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Abstract: Fragile X Syndrome (FXS) is the main genetic reason for intellectual disability and is caused
by the silencing of fragile X mental retardation protein (FMRP), an RNA-binding protein regulating
the translation of many neuronal mRNAs. Neural differentiation of FX human embryonic stem cells
(hESC) mimics the neurodevelopment of FXS fetuses and thus serves as a good model to explore
the mechanisms underlining the development of FXS. Isogenic hESC clones with and without the
FX mutation that share the same genetic background were in vitro differentiated into neurons, and
their transcriptome was analyzed by RNA sequencing. FX neurons inactivating FMR1 expression
presented delayed neuronal development and maturation, concomitant with dysregulation of the
TGFβ/BMP signaling pathway, and genes related to the extracellular matrix. Migration assay
showed decreased neurite outgrowth in FX neurons that was rescued by inhibition of the TGFβ/BMP
signaling pathway. Our results provide new insights into the molecular pathway by which loss
of FMRP affects neuronal network development. In FX neurons, the lack of FMRP dysregulates
members of the BMP signaling pathway associated with ECM organization which, in a yet unknown
mechanism, reduces the guidance of axonal growth cones, probably leading to the aberrant neuronal
network function seen in FXS.

Keywords: Fragile X syndrome; human embryonic stem cells; neural differentiation; RNA
sequencing; neurite outgrowth; TGFβ/BMP pathway

1. Introduction

Fragile X Syndrome (FXS) is the most common form of inherited intellectual disability.
It is caused by inactivation of the FMR1 gene and its encoded protein FMRP due to a CGG-
repeat expansion in the 5′-untranslated region of the gene (when over 200 repeats), leading
to DNA hypermethylation-mediated FMR1 silencing [1]. FMRP is an RNA-binding protein
that regulates mRNA transport, stability, and translation [2]. In accordance, the absence of
FMRP in FX results in altered patterns of protein synthesis [3–5], which leads to impaired
signaling in a number of intracellular pathways involved in neural differentiation and
maturation [6,7]. This altered protein translation eventually leads to damaging neuronal
network activity throughout the brain, which is critical for learning and memory [8].

Several in vivo and in vitro models are being used to investigate FX pathologies. FMR1
knockout (KO) models were previously generated, mainly in mice [9,10] but also in zebrafish
and drosophila [11,12]. However, there are many substantial differences between the human
brain and that of animal models. The human in vitro models available are post-mortem
adult neurons or neural precursor cells (NPCs) extracted from aborted fetuses [7,13–15] and
induced pluripotent stem cells (iPSCs) generated from FXS individuals [16,17], but none
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of these human in vitro models express FMR1. In vitro neural differentiation of human
embryonic stem cells (hESCs) can generate NPCs and cortical neurons that resemble fetal
neurons [18,19], imitate human development, and thus serve as a powerful model to investigate
the initial stages of neurodevelopment in FXS. Thus far, we derived several male FX-hESCs
lines from FX-affected blastocysts, carrying the full natural mutation of the FMR1 gene [20,21].
Using this paradigm to study FX, we now know that FMR1 engages in neural progenitor
differentiation, neuronal maturation, and synaptic network function [22–27]. However, it is
not yet fully understood which molecular pathways are expressed at the initial stages of
neurogenesis and are later translated to the impaired FX neuronal phenotype.

Although most research into the neurologic role of FMRP is so far directed at mature
neurons, there is a growing body of evidence to suggest that at least some of the deficiencies
characterizing FXS are due to aberrant development that accompanies the gradual inac-
tivation of FMRP during embryonic development. Neural differentiation protocols give
rise to highly heterogeneous cellular populations with distinct cell-fates, including NPCs,
neurons, and glia. A number of studies, including ours, revealed a significant reduction
in FMR1 expression already in hESC-derived NPCs, leading to disparate expression of
key neurodevelopmental genes that are shown to regulate proliferation, survival, and
differentiation, highlighting the role of FMRP during neurogenesis [27–29].

We used isogenic sub-clones from a parental hESC line carrying the full FMR1 mutation
(>200 CGG repeats) and an isogenic control clone free of the FMR1 mutation that share
the same genetic background, together with an accelerated gradual neural differentiation
protocol that mimics the natural process of the disease in vitro. This multi-tiered approach
was used together with RNA sequencing and migration bioassay to further decipher the
molecular and cellular basis underlying the aberrant function of FX neurons.

