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Abstract: Currently, the search for new promising tools of immunotherapy continues. In this regard,
microRNAs (miRNAs) that influence immune checkpoint (IC) gene expression in tumor and T-cells
and may be important regulators of immune cells are considered. MiRNAs regulate gene expression
by blocking mRNA translation. An important feature of miRNA is its ability to affect the expression of
several genes simultaneously, which corresponds to the trend toward the use of combination therapy.
The article provides a list of miRNAs acting simultaneously on several ICs and miRNAs that, in
addition to IC, can regulate the expression of targeted therapy genes. There is dependence of miRNA
interactions with IC genes on the type of cancer. The analysis of the accumulated data demonstrates
that only about 14% (95% CI: 9.8–20.1%) of the studied miRNAs regulate the expression of specific IC
in more than one type of cancer. That is, there is tumor specificity in the miRNA action on ICs. A
number of miRNAs demonstrated high efficiency in vitro and in vivo. This indicates the potential of
miRNAs as promising agents for cancer immunotherapy. Additional studies of the miRNA–gene
interaction features and the search for an optimal miRNA mimic structure are necessary.

Keywords: microRNA; immune checkpoint; immunotherapy

1. Introduction

Immunotherapy is an innovative method of cancer treatment. As a result of experi-
ments and clinical trials, it has been found that immunotherapy can increase progression-
free survival and overall survival. However, this method of treatment is effective in a
limited number of patients, and in addition, it can cause severe adverse reactions due to
hyperreactivity of the immune system [1]. In this regard, research is underway to develop
new therapeutic approaches based on targeting immune checkpoints (ICs).

ICs are regulators of the immune system, which are divided into stimulating and
inhibitory molecules. Stimulating and inhibitory ICs regulate T-cell activation. Tumor cells
have the ability to generate ligands that can bind to co-inhibitory receptor molecules. This
interaction suppresses the antitumor immune response, allowing the tumor to “escape”
from the immune system. As an opportunity to solve this problem, the blockade of ICs is
used [2].

IC inhibitors are monoclonal antibodies that affect a specific target [3]. In order to
increase the effectiveness of immunotherapy, the FDA approved a number of regimens,
including a combination of two IC inhibitors, a combination of IC inhibitors and targeted
therapy drugs, as well as antitumor bispecific antibodies [4,5]. It has been shown that in
combination therapy regimens, patients experienced a higher response rate compared to
monotherapy [6].

In addition, the search for a more promising immunotherapy approach is currently
ongoing. In this regard, microRNAs (miRNAs) are considered. MiRNAs participate in
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tumor-cell signaling pathways and regulate many processes, including the antitumor
immune response.

MiRNAs are small non-coding RNAs that carry out post-transcriptional regulation
of gene expression. According to recent studies, miRNAs influence IC gene expression
and are important regulators in both T-cells and tumor cells [7]. MiRNAs regulate gene
expression by binding to the 3’-UTR of their mRNA [8–10]. MiRNAs can also affect IC
expression indirectly, through molecules of different signaling pathways, such as PTEN,
IFR-1, and others [11]. It is also important that one miRNA can affect several genes [7,12].

This article presents a review of miRNAs that interact with IC genes, analyzes their
regulating IC expression in tumors of various types of cancer, and identifies miRNAs that
act on several IC genes simultaneously. Due to these properties, miRNA-based therapy
may become an alternative to the combination of targeted drugs in the future. The effect of
miRNAs on the same IC gene in tumors of several types was analyzed. Thus, the tumor
specificity of the miRNA–IC gene interaction was assessed. In addition, miRNAs are
considered that are capable of simultaneously regulating the expression of targeted therapy
genes along with IC genes. These issues have not been previously analyzed in existing
reviews of miRNAs as IC regulators [13–17].

2. Immune Checkpoints
2.1. PD-1, PD-L1 and CTLA-4

Programmed cell death protein 1 (PD-1) and programmed death-ligand 1 (PD-L1)
are the most studied members of the ICs. PD-1 and CTLA-4 receptors are co-inhibitory
molecules. They are normally expressed on activated T-lymphocytes. The PD-1 receptor
has PD-L1 and PD-L2 ligands, and the CTLA-4 receptor has CD80/CD86 ligands that
can be expressed on tumor cells in various types of cancer. The interaction of PD-1 and
CTLA-4 receptors with their ligands leads to suppression of the cytolytic activity of T-
lymphocytes, which blocks antitumor immunity. The use of PD-1 and CTLA-4 checkpoint
inhibitors increased patient survival compared with traditional chemotherapy in a number
of studies, including studies on kidney cancer, melanoma, head and neck squamous cell
cancer (HNSCC) and non-small cell lung cancer [18].

Based on preclinical and clinical trials, the FDA approved the use of PD-1 inhibitor-
nivolumab in combination with CTLA-4 inhibitor (ipilimumab) for the treatment of several
types of metastatic cancer [19].

