indeed,
when compared to ApoE2 and ApoE3, ApoE4 was described to enhance Aβ production and
BACE-1 levels [120,121], to increase Aβ binding affinity to ApoE [25,103], to decrease Aβ

clearance [122–125], and to facilitate Aβ aggregation and deposition [126]. Consequently,
ApoE4 negatively affects Aβ metabolism, thus contributing to AD progression. Concerning
tau pathology, the ApoE genotype may also affect tau protein, despite not directly inter-
acting with it. Specifically, ApoE4 was reported to worsen neurodegeneration in human
primary tauopathies [127], which could be aggravated when amyloid pathology was also
present [24]. A recent study also investigated the mechanisms by which ApoE4 expression
in neurons increased tau phosphorylation and enhanced the release of phosphorylated
tau. In particular, ApoE4 predisposed neurons to accelerated neurodegeneration through
a heparin sulfate proteoglycan-dependent mechanism [128]. Of note, LRP1 was recently
shown to be a master receptor for tau uptake by neurons [129]. In that sense, ApoE4 could
affect the ability of tau to bind LRP1. The study by Rauch et al. demonstrated that all ApoE
isoforms reduced tau uptake in vitro to a similar extent. However, due to its low circu-
lating levels, ApoE4 would have low efficiency for inhibiting tau–LRP at physiologically
relevant levels in vivo [129]. Finally, regarding the regulation of lipid metabolism, ApoE4
astrocytes have been reported to present with a higher expression of genes involved in
cholesterol biosynthesis, therefore displaying lipid metabolic dysregulation and cholesterol
accumulation [130,131]. Whether these alterations affect HDL-like synthesis, remodeling,
and cholesterol transport between CNS cells remains unknown.
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Table 2. Deleterious effects of ApoE4 isoform in AD pathogenesis.

Effects of ApoE4 Genotype

Aβ Metabolism Tau Pathology Lipid Metabolism

↑ Aβ production [120,121] ↑ Neurodegeneration [127] ↑ Cholesterol synthesis
and accumulation [130,131]

↓ Aβ clearance [122–125] ↑ Tau phosphorylation
and secretion [128] ↓ Lipid binding to ApoE [118]

↑ Aβ binding to ApoE [25,103] ↓ Tau binding to LRP1 [129] ↑ Oxidative stress and
lipid peroxidation [112]

↑ Aβ aggregation and
deposition [126]

Apo: apolipoprotein; Aβ: amyloid beta.

2.3. HDL-like Lipoprotein Metabolism in the CNS

To understand the HDL-mediated cholesterol efflux and uptake processes through
CNS cells in AD, a brief explanation of the biogenesis, remodeling, and delivery of HDL-like
particles is provided below.