2. Results
2.1. Delayed Neurodevelopment of FX-hESCs

Using an improved and accelerated in vitro neural differentiation protocol, including
a combinatorial application of six signaling pathway inhibitors, to robustly convert human
pluripotent stem cells into a population of post-mitotic cortical neurons, a large number
of neural cells expressing different neuronal genes were successfully generated from all
three control hESC lines (Hues 13, H9 and Hues 64), as well as from all three FX-hESC lines
(LisFX6, LisFX11 and HEFX1). A dense population of PAX6 and CNS neural precursors was
generated already within 6 days in vitro (DIV); and within 13 DIV, approximately 50% of
the cells expressed the neuronal gene Tuj1+ (Figure 1A). The FX-hESCs lines demonstrated
delayed differentiation with more PAX6+-NPCs after six DIV as compared to the control,
and less early born neurons (Tuj1+) were generated. However, since the use of isogenic hESC
lines is important when focusing on the effect of FMR1 inactivation solely while reducing
the effects of other genes that can emerge when cells with different genetic backgrounds are
compared, in all further experiments, isogenic sub-clones that were recently isolated in our
lab were used: one in the full-mutation range (LisFX6 FX clone), and an isogenic control
that is free of the mutation (<50 CGG repeats) [24]. Both the FX clone and its isogenic
control stained positive for the pluripotent markers OCT4, SSEA4, and TRA-1-60, but only
the FX clone inactivated FMR1 expression following neuronal differentiation (Figure 1B,C),
mimicking the natural FMR1 silencing characterizing FXS fetuses at early development.
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Figure 1. Delayed early neurodevelopment is concomitant with FMR1 silencing. (A) Immunoflu-
orescence staining of three FX- and three WT-hESC lines at 0, 6, and 13 DIV of accelerated neural
differentiation, with the pluripotent marker POU5F1 (OCT4, green) and the neural genes β-III tubulin
(Tuj1) (green) and the neural precursor marker PAX6 (red). Cell nuclei were stained blue by DAPI.
Scale bar: 200 µm. (B) Immunofluorescence staining of a full-mutation sub-clone and its isogenic
control for microtubule-associated protein 2 (MAP2) (red) and for FMRP (green), at 13 DIV. Cell
nuclei were stained blue by DAPI. Scale bar: 50 µm. (C) Western blot analysis of FMRP expression in
23 DIV neurons following magnetic sorting (MACS) with CD184 antibody (negative fraction). Actin
served as a positive control.

Following in vitro neural differentiation, various cell types are generated, including
NPCs, neurons, and glia. In order to examine gene expression effects of FX specifically in
neurons, we enriched their population in the culture by deselecting glia and NPCs express-
ing the cell surface marker CD184 using magnetic cell sorting (MACS; Figure 2A). Plating
the cells following their sorting resulted in an enrichment of mature neurons expressing
synapsin-1 (SYN1) within the CD184 negative fraction (Figure 2B). These neurons stained
positive for the neuronal marker Tuj1 (Figure 2C) and the synaptic genes SYN1 and PSD-95
(Figure 2D), demonstrating their synaptic maturation. This enriched neuronal population
will enable further examination of how a lack of FMRP affects gene expression in neurons,
without confounding effects resulting from other neural cells comprising the cell culture.
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Figure 2. Enrichment of neuronal population following neural differentiation of hESCs. (A) Experi-
mental scheme of generating FX and isogenic control neurons, differentiation, and magnetic sorting
for neuronal enrichment with the cell surface marker CD184. (B) RNA expression of synapsin-1
(SYN1) by qRT-PCR at 23 DIV following MACS of isogenic control cells. The positive fraction served
as control to normalize the values obtained. The housekeeping gene GAPDH served as an internal
control. Three independent biological experiments were performed, and values are presented as
mean± Standard error. (C) Neural cells at 23 DIV before and after MACS with CD184. Bright field
(BF) and immunofluorescence staining for the neuronal gene Tuj1 (green). Cell nuclei were stained
blue by DAPI. Scale bar: 100 µm. (D) Immunofluorescence staining of FX and its isogenic control
cells following in vitro neural differentiation and neuronal enrichment, for SYN1 (red) and for the
postsynaptic density protein 95 (PSD-95; green). Cell nuclei were stained blue by DAPI. Scale bar:
50 µm.