2.2. Gal-9/Tim-3

One of the relatively new targets of immunotherapy is the T-cell immunoglobulin and
mucin domain-3 (Tim-3)/Galectin-9 (Gal-9) pathway. Tim-3 is present on activated effector
T-cells. It is an immunosuppressive receptor, causing exhaustion of T-cells [20]. A high level
of Tim-3 expression in kidney cancer is associated with an unfavorable prognosis [21,22].
One of the ligands of Tim-3 is Gal-9, which belongs to the galectin family. It is reported that
this family of proteins regulates tumor proliferation, migration, and metastasis [23].

Kidney, brain, colon, blood, liver, prostate, lung, and skin cancer cell lines were
found to express detectable amounts of Tim-3 and Gal-9 proteins. It is assumed that the
Tim-3/Gal-9 pathway is involved in the prevention of antitumor immunity [24]. However,
the information regarding Gal-9 is contradictory. According to a number of authors, Gal-9
overexpression correlates with a poor prognosis in many types of cancer [25–29]. On the
other hand, increased expression of Gal-9 has been shown to be associated with a favorable
prognosis in solid tumors [30].

Currently, Gal-9 is considered as a target of immunotherapy, anti-Gal-9 antibodies
have been developed. In the co-cultivation of T-cells and tumor cells, these antibodies
contributed significantly to T-cell-mediated destruction of tumor cells [31].

In addition, considering Gal-9 as a target for immunotherapy, it should be taken
into account that Gal-9 also interacts with stimulatory receptors, such as the 4-1BB-co-
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stimulating receptor of the tumor necrosis factor receptor superfamily (TNFRSF). Another
member of the TNFRSF—GITR—may also be relevant for the results of Gal-9 inhibition [25].

2.3. VISTA

V-domain Ig-containing suppressor of T-cell activation (VISTA) is an immunosuppres-
sive receptor. It is considered as a potential target of immunotherapy. VISTA expression
level is significantly increased in clear cell renal cell carcinoma (ccRCC). In animal models
of kidney cancer, VISTA blockade significantly suppressed tumor growth [32].

In addition, it was shown that the combination of a VISTA inhibitor with an TLR
agonist led to the development of antitumor immunity associated with T-cells [33]. It is
also reported that simultaneous blockade of CTLA-4 and VISTA can enhance the antitumor
immune response in HNSCC [34].

2.4. BTLA

The B- and T-lymphocyte attenuator (BTLA) is expressed by most lymphocytes. BTLA
belongs to the CD28 superfamily and is similar in structure and function to PD-1 and
CTLA-4 [35]. Increased BTLA expression is associated with an unfavorable prognosis [36].
The BTLA ligand is HVEM (TNFRSF14), a mediator of herpes virus penetration, a mem-
brane protein that belongs to the superfamily of tumor necrosis factor receptors. The
BTLA/HVEM axis is one of the most important ICs [37].

2.5. B7-H3

B7-H3 (CD276) is a member of the B7 family. It functions as a co-stimulating and
as a co-inhibiting immunoregulatory protein [38]. B7-H3 is not only a regulator of the
antitumor immune response, but is also involved in angiogenesis and metastasis. Co-
expression of B7-H3 and tyrosine kinase receptor of angiopoietin Tie-2 was detected in
RCC. It was shown that overexpression of B7-H3 and Tie-2 in the vascular endothelium of
RCC was associated with the density of tumor microvessels and disease progression [39].
Additionally, it was found that B7-H3 knockdown eliminated the pro-metastatic effect of
fibronectin and significantly suppressed the metastasis of ccRCC cells [40].

Clinical trials have evaluated the effectiveness of B7-H3 inhibitors in the treatment of
solid tumors, both as monotherapy and as part of combined therapy [41]. In particular, a
bispecific anti-B7-H3/PD-1 fusion protein has been developed. It interacts simultaneously
with the tumor-associated marker B7-H3 and the immunosuppressive signaling pathway
PD-1/PD-L1, and also enhances antibody-dependent cellular cytotoxicity. Treatment with
anti-B7-H3/PD-1 fusion protein leads to effective suppression of tumor growth in animal
models of several types of cancer [42]. A bispecific antibody targeting B7-H3 and 4-1BB
(BsAb; B7-H3 × 4-1BB) has also been developed, which is a B7-H3 inhibitor and a 4-1BB
agonist. It has been shown that BsAb; B7-H3 × 4-1BB, as well as its combination with
anti-PD-1 therapy, inhibits tumor growth in animal models of several types of cancer [43].

2.6. ICOS/ICOSL

Inducible co-stimulator (ICOS), a molecule that also belongs to the CD28/CTLA-4/B7
immunoglobulin superfamily. ICOS and its ligand (ICOSL) are involved in various aspects
of the T-cell response. The ICOS/ICOSL pathway has been shown to play a significant role
in anti-CTLA-4 therapy [44]. ICOS/ICOSL is considered as a target for kidney cancer in
combination with anti-PD-L1 therapy (NCT03829501) [45].