Like plasma, the lipoproteins present in the CSF are composed of cholesterol, phos-
pholipids, and apolipoproteins. Overall, their brain concentration is very low, representing
approximately 1–10% of their plasma levels [132]. Brain lipoproteins present with a similar
size and density to peripheral HDL particles, and therefore they are defined as “HDL-
like particles” [132]. However, brain lipoproteins present with unique traits, including a
wider size range (8–22 nm) and a different apolipoprotein composition, with ApoE being
the major protein component [99]. In addition to ApoE, glial-derived discoidal HDL has
ApoJ, whereas mature spherical CSF HDL has small amounts of ApoA-I. As stated above,
ApoA-I is the most important constituent of plasma HDL; however, it is not produced in
the brain and is, rather, delivered to the CNS through the BBB [133]. Other minoritarian
apolipoproteins present in the brain include ApoA-II, ApoA-IV, ApoD, and ApoH [132].
Despite not being fully elucidated, the mechanisms involved in CSF lipoprotein synthe-
sis and remodeling are similar to those observed for plasma HDL. It is well-known that
astrocytes and microglia are responsible for the synthesis of most lipoproteins found in
the brain and CSF [134]. Remodeling enzymes and lipid transfer proteins have also been
identified in the CNS [135]. Lecithin-cholesterol acyltransferase (LCAT) converts UC and
phosphatidylcholine to cholesteryl esters [136] via ApoE activation [137]. In fact, LCAT
can be synthesized in the liver and testes as well as in astrocytes [137], suggesting its
important role in the remodeling and maturation of nascent HDL-like proteins into larger
spherical particles [99]. It has been found at concentrations representing around 5% of
the levels in plasma [99,138]. Other remodeling enzymes include phospholipid transfer
protein (PLTP), which is reported to be at a concentration representing about 15% of the
plasma level [139,140], and cholesteryl ester transfer protein (CETP), which is reported
to be present at about 12% of the level found in plasma [140] or non-existent [141]. Fi-
nally, as described above, cholesterol can be delivered to neurons by mature HDL-like
lipoproteins through interactions with specific receptors [8]. A detailed description of
HDL-like-mediated cholesterol trafficking in healthy and AD brains is shown in Figure 1.
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Figure 1. Schematic representation of the main steps involved in cholesterol trafficking in the brain.
(A) In healthy subjects, astrocytes are responsible for de novo cholesterol and ApoE synthesis,
with ApoE3 being the predominant isoform. Cholesterol efflux from astrocytes occurs, in part,
through the ABCA1 and ABCG1 transporters. Lipid-free ApoE and, in smaller amounts, ApoA-I
and ApoJ can be further lipidized by remodeling enzymes, resulting in spherical mature HDL-like
particles that can interact with membrane receptors such as LRP1 and LDLR, leading to cholesterol
uptake by neurons and guaranteeing essential functions such as synaptogenesis and neurite growth.
Oxysterols can flux across the BBB. Neurons convert excess cholesterol in 24-HC, which can be
eliminated to the bloodstream. In contrast, 27-HC enters the brain, where it promotes various
functions. ApoE also contributes to the clearance of Aβ peptides. (B) In AD subjects, the pathological
accumulation of hyperphosphorylated tau protein and Aβ plaque deposition may alter physiological
functions in the brain. ApoE4, the predominant isoform in AD patients, is poorly lipidated and
barely removes Aβ peptides. LRP1 plays a critical role in neuronal tau endocytosis. Recent works
suggest alterations regarding cholesterol transport, including reduced HDL-like-mediated cholesterol
efflux and impaired cholesterol uptake, leading to cell dysfunction. ABC: ATP-binding cassette;
AD: Alzheimer’s disease; Apo: apolipoprotein; Aβ: amyloid beta; BBB: blood–brain barrier; CETP:
cholesteryl ester transfer protein; HC: hydroxycholesterol; HDL: high-density lipoprotein; LCAT:
lecithin-cholesterol acyltransferase; LDLR: low-density lipoprotein receptor; LRP1: LDLR-related
protein 1.
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2.4. Cholesterol Efflux to HDL-like Particles in AD

Brain cholesterol efflux is a key step in cholesterol trafficking through the CNS. As
previously described, the process consists of the transference of intracellular cholesterol
to extracellular acceptors, including apolipoproteins and HDL-like lipoproteins, through
aqueous diffusion or SR-BI and ABC-family transporters.

The first study that aimed to describe the ability of brain lipoproteins to promote
cholesterol efflux was performed in 1998 in fibroblasts [142]. This study was pioneering
in demonstrating the critical role of CSF lipoproteins in brain cholesterol trafficking, thus
opening the door for further studies. Since then, researchers have explored the ability of
cholesterol acceptors, including serum, serum-isolated, or recombinant apolipoproteins,
lipoprotein, and CSF, to promote cholesterol efflux in different cell types. All published stud-
ies regarding cholesterol trafficking in the brain are summarized in Table 3. Most of these
works focused on the molecular pathways by which cholesterol efflux takes place, proving
that the ABCA1 and ABCG1 transporters are pivotal in this process [39,41,45,52,143,144].
Specifically, the work of Koldamova et al. explored the role of ABCA1 in cholesterol efflux
to acceptors such as serum, ApoA-I, and recombinant ApoE3 in primary rat neuron culture,
astrocytes, and other glial cells. The authors found that, after exposure to 22(R)-HC and
9-cis-RA, ABCA1 expression and protein levels as well as ApoA-I and ApoE-mediated
cholesterol efflux increased [45]. In line with these findings, the cholesterol efflux to these
acceptors was reduced in ABCA1-deficient astrocytes and microglia when compared to
wild-type cultures [39]. Subsequent works also showed that the stimulation of ABCA1 and
ABCG1 with cAMP or 22(R)-HC plus 9-cis-RA was able to enhance cholesterol efflux in
astrocytes [52,143]. Another work showed that Abca1-deficient mice presented with small
APOE-containing lipoproteins. Moreover, their cultured astrocytes secreted lipoproteins
that presented with markedly reduced cholesterol concentrations [41]. Similarly, primary
cultured astrocytes from Abcg1 and Abcg4 knockout mice displayed defective cholesterol
efflux to HDL-like particles, while the overexpression of these transporters in hamster em-
bryonic kidney (HEK)-293 cells by transfection resulted in increased cholesterol efflux [144].
Regarding ABCG4, a study in primary cortical rat astrocytes reported that the inhibition of
ABCG4 did not affect cholesterol efflux. However, the authors also showed that ABCG4
expression was crucial in mediating this process in primary neurons [52].