2.2. Loss of FMRP Leads to Altered Gene Expression throughout Neuronal Differentiation

To further determine FMR1’s role in neural maturation, RNA sequencing was per-
formed on samples extracted from different time points during neuronal differentiation
of both FX and isogenic control cells. Bioinformatic analysis identified a distinct tran-
scriptomic signature for each time point, most notably for the pluripotent hESCs (0 DIV)
compared to that of neurons (13 and 23 DIV), in both FX and control cells, accounting for
over 80% of the total variance per principal component analysis (PCA; Figure 3A). PCA
analysis of RNA-seq data show that FX and isogenic control cells present some similar
transcriptomic signatures at each differentiation stage, demonstrating that these are indeed
isogenic lines originating from the same parental line, and thus share the same genetic
background. The distinct gene expression patterns in the three time points in both FX and
its isogenic control cells confirm successful neuronal differentiation, and they demonstrate
that the absence of FMRP does not affect their pluripotency as well as their differentiation
potential. It was interesting to realize that, although all cultures looked sterile through all
stages of differentiation, even following a very thorough examination under the microscope,
viral RNA was found in two of the samples (i.e., d13 control and fragile X; experiment #1;
Figure S1A), coinciding with expression of immune-response genes and causing a skew
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in gene expression that persisted to 23 DIV. Samples affected by the contamination were
therefore excluded from further analysis (Figure S1B,C).Int. J. Mol. Sci. 2022, 23, 9278 6 of 17 
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Figure 3. Transcriptomic analysis of neurons derived from FX and isogenic control hESCs. (A,B) Prin-
cipal component analysis (PCA) plot of RNA-seq data. Colors represent cell line and DIV: d0 (hESCs),
d13 (NPC and early neurons) and d23 (enriched population of neurons following MACS with CD184;
(A) PCA of 0, 13, and 23 DIV during neural differentiation of hESCs; (B) PCA of 13 and 23 DIV samples.
(C,D) Volcano plots of DEGs in FX compared to isogenic control, on 13 (C) and 23 DIV
(D) of neuronal differentiation. Significantly downregulated genes relative to control are shown
in blue and upregulated genes are shown in red. FDR < 0.05. (E) Heatmap of differentially expressed
genes (DEGs) at 13 and 23 DIV of FX- and isogenic control-hESCs. Columns represent samples and
rows represent genes, clustered by expression patterns, with added enriched gene ontology (GO) terms
of some clusters. The heatmap is colored according to normalized, Z-transformed gene expression
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values, ranging from lowest (blue) to highest (red). Gene enrichment bars contain only signif-
icantly over-represented terms within the respective gene cluster, with bar height representing
-log10(qvalue) (adjusted significance of enrichment). (F) Venn diagram showing the overlap of
DEGs identified in this study (13 and 23 DIV) and FMRP targets published in Darnell et al., 2011 [3]
(* hypergeometric test; p < 8 × 10−6).

The PCA results show that, following 23 DIV, the FX cells clustered closer to their
13 DIV control counterparts (Figure 3B), indicating a delayed differentiation of the FX
cells, as also shown by immunostaining (Figure 1A). A total of 294 significant differen-
tially expressed genes (DEGs) were identified in FX d13 compared to its isogenic control
(FDR < 0.05; Figure 3C), and 339 DEGs in d23 (FDR < 0.05; Figure 3D). Gene-Ontology
(GO) enrichment analysis of these DEGs showed enrichment in pathways related to the
regulation of the bone morphogenetic protein (BMP) signaling pathway, cellular response
to transforming growth factor beta (TGFβ) stimulus, and extracellular matrix (ECM) organi-
zation (Figure 3E). Other enriched pathways were related to dysregulation of neurogenesis
and include neuron migration, axonogenesis, axon guidance, glutamatergic synapse, and
GABA-ergic synapse, (Figure 3E, cluster 4). More importantly, a significant number of the
DEGs identified in this study were previously identified as mRNA targets of FMRP in the
mouse brain [3] (Hypergeometric test p < 8 × 10−6; Figure 3F). These results suggest that
the TGFβ/BMP pathway is probably regulated by FMRP to govern the organization and
development of neural cells. Consequently, FMRP inactivation in FXS and autism spectrum
disorders is correlated with aberrant development of the central nervous system.