2.7. LAG3

Lymphocyte-associated gene 3 (LAG3) is a transmembrane protein that is expressed
on immune cells. LAG3 refers to immunosuppressive IC molecules. LAG3 overexpression
is associated with overall survival, as is the overexpression of PD-1 and CTLA-4. Currently,
bispecific antibody immunotherapy trials that aim to simultaneously inhibit LAG3 and
PD-1/PD-L1/CTLA-4 are being conducted [46]. According to Zelba et al., simultaneous
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blocking of PD-1 and LAG3 is a promising strategy in the treatment of kidney cancer [47].
Fibrinogen-like protein 1 (FGL1) participates in inactivation of T-cells and is considered as
the main ligand of LAG3 [48].

3. Simultaneous Inhibition of ICs and Other Targets
3.1. ICs and VEGF

Combined treatment regimens, including IC inhibitors and anti-VEGF therapy, have
shown significant efficacy in patients with various types of cancer [49–51]. To date, antian-
giogenic therapy in combination with anti-PD-1/PD-L1 (Pembrolizumab plus Axitinib,
Nivolumab plus Cabozantinib and Pembrolizumab plus Lenvatinib) is recommended
by the NCCN and EAU along with anti-PD-1/anti-CTLA-4 treatment (Ipilimumab plus
Nivolumab as first-line therapy for metastatic RCC [52]).

3.2. ICs and c-Met

c-Met is a receptor tyrosine kinase that is involved in normal cell development and
motility. Aberrant activation of c-Met can lead to tumor growth and metastasis [53]. The
combination of ICI with cabozatinib, which inhibits c-Met in addition to VEGFR, is now
recognized as the new standard of care for metastatic RCC [54]. There is also a study
evaluating the efficacy of a combination of c-Met inhibitor and anti-PD-1 therapy in locally
advanced or metastatic hepatocellular carcinoma and RCC (NCT03655613; NCT02795429).

3.3. ICs and HIF

Co-suppression of IC and Hypoxia-inducible factor (HIF) is also being considered as a
therapeutic strategy. HIF activates downstream effectors, including vascular endothelial
growth factor (VEGF), platelet growth factor (PDGF) and carbonic anhydrase IX (CA
IX), which are involved in cell proliferation, angiogenesis, and erythropoiesis [55]. HIF-
2α is considered as a target for therapy in RCC. The combination of a HIF-2α inhibitor
(belzutifan), an anti-VEGF therapy (lenvatinib), and PD-1 and CTLA-4 inhibitors is currently
being investigated in patients with RCC (NCT04736706).

3.4. ICs and PI3K

The efficacy of a combination of PD-L1 inhibitors (atezolizumab) and VEGF (beva-
cizumab) and a selective phosphoinositide 3-kinase (PI3K)-gamma inhibitor (IPI-549) in
the treatment of metastatic RCC is currently being investigated (NCT03961698). Clinical
trials are also underway to evaluate the effectiveness of combined inhibition of BRAF and
MEK (MAPK and PI3K-Akt-mTOR signaling pathways) in combination with PD-1/PD-L1
blockade in melanoma [56].

3.5. ICs and CXCR4

Overexpression of CXC chemokine receptor 4 (CXCR4) is observed in many types
of cancer and is associated with a poor prognosis [57]. CXCR4 is also considered as a
promising therapeutic target [58]. A number of clinical trials of the combination of a
CXCR4 inhibitor with anti-PD-1/PD-L1 therapy are currently underway in several types of
cancer [4].

3.6. ICs and EGFR

EGFR expression is associated with the progression of many types of cancer. EGFR is
one of the therapeutic targets. It has been shown that EGFR is expressed in 98.4% of cases
in ccRCC [59]. A bispecific antibody that inhibits PD-1 and EGFR (anti-PD-1 x anti-EGFR)
has been shown to significantly suppress tumor growth and activate antitumor immunity
in animal models of various types of cancer [60].
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3.7. ICs and HER2

Overexpression of the human epidermal growth factor receptor 2 (HER2) occurs
in breast and gastric cancer (GC) and is associated with a poor prognosis. Currently,
clinical trials are underway to evaluate the effectiveness of a combination of IC and HER2
inhibitors at different stages of the disease [61,62]. A bispecific antibody that simultaneously
inhibits PD-1 and HER2 demonstrated significant efficacy in both in vitro and in vivo
experiments [63].

4. Regulation of IC Genes by miRNAs

Currently, a lot of miRNAs are known to interact with ICs in various types of cancer.
Table 1 lists miRNAs that interact with ICs and the type of cancer in which this interac-
tion was shown. More than 50 miRNAs regulate the PD-1/PD-L1 pathway, and about
40 miRNAs regulate B7-H3. For other ICs, fewer miRNA regulators have been described.

Table 1. The miRNAs interacting with IC genes in different types of cancer.