Considering the effect of ApoE isoforms on AD pathology, some works evaluated
how they affect efflux capacity and obtained divergent results. While some authors found
similar rates of cholesterol efflux from HDL-like particles in neuronal cells and astrocytes
regardless of the ApoE isoform [145,146], others demonstrated that recombinant ApoE3
was able to induce a higher lipid efflux compared to recombinant ApoE4 in neuronal and
astrocytic cell cultures [147]. Accordingly, another work also found that primary astrocytes
from modified mice expressing human ApoE4 displayed lower cholesterol efflux than
those cells from mice expressing human ApoE3 [110]. Interestingly, the accumulation
of fat in astrocytes, a stress-associated condition, induced the assembly and secretion of
potentially toxic triacylglycerol-rich ApoE-containing lipoproteins, a process enhanced by
ApoE4 [146]. On the whole, the contribution of the ApoE genotype to cholesterol efflux
and its pathophysiological consequences requires further studies. Finally, another line of
work has focused on exploring the cholesterol efflux capacity of human samples taken from
control individuals and AD patients. Several studies using cultured murine macrophages
found reduced cholesterol efflux in AD patients’ samples when using serum as an accep-
tor [30,148]. Despite these interesting results, some authors argued that CSF is the most
suitable physiological sample to study cholesterol trafficking in the brain because it contains
all the components involved in central cholesterol efflux. Accordingly, the first approach
assessing cholesterol efflux capacity in a small number of control and AD patient CSF
samples in rat astrocytes found no differences between the two groups [141]. More recently,
the evaluation of cholesterol efflux to the CSF in larger cohorts was addressed. Using baby
hamster kidney (BHK) cells overexpressing ABCA1, the authors reported that CSF samples
taken from AD patients displayed 30% less cholesterol efflux than CSF samples from cog-
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nitively healthy participants [149]. In agreement, a recent work performed with murine
macrophages induced with cAMP to express ABCA1 at one end and Chinese hamster ovary
(CHO)-K1 cells overexpressing ABCG1 at the other end resulted in decreased levels of
cholesterol efflux from AD patients’ CSF compared to a control population [150]. Likewise,
cholesterol efflux to the CSF from ApoE3 carriers was significantly increased compared to
that from ApoE4 carriers in ABCA1-induced BHK cells [110]. Despite the importance of
these findings, only one work has performed similar studies in cells that are functionally
and morphologically relevant in the brain and, thus, for AD pathology [151], representing
a proof of concept for CSF cholesterol efflux quantification in human neurological cells.
Efflux measurement in neurons, microglia, and astrocytes allowed researchers to conclude
that CSF cholesterol efflux levels are positively correlated with total cholesterol, ApoA-I,
ApoE, and ApoJ concentrations. However, demographic and clinical data were unknown
because the CSF samples were taken from anonymous patients, making it impossible to
compare efflux among healthy controls and patients with AD [151].

Table 3. Brain cholesterol trafficking studies. The following table includes all works explor-
ing cholesterol efflux and cholesterol uptake processes regarding AD in different cell types,
ordered chronologically.