Immune
Checkpoint microRNA Cancer Reference

PD-1 miR-374b, miR-4717 Liver cancer [64,65]

PD-1/PD-L1
miR-183 RCC [66]

miR-138-5p, miR-200b, miR-429, miR-508 Lung cancer [67,68]

PD-L1

miR-142-5p PC, OC [69,70]
miR-497-5p ccRCC [71]

miR-20-b, miR-21, miR-130b, miR-138-5p, miR-148a-3p,
miR-191-5p CRC [11,72–74]

miR-195, miR-424-5p, miR-497, miR-873, miR-3609 BC [75–78]
miR-17-5p, miR-146a Melanoma [79,80]

miR-15a, miR-15b, miR-16, miR-193a-3p, miR-320a Pleural Mesothelioma [81,82]
miR-155, miR-195, miR-214 B-cell lymphoma [83–85]

miR-16, miR-195 Prostate cancer [86]
miR-34a, miR-34b, miR-34c, miR-140, miR-200,

miR-200a-3p, miR-3127-5p Lung cancer [87–91]

miR-34a AML [92]
miR-23a-3p, miR-570 Liver cancer [93,94]

miR-375 HNSCC [95]
miR-145 OC, bladder cancer [96,97]

miR-513a-5p Retinoblastoma [98]
miR-105-5p, miR-152, miR-200b, miR-200c, miR-570 GC [99–103]

miR-18a, miR-140, miR-142, miR-340, miR-383 Cervical cancer [104]
miR-217 Laryngeal cancer [105]

miR-20b-5p Models of lung and BC [106]
miR-194-5p PC [107]

PD-L1+B7-H3 miR-326 Lung cancer [8]

PD-1, CTLA-4
miR-424 OC [108]

miR-138-5p Glioma [109]
CD80/CTLA-4 miR-424 CRC [110]

PD-1, PD-L1, CTLA-4 miR-33a Lung cancer [111]
PD-1, BTLA, Tim-3 miR-28 Melanoma mouse model [112]

BTLA miR-32 OC [113]
Tim-3 miR-498 AML [114]
IDO1 miR-153, miR-448 CRC [115,116]

Gal-3
miR-424-3p OC [117]

miR-128 CRC [118]

Gal-9
miR-22 Liver cancer [119]

miR-15b-5p, miR-455-5p, miR-1237, miR-1246 CRC [120,121]
ICOS (B7-H2)/ICOSL miR-24 GC [122]
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Table 1. Cont.

Immune
Checkpoint microRNA Cancer Reference

B7-H3

miR-29 (a, b and c) Neuroblastoma,
sarcoma, brain tumors [123]

miR-145 Lung cancer [124]
miR-28-5p, miR-29a, miR-128, miR-145,

miR-155/miR-143, miR-187, miR-192, miR-335-5p,
miR-378, miR-1301-3p

CRC [125–129]

miR-187 ccRCC [130]

miR-29c Melanoma,
CRC [131,132]

miR-29c, miR-34b, miR-124a, miR-125b-2, miR-214,
miR-297, miR-326, miR-363, miR-380-5p, miR-506,

miR-555, miR-567, miR-593, miR-601, miR-665, miR-708,
miR-885-3p, miR-940

BC [133]

miR-539 Glioma [134]
miR-124 Osteosarcoma [135]
miR-506 Mantle cell lymphoma [136]
miR-214 Multiple myeloma [137]

miR-29, miR-1253 Medulloblastoma [138,139]
miR-199a Cervical cancer [140]

B7-H5 (VISTA, BTNL2) miR-125a-5p GC [141]

B7-H4 (VTCN1)

miR-155/miR-143, miR-1207 CRC [126,142]
miR-7–5p, hsa-let-7c, hsa-let-7f-5p, miR-17–3p,

miR-21–3p, miR-21–5p, miR-24–1-5p, miR-27b-3p,
miR-31–3p, miR-31–5p, miR-33a-5p, miR-33b-5p,

miR-122–3p, miR-130b-3p, miR-138–1-3p, miR-148a-3p,
miR-149–3p, miR-183–3p, miR-186–5p, miR-196a-5p,

hsa-miR-204–3p, miR-299–5p, miR-302a-3p, miR-302e,
miR-335–3p, miR-335–5p, miR-361–5p, miR-374c-5p,

miR-483–3p, miR-513a-5p, miR-519e-3p, miR-520d-5p,
miR-525–5p, miR-615–3p, miR-642a-5p, miR-744–5p,
miR-937, miR-1246, miRPlus-G1246–3p, miR-1260a,

miR-1265, miR-1284, miR-1290, miR-1973, miR-2115–3p,
miR-2116–5p, miR-3178, miR-3202, miR-3646, miR-3651,
miR-3676–3p, miR-3685, miR-3686, miR-4258, miR-4279,

miR-4284, miR-4288, miR-4290, miR-4306, miR-4324

PC [143]

B7-H6 (NCR3LG1) miR-93, miR-195, miR-340 BC [76]

B7-H7 (HHLA2) miR-3116, miR-6870-5p ccRCC [144]

Footnotes: RCC—renal cell cancer; PC—pancreatic cancer; OC—ovarian cancer; CRC—colorectal cancer;
BC—breast cancer; AML—acute myeloid leukemia; HNSCC—head and neck squamous cell cancer; GC—gastric
cancer.