Cell Culture Sample
(Acceptor/Carrier) Mechanism Tested Activation Main Findings Reference

Fibroblasts CSF lipoproteins Baseline efflux None CSF lipoproteins induce
cholesterol efflux [142]

Neuroglioma cells
and primary neurons

and astrocytes
CSF lipoproteins Uptake None CSF lipoproteins are

internalized by neurons

Rat astrocytes CSF from AD (n = 3)
and controls (n = 3) Baseline efflux None No differences [141]

Primary neurons
ApoA-I from human

plasma and
recombinant ApoE3

ABCA1-mediated efflux 25-HC, 9-cis-RA 25-HC, 9-cis-RA: ↑
efflux levels [45]

Primary murine
wild-type and

Abca1−/−
astrocytes

and microglia

Lipid-free ApoA-I,
recombinant ApoE2,

ApoE3, ApoE4
Baseline efflux None

ABCA1 is involved in
mediating cholesterol

efflux to ApoA-I
and ApoE

[39]

Abca1-deficient
mouse primary

cultured astrocytes
ApoE Baseline efflux None ↓ ApoE and cholesterol in

CSF lipoproteins [41]

Rat astrocytes and
human astrocytes

ApoA-I, ApoE,
and HDL

ABCA1- and
ABCG1-mediated efflux

Ethanol, cAMP, or
22(R)-HC plus

9-cis-RA

↑ ABCA1- and
ABCG1-mediated efflux [143]

Murine neuronal cell
line HT-22

HDL alone or HDL
associated with

ApoE3 or ApoE4
Baseline efflux None

No differences in
cholesterol efflux

depending on
ApoE isoform

[145]

Abcg1−/− and
Abcg4−/−

primary astrocytes
HDL Baseline efflux None ↓ Efflux levels

[144]

HEK293 HDL Baseline efflux
Overexpression of

Abcg1 and
Abcg4 (transfection)

↑ Efflux levels

Primary neurons and
ApoE-

deficient astrocytes

Recombinant ApoE3
and ApoE4 Baseline efflux None

Recombinant ApoE3: ↑
efflux compared to

recombinant ApoE4
[147]

Human THP-1
monocytes, J774

macrophages, and
SR-BI-enriched

Fu5AH cells

Plasma, HDL, and
ApoA-I from AD

patients (n = 39) and
controls (n = 20)

Baseline efflux, SR-BI- or
ABCA1-mediated efflux J774 + cAMP ↓ ABCA1-mediated efflux [33]
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Table 3. Cont.

Cell Culture Sample
(Acceptor/Carrier) Mechanism Tested Activation Main Findings Reference

Primary cortical
astrocytes

and neurons
ApoA-I, HDL, ApoE3 ABCA1-, ABCG1-, and

ABCG4-mediated efflux

Ethanol, 22-HC plus
9cis-RA, ABCA1,

ABCG1, and ABCG4
siRNAs, probucol
(ABCA1 inhibitor)

ABCA1 and ABCG1 are
mainly involved in
cholesterol efflux in
astrocytes, whereas
ABCG4 regulates it

in neurons

[52]

BHK cells

CSF from AD
(n = 26), MCI (n = 35),

and control
(n = 47) individuals

ABCA1-mediated efflux Mifepristone
(induces ABCA1)

↓ CSF ABCA1-mediated
efflux in AD and

MCI patients
[149]

J774 macrophages

Plasma-isolated HDL
from AD (n = 33),
MCI (n = 27), and

control
(n = 27) individuals

Baseline efflux and
ABCA1-mediated efflux cAMP

↓ HDL baseline efflux in
AD patients. No

differences in
ABCA1-mediated efflux

[30]

ApoE3 and ApoE4
primary astrocytes BSA ABCA1-mediated efflux

GW3965 (LXR
agonist), CS-6253

(ABCA1
agonist peptide)

↓ ABCA1-mediated efflux
from ApoE4 astrocytes [110]

BHK cells

CSF from
non-demented

ApoE4/4 (n = 3),
ApoE3/4 (n = 9), and

non ApoE4
(n = 9) carriers

ABCA1-mediated efflux Mifepristone
↓ CSF ABCA1-mediated

efflux in
ApoE4/4 carriers

J774 macrophages CSF from AD (n = 37),
non-AD dementia

patients (n = 16), and
controls (n = 39)

Baseline and
ABCA1-mediated efflux cAMP ↓ CSF ABCA1-mediated

efflux in AD patients [150]

CHO-K1 cells ABCG1-mediated efflux Expression
of hABCG1

↓ CSF ABCG1-mediated
efflux in AD patients

RAW264.7
murine macrophages

HDL isolated from
control (n = 24) and

AD patient
(n = 44) serum

Baseline and
ABCA1-mediated efflux cAMP ↓ HDL ABCA1-mediated

efflux in AD patients [148]

J774 macrophages
and microglia cells

Human ApoA-I and
HDL.

CSF samples (with no
demographic or

clinical data)

Baseline and ABCA1/G1-
mediated efflux

cAMP Efflux correlates with CSF
concentrations of

cholesterol, ApoA-I,
ApoE, and ApoJ

[151]

A172 astrocytes and
SH-SY5Y neurons

T0901317
(LXR agonist)

ABC: ATP-binding cassette; AD: Alzheimer’s disease; Apo: apolipoprotein; BHK: baby hamster kidney; cAMP:
cyclin adenosine monophosphate; CHO: Chinese hamster ovary; CSF: cerebrospinal fluid; HC: hydroxycholesterol;
HDL: high-density lipoprotein; LXR: liver X receptor; MCI: mild cognitive impairment; SR-BI: scavenger receptor
class B type I.

2.5. Cholesterol HDL-like Uptake in AD

One of the first studies addressing cholesterol uptake in connection with AD was
performed in 1998 [142]. Specifically, the work addressed the function of CSF lipoproteins
with assays of cholesterol efflux and cholesterol uptake. The authors showed that CSF
lipoproteins labeled with a fluorescent dye were internalized by neuroglioma cells and
cultured primary neurons and astrocytes. Nonetheless, this field has scarcely been explored
in later years because most studies focused almost exclusively on cholesterol efflux. A recent
report demonstrated that astrocytic ApoE-derived lipoproteins, presumably HDL-like, can
transport a variety of microRNAs that specifically downregulate the genes involved in
neuronal cholesterol biosynthesis [152]. Importantly, these ApoE-induced effects were
significantly abolished in neurons after silencing LDLR or LRP1. Furthermore, ApoE4 was
less capable of regulating these neuronal pathways in this situation [152].

An important line of work regarding cholesterol uptake involves the proprotein
convertase subtilisin/kexin type 9 (PCSK9), a protein whose main role is to regulate LDLR
recycling. PCSK9 is present in the serum and CSF. In the periphery, PCSK9 degrades LDLR,
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while in neurons it degrades LDLR as well as other ApoE-binding receptors, including
VLDLR, LRP1, and apoER2 [89], causing decreased cholesterol uptake. Interestingly,
recent studies found that patients with AD presented with significantly increased PCSK9
concentrations [153,154], especially ApoE4 carrier patients [153]. These results involve
cholesterol uptake as a potential pathological mechanism of AD. It should be noted that
LRP1 is a critical receptor that mediates tau endocytosis and spread [129].

3. Lipid-Based Therapies in the CNS with Respect to AD

Many efforts have been focused on developing a treatment for AD. Considering the
multifaceted form of the disease, numerous therapeutic targets have been explored over the
years. Here, we summarize the most relevant lipid-based strategies that could potentially
affect HDL-like cholesterol trafficking in the CNS.

Statin use represents the first-line of treatment for hypercholesterolemia and the
prevention of cardiovascular diseases due to their lipid-lowering, antioxidant, and anti-
inflammatory effects [155]. Statins are able to cross the BBB. Thus, their potential in
preventing and treating AD was recently addressed [156]. In that sense, in vitro and in vivo
studies reported neuroprotective effects by interfering with Aβ and tau metabolisms [157].
However, divergent results were obtained in human clinical trials [158]. Probucol, another
lipid-lowering drug, was shown to increase CSF ApoE concentrations as well as reduce CSF
tau and Aβ concentrations in a pilot trial in mild-to-moderate sporadic AD [159]. Currently,
a phase II trial in 314 participants with mild-to-moderate AD is being performed [160].
However, the potential of these drugs to regulate CNS HDL-like cholesterol trafficking
remains unknown.