In particular, miR-497-5p is a direct inhibitor of PD-L1 in kidney cancer. An inverse
correlation was noted between miR-497-5p and PD-L1 expression levels in ccRCC sam-
ples. In addition, reduced miR-497-5p expression was associated with shorter survival.
In vitro experiments demonstrated that miR-497-5p suppressed tumor cell proliferation
and migration, simultaneously stimulating their apoptosis [71].

Other miRNAs also can bind to the 3’-UTR of the PD-L1 gene and suppress PD-L1
expression. These include miR-570, miR-34a, miR-200, miR-21, and miR-197. Thus, PD-L1
may be the main target for miRNA control of ICs [7].

MiR-138 and miR-28 inhibit PD-1 expression in T-cells. MiR-138 can enhance immune
response and slow down tumor progression in mouse [109]. A low level of miR-28 in-
duces T-cell exhaustion and allows tumor cells to evade immune surveillance in a mouse
melanoma model [112].
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The impact of miRNAs on other ICs may also be important for the development of
new approaches in cancer therapy. MiR-448 and miR-153 inhibit IDO1 in CRC. MiR-448
activates CD8+ T-cells by inhibiting function of IDO1 enzyme [115].

MiR-153 inhibits IDO1 expression in CRC cells; however, overexpression of this
miRNA does not have a significant effect on tumor cells. However, overexpression of
miR-153 has been shown to enhance the effect of chimeric antigen receptor (CAR) T-cell
therapy [116].

MiR-128 is a direct inhibitor of Gal-3. Reduced miR-128 expression in CRC was
negatively correlated with Gal-3 expression and was associated with poor prognosis. MiR-
128 overexpression increased tumor cell sensitivity to chemotherapy in experiments in vitro
and in vivo [118].

MiR-498 is an inhibitor of Tim-3. In experiments in AML cell lines, miR-498 signifi-
cantly suppressed Tim-3 expression, which led to a decrease in proliferation and an increase
in cell apoptosis [114].

B7-H3 inhibitors include miR-145, miR-1301-3p, miR-335-5p, miR-28-5p and miR-187.
B7-H3 and miR-145 have been shown to be associated with lymph node metastasis, grade,
and TNM stage in lung cancer with malignant pleural effusion [124]. MiR-1301-3p, miR-
335-5p and miR-28-5p downregulate B7-H3 and are associated with lymph node metastasis
and TNM staging in CRC [125]. MiR-187 is also a direct inhibitor of B7-H3. Reduced
miR-187 expression has been shown to be associated with TNM stage in kidney cancer.
Overexpression of miR-187 resulted in decreased proliferation and migration of tumor cells
in vitro and inhibited tumor growth in vivo [130].

The direct target of miR-32 is BTLA. Experiments in OC cell lines showed that miR-32
overexpression led to a decrease in BTLA expression, resulting in a significant suppression
of tumor cell proliferation, migration, and invasion [113].

One miRNA can target several ICs in the same type of cancer (Figure 1). For example,
miR-28 interacts with PD-1/PD-L1, BTLA, and Tim-3 in melanoma [112]; miR-424 interacts
with PD-1/PD-L1 and CD80/CTLA-4 in OC [108]; miR-128 interacts with B7-H3 and Gal-3
in CRC [118,127]; miR-138 interacts with PD-1 and CTLA-4 in glioma [109].

Int. J. Mol. Sci. 2022, 23, x FOR PEER REVIEW 8 of 21 
 

 

 

Figure 1. The miRNAs interacting with several IC genes in some types of cancer. 

The spectrum of targets of the same miRNA can be different in different types of 

cancer. In particular, miR-155 interacts with PD-1/PD-L1 in B-cell lymphoma and with B7-

H3, B7-H4 in CRC [84,126]; miR-145 acts on PD-1/PD-L1 in OC and bladder cancer [96,97], 

meanwhile, in lung cancer and CRC, this miRNA acts on B7-H3 [124,126]. 

It has also been shown that miRNA can interact with the IC gene, in one type of can-

cer and not in another. An interaction of miR-34 with PD-L1 has been found in lung can-

cer, but it has not been seen in pleural mesothelioma [81]. On the other hand, the interac-

tion of a certain miRNA with the IC can be observed in several types of cancer: for exam-

ple, miR-138 inhibits the PD-1/PD-L1 pathway in glioma, CRC, and lung cancer [68,72,109] 

The miRNAs that regulate ICs do so depending on cancer type: there is almost no 

overlap between these miRNAs in different types of cancer (Figure 2). For example, 60 

miRNA regulators of ICs have been identified for PC and 25 for BC. However, among 

them, no miRNAs have been identified in both PC and BC. The same picture is observed 

in many other types of cancer. Among 115 miRNAs shown in the diagram, only 15 miR-

NAs (13%) interact with the IC genes in two or more types of cancer.  

The confidence interval (CI) for the obtained ratio (15/115) was determined. The 95% 

CI was from 7.3% to 21.5%. The diagram (Figure 2) shows miRNAs in five types of cancer, 

which are distributed with the specified characteristics. In total, we have considered 207 

miRNAs in the article, 30 of which regulate IC in different types of cancer (Table 1). The 

analysis of the data demonstrates the only 14.5% (95% CI: 9.8–20.1%) of the studied miR-

NAs regulate the expression of specific IC in more than one type of cancer. That is, when 

the number of analyzed miRNAs increased by almost two times, the share of overlapping 

miRNA and confidence intervals practically did not change. 

Figure 1. The miRNAs interacting with several IC genes in some types of cancer.



Int. J. Mol. Sci. 2022, 23, 9324 8 of 20

The spectrum of targets of the same miRNA can be different in different types of cancer.
In particular, miR-155 interacts with PD-1/PD-L1 in B-cell lymphoma and with B7-H3,
B7-H4 in CRC [84,126]; miR-145 acts on PD-1/PD-L1 in OC and bladder cancer [96,97],
meanwhile, in lung cancer and CRC, this miRNA acts on B7-H3 [124,126].

It has also been shown that miRNA can interact with the IC gene, in one type of cancer
and not in another. An interaction of miR-34 with PD-L1 has been found in lung cancer,
but it has not been seen in pleural mesothelioma [81]. On the other hand, the interaction
of a certain miRNA with the IC can be observed in several types of cancer: for example,
miR-138 inhibits the PD-1/PD-L1 pathway in glioma, CRC, and lung cancer [68,72,109]

The miRNAs that regulate ICs do so depending on cancer type: there is almost
no overlap between these miRNAs in different types of cancer (Figure 2). For example,
60 miRNA regulators of ICs have been identified for PC and 25 for BC. However, among
them, no miRNAs have been identified in both PC and BC. The same picture is observed in
many other types of cancer. Among 115 miRNAs shown in the diagram, only 15 miRNAs
(13%) interact with the IC genes in two or more types of cancer.
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Figure 2. The Venn diagram of the number of miRNAs interacting with IC genes in various types
of cancer.

The confidence interval (CI) for the obtained ratio (15/115) was determined. The
95% CI was from 7.3% to 21.5%. The diagram (Figure 2) shows miRNAs in five types of
cancer, which are distributed with the specified characteristics. In total, we have considered
207 miRNAs in the article, 30 of which regulate IC in different types of cancer (Table 1).
The analysis of the data demonstrates the only 14.5% (95% CI: 9.8–20.1%) of the studied
miRNAs regulate the expression of specific IC in more than one type of cancer. That
is, when the number of analyzed miRNAs increased by almost two times, the share of
overlapping miRNA and confidence intervals practically did not change.

For the first time, on a large sample of miRNAs, we showed the tumor specificity
of their action on the IC genes. Similar results were obtained both in the study of five
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types of cancer and in the study of more of them. These calculations show that the number
of miRNAs studied is sufficient for reliable statistical evaluation. Similar results are also
observed in separate experiments. Thus, in the work of Qian et al., 62 miRNAs associated
with B7-H4 in pancreatic cancer were identified using the miRCURY LNA™ microchip.
Of these miRNAs, only 8 (13%) regulate ICs in other cancers [143]. In lung cancer, it was
shown that miR-34 directly interacts with the 3’-UTR of PD-L1; miR-34 overexpression
suppressed PD-L1 protein expression [87]. At the same time, in pleural mesothelioma, Kao
et al. did not observe the relationship between the expression of miR-34 and PD-L1 [81].
Thus, our conclusion about the tumor-specific interaction of miRNA with ICs is consistent
with the results of studies by other authors. Essentially, miRNAs can be differentially
expressed depending on cancer type. Korotaeva et al. found that miRNAs are specifically
expressed in certain types of neuroendocrine tumors [145].

5. miRNAs as Regulators of ICs and Targeted Therapy Genes

In addition to ICs, miRNAs can also affect other genes (such as mediators of angiogen-
esis, hypoxia, etc.) and thus regulate different signaling pathways (Table 2). In other words,
miRNAs function as part of a complex signaling network [146].

Table 2. MiRNAs regulating immune checkpoints as well as other cancer relevant genes.

microRNA Immune
Checkpoints Other Targets Cancer Reference

miR-16 PD-1/PD-L1 BCL2, CCND1 Pleural mesothelioma [81,147]

miR-138
PD-1/PD-L1,

CD80/CTLA-4 CD44, SOX13 Glioma [109,148,149]

PD-1/PD-L1 SIRT1 CRC [72,150]
miR-34a PD-1/PD-L1 EGFR, BCL-2, Met Lung cancer [87,151,152]
miR-326 PD-1/PD-L1, B7-H3 CCND1, ADAM17 [8,153,154]
miR-340 B7-H6 MET BC [76,155]
miR-155 B7-H3, B7-H4 HIF-1

CRC

[126,156]

miR-143 and miR-145 B7-H3, B7-H4 VEGF/VEGFR, HIF-1,
IRS-1/IGF-IR [126,157–159]

miR-335 B7-H3 ZEB2 [125,160]
miR-128 B7-H3, Gal-3 SIRT1 [118,127,161]
miR-28 B7-H3 CCND1 [125,162]

miR-1246 Gal-9 CCNG2 [121,163]
miR-21 PD-1/PD-L1 PTEN [11]

miR-148a PD-1/PD-L1
HER3, WNT10b,

VEGF/VEGFR, HIF-1, BCL-2,
CANX

[73,164–168]

miR-424 PD-1/PD-L1 PTEN, IRS-1/IGF-IR, BCL-2
BC

[78,169]
miR-214 B7-H3 PTEN [133,170]
miR-183 B7-H4 PDCD4 PC [143,171]

miR-142 PD-1/PD-L1 BIRC3, BCL2, BCL2L2, MCL1,
XIAP OC [70,172]