An interesting strategy that has been also explored is the use of nuclear receptor
agonists that induce the expression of ABC transporters and ApoE in the CNS, potentially
improving HDL-mediated cholesterol trafficking. In that respect, the oral administration
of bexarotene, an RXR agonist, enhanced the clearance of Aβ plaques and ameliorated
cognitive functions in a mouse model of AD [161], although these results could not be repro-
duced in other studies [162]. Similarly, the combined LXR/PPAR (peroxisome proliferator-
activated receptors) agonist treatment with GW3965 and pioglizatone reduced the soluble
and deposited forms of Aβ in a mouse model of AD [163]. In line with these findings,
treating an amyloid mouse model with the LXR agonist T0901317 improved Aβ clearance
and cognitive deficits [164,165].

ApoE mimetic peptides have also been tested in AD animal models. The treatment
with the mimetic CN-105 revealed decreased Aβ pathology and ameliorated memory
deficits in a mouse model of AD [166]. Likewise, COG1410 exerted neuroprotective effects
against tau pathology and neuroinflammation in a similar mouse model [167]. Using the
same strategy, an intravenous treatment with human recombinant ApoA-I resulted in
reduced levels of cerebral Aβ and neuroinflammatory markers in the AD mouse brain [168].
Comparably, the smaller and orally bioavailable ApoA-I mimetic peptide 4F inhibited Aβ

deposition and displayed anti-inflammatory effects in different AD mouse models [169].
The function that these mimetic agents may exert in preclinical models include HDL
remodeling, the promotion of cholesterol efflux, the sequestration of oxidized lipids, and
the activation of anti-inflammatory processes [170]. However, it is still unclear whether all
these actions could work in the human CNS.

Finally, considering that HDL-mediated cholesterol uptake in neurons could be altered
in AD, ApoE receptors constitute potential treatment targets. Therefore, guiding future
research on the potential benefits of cholesterol-lowering medications, such as PCSK9
inhibitors, may be an excellent target for the treatment of AD. However, in a large controlled
clinical trial, the ApoE genotype did not significantly alter the relationship between the
PCSK9 inhibitor evolocumab and cognitive decline [171].

Clearly, more research is needed to evaluate the effectiveness of these lipid-based
strategies and their influence on CNS HDL-like cholesterol trafficking for AD treatment.
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4. Concluding Remarks

Evidence seems to point in the direction of decreased cholesterol efflux to the CSF’s
HDL-like lipoproteins among patients with AD. However, the studies addressing this
issue in AD patients have been performed in cells that are not physiological relevant for
CNS pathology. Following this definition, the potential of AD patients’ CSF to induce
cholesterol efflux from human astrocytes has not yet been addressed in a well-defined
cohort of AD patients, representing a major flaw for cholesterol efflux studies with regard to
AD. Regarding HDL-like-mediated cholesterol uptake studies in AD, there are apparently
indications that the entry of cholesterol into the neuron may be decreased, a fact that could
be related to impaired Aβ clearance and tau protein accumulation in AD. Furthermore, the
PCSK9-medited recycling of receptors involved in cholesterol uptake could be impaired
in AD neurons. In that sense, the existing crosstalk between cholesterol uptake and
tau proteins trough the LRP1 receptor seems to be another pathway worth exploring in
connection with AD pathology. Finally, it is worth recalling that ApoE is the main structural
apolipoprotein in HDL-like lipoproteins, with a high level of involvement in their CNS
metabolism. Hence, another important line of research points to ApoE4 as a disruptive
element in cholesterol transport through the brain because studies exploring its effect on
efflux, uptake, and Aβ clearance show that ApoE4 impairment is stronger than that of
other ApoE isoforms. Overall, further investigation is advisable to clarify the role that
HDL-like-mediated cholesterol trafficking in the brain plays with reference to AD.
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