In particular, in CRC, a number of miRNAs may affect both ICs and other genes that
play a key role in cancer development. For example, miR-145 inhibits its target B7-H3, miR-
143 is a direct inhibitor of B7-H3 and B7-H4. Also, these miRNAs suppress the angiogenesis
regulator VEGF, HIF1 and the IRS-1/IGF-IR signaling pathway, which is a potent inhibitor
of apoptosis and cell differentiation [126,157–159].

MiR-143 indirectly interacts with miR-155. The miR-155 targets C/EBPβ, a transcrip-
tional activator for miR-143. MiR-155, by inhibiting miR-143, has been shown to increase
the expression of B7-H3 and B7-H4 [126]. Also, miR-155 is described as a direct inhibitor of
HIF-1α, and thus, being a regulator of various signaling pathways, miR-155 functions as an
oncomiR and a tumor suppressor [156].
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MiR-148a, in addition to PD-L1, inhibits the human epidermal growth factor receptor
3 (HER3), Wnt/β-catenin pathway ligand—WNT10b, apoptosis regulator—BCL2, as well
as VEGF and HIF1 in CRC; that is, it acts as a tumor suppressor [73,164–167].

In addition, miR-148a has been shown to inhibit the calnexin (CANX)/MHC-I signal-
ing pathway in CRC, by downregulating its direct target, CANX. An increased level of
CANX expression in the tumor positively correlates with the overall survival of patients
with CRC. Thus, miR-148a functions as a tumor promoter in this case [168].

In CRC miR-1246 inhibits Gal-9 and CCNG2, which is a tumor suppressor; decreased
expression of CCNG2 occurs in many types of cancer and correlates with lymph node
metastasis, clinical stage, and poor prognosis [121,163].

One miRNA can be involved in several signaling pathways that mediate different,
sometimes opposite, cell functions. This can lead to the development of adverse events
of miRNA-based therapy. Thus, when considering miRNAs as therapeutic targets, the
features of their action in a particular type of cancer should be taken into account.

6. Prospects for miRNA-Based Therapy

Currently, a number of therapeutic approaches involving miRNAs are being devel-
oped: combinations of miRNAs with other agents [173–177], as well as combinations of
two miRNAs [178–180] are being investigated.

MiRNAs from the miR-200 family are inhibitors of PD-L1 [90], HIF-1α, and the VEGF
pathway [181–183]. According to Nguyen et al., nanoparticle therapy containing miR-200c
as a PD-L1 inhibitor with a BRAF inhibitor demonstrated significant efficacy in a mouse
model of CRC [177].

MiR-15/16 cluster miRNAs have been shown to interact with several genes. In prostate
cancer, a negative correlation was found between the expression level of miR-195 and miR-
16 and PD-L1, PD-1, CD80, and CTLA-4 [86]. In pleural mesothelioma, miR-15/16 inhibited
PD-L1, Bcl-2, and CCND1. Injection of miR-16 mimetics led to a decrease in Bcl-2 and
CCND1 expression levels and also inhibited tumor growth in animal models of malignant
pleural mesothelioma [81,147]. The efficacy of miR-16 mimetic was evaluated in phase
I clinical trials in patients with malignant pleural mesothelioma. The trial results were
described as promising and suggest further drug research [184,185].

Experiments on T-cells have shown that direct targets for miR-155 are CTLA-4 and
BTLA [186,187]. Administration of antibodies against CTLA-4, PD-1, and PD-L1 activated
the antitumor immune response in miR-155 knockout mice [188]. MiR-155 also indirectly
inhibited CXCR4 in glioma [156,189]. In chronic lymphocytic leukemia, diffuse large B-cell
lymphoma, and liposarcoma, miR-155 acts as an oncomiR by inhibiting its direct targets, the
casein kinase CSNK1G2 and the casein kinase 1α (CK1α) isoforms [190,191]. Also, miR-155
upregulates PD-L1 expression [84] and regulates a number of signaling pathways (including
JAK/STAT, MAPK/ERK, and PI3K/AKT) in lymphoma [192]. The miR-155 inhibitor
has performed well in the clinical trials NCT02580552, NCT03837457 and NCT03713320
in patients with hematologic malignancies in which miR-155 is overexpressed, such as
cutaneous T-cell lymphoma, mycosis fungoides, chronic lymphocytic leukemia, diffuse
large B-cell lymphoma, ABC subtype, adult T-cell leukemia/lymphoma [193].

MiR-138 acts as a tumor suppressor in many types of cancer and inhibits many target
genes. Overexpression of miR-138 may increase the sensitivity of tumor tissue sensitivity to
chemotherapy [194]. In lung cancer, miR-138 has been shown to significantly inhibit tumor
cell proliferation in vitro by acting on its target, the PD-L1/PD-1 pathway. In experiments
on NSCLC xenografts, miR-138 not only inhibited tumor growth, which led to a decrease
in its size, but also regulated the tumor microenvironment [68]. In CRC, transfection with
miR-138-5p mimetics also led to a decrease in tumor cell proliferation. In experiments
on xenografts with the administration of miR-138 tumor size was decreased [72]. In
glioma models, miR-138 inhibited CTLA-4 and PD-1, leading to significant regression of
subcutaneous tumors. Moreover, tumor regression continued even after treatment was
stopped. The administration of miR-138 was also effective in animals with intracerebral
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tumor localization: the average lifespan of mice treated with miR-138 was 33.5 days, and in
the control group it was 23.5 days [109].

MiR-424 is a direct inhibitor of PD-L1 and CD80. It was shown that miR-424 expression
in OC tumors negatively correlated with the PD-L1 and CD80 expression level. Also,
miR-424 overexpression was correlated with progression-free survival. In experiments in
animal models of OC, restoration of miR-424 expression increased tumor sensitivity to
chemotherapy. Administration of miR-424 led to tumor regression and decreased tumor
cell chemoresistance due to the activation of the T-cell immune response [108].

MiR-142-5p is a direct inhibitor of PD-L1. In vitro experiments revealed that miR-142-5p
overexpression did not affect the tumor cell proliferation. However, miR-142-5p has been
shown to inhibit the growth of PC and enhance antitumor immunity in vivo [69].

It has been shown that miR-34a inhibits PD-L1 and reduces the proliferation and
migration of BC cells [195]. Overall, more than 30 target genes have been described for miR-
34a involved in various signaling pathways in cancer. MiR-34a liposomal mimic, MRX34, is
the first-in-human miRNA-based drug that has been evaluated in clinical trials in patients
with various solid tumors [196]. This trial was terminated due to serious immune-mediated
adverse events that may indicate the effect of this miRNA on several immune system
regulatory genes. Despite this, miR-34a continues to be considered as a therapeutic target
in cancer, as it has significant tumor suppressor potential. It was shown that the induced
co-expression of miR-34a with other miRNAs led to a pronounced and stable therapeutic
effect in models of various types of cancer, such as CRC, NSCLC, melanoma, etc. [197].
Orellana et al. identified five miRNAs that, in combination with miR-34a, most effectively
inhibited tumor cell proliferation [198]. The combination of miR-34a-mimic and antisense-
miR-10b is also being studied in BC models [180]. Meng et al. showed that the synthesized
miR-34a analog NS-MX3 simultaneously decreased the expression of B7-H3 and PD-L1
and demonstrated superior antitumor activity in CRC models in vitro and in vivo [199].

Thus, the results of in vitro and in vivo experiments on the study of miRNAs as
immunotherapeutic agents look encouraging.

In order to use miRNA-based drugs in clinical practice, these drugs must meet the
requirements for efficacy and safety. Techniques that provide more specific binding to a
target can increase the effectiveness of miRNA-based therapy, as well as reduce the dose of
the administered drug, thereby reducing its side effects.

7. Conclusions

We have reviewed more than 200 miRNAs that regulate ICs in tumors of various
types. The results of accumulated data analysis for the first time demonstrate a significant
relationship between the action of miRNAs on ICs genes and the type of tumor—only
about 14% (95% CI: 9.8–20.1%) of the studied miRNAs regulate the expression of specific
IC in more than one type of cancer. That is, there is tumor specificity in the miRNA action
on ICs.

An important feature of miRNA is its ability to affect the expression of several genes
simultaneously. The data described here evidenced that some miRNAs can simultaneously
regulate more than one IC gene. In addition, there are miRNAs that can affect both the
IC gene and some targeted therapy genes. These results indicate the possibility of using
miRNAs in the future as an alternative to combined treatment regimens that use inhibition
of both two ICs simultaneously and inhibition of ICs together with targeted therapy genes.

Currently, there are numerous studies underway to identify miRNAs that are the most
promising as immunotherapy agents. In vivo experiments have repeatedly shown that
miRNA-based therapy leads to significant tumor regression.

Although miRNA has not yet entered the arsenal of antitumor agents used in practice,
some results are encouraging. Thus, the miR-155 inhibitor has performed well in clinical
trials. The study of miR-138 is promising. Ongoing research on miR-34a may also lead to a
positive result. Thus, there is the prospect of using miRNA as a therapeutic agent in cancer
immunotherapy regimens.
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At the same time, the ability of miRNAs to inhibit several genes can lead to adverse
events. To overcome this, it is important to expand data of the spectrum of miRNA targets
in a particular type of cancer. Additional studies of the miRNA–genes interaction features
and the search for an optimal miRNA mimic structure are necessary, thus allowing an
increase in the efficiency and selectivity of interaction with the mRNA of target genes. It
can increase the effectiveness of therapy, as well as reduce the dose of the drug, thereby
reducing its side effects.
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