2.3. Fragile X-Derived Neurons Display a Neurite Outgrowth Defect Manifested by the
BMP Pathway

We previously showed that FX NPCs demonstrate abnormal neurite outgrowth [18],
but it is not yet clear which molecular pathways are involved and how neurons are affected.
The GO enrichment analysis of our DEGs by clusters of common expression patterns (co-
expression), highlights cluster 2, in which there is an enrichment for genes involved in the
BMP signaling pathway (cluster 2 in Figure 3E; Figure 4A). In our dataset, altered expression
of BMP signal transduction genes is evidenced by 13 DIV of neural differentiation with
mainly inhibitors of the BMP pathway. At 23 DIV, the downregulated BMP genes were also
largely associated with ECM organization, as seen by the GO enrichment analysis where
many genes are commonly connected to the BMP pathway and the ECM (Figure 4B). On
the other hand, the upregulated BMP genes were also associated with regulation of neuron
projection development, dendrite development, neurotransmitters secretion, and signal
release from synapse (Figure 4C).
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Figure 4. BMP related genes are involved in the altered differentiation of FX neurons. (A) Heatmap of
DEGs related to the BMP pathway during neuronal differentiation of FX- and isogenic control-hESCs
(13 and 23 DIV). Columns represent samples and rows represent genes, categorized into clusters of
common expression patterns. The heatmap illustrates lower (blue) to higher (red) gene expression
levels. (B) A GO enrichment plot of 23 DIV downregulated DEGs, with a focus on BMP. (C) A GO
enrichment plot of 23 DIV upregulated DEGs, with a focus on BMP.

Neurite outgrowth is an important process during normal early neurodevelopmental
which regulates the proper axons and dendrites formation and eventually leads to the
development of synaptic connections. In order to explore neuronal migration in a functional
in vitro bioassay a scratch assay was conducted at 13 DIV, and the neuronal extensions were
measured and quantified. The results show decreased neurite outgrowth in FX neurons
compared to their isogenic controls (Figure 5A; no treatment). The addition of inhibitors
of the TGFβ/BMP/SMAD signaling pathway, SB431542 and LDN-193189, rescued FX
cells by significantly increasing their neurite outgrowth to a level similar to the control
(Figure 5B), while the same treatment had no effect on outgrowth of control neurons
(Figure 5C). qRT-PCR demonstrated that this rescue in neuronal function upon treatment
with BMP inhibitors is correlated to significant correction in the expression of several DEGs
related to the BMP pathway (Figure 5D).
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Figure 5. Fragile X-derived neurons display a neurite outgrowth defect. (A) Representative images
of isogenic control (left) and FX (right) clones, after the scratch and 24 h following it, with (upper) or
without (lower) SB431542 and LDN-193189 (10 µM and 250 nM, respectively). Surface area analyses
was measured using ImageJ software 1.53f51 (NIH, http://rsbweb.nih.gov/ij/, USA). Scale bar:
200 µm. (B) Quantified values are growth width average calculated as the difference between the
averaged cut width at the cutting time and the width left after 24 h. All values are mean ± SEM (* p
< 0.0001; One-way ANOVA). Data obtained of each clone from three independent experiment and 30
fields, or more, were analyzed in each group. (C) Quantification of the difference in growth width
between the treated and untreated cultures (* p < 0.05; Paired Student’s t-test). (D) RNA expression
of DEGs from the BMP pathway analyzed by qRT-PCR at 14 DIV, in FX and control cells after a day
with or without treatment of the TGFβ/BMP/SMAD inhibitors, SB431542 and LDN-193189. The

http://rsbweb.nih.gov/ij/
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untreated isogenic control served as a negative control to normalize the values obtained. The
housekeeping gene, GAPDH, served as an internal control. Three independent biological experiments
were performed, and values are presented as mean± Standard error. * p < 0.05, t-test.

We recently demonstrated that impaired functional connectivity underlies Fragile X
syndrome, in which FX neuronal networks are more hyperexcitable and less synchronous
than that of the control [24]. By differentiating FX-hESCs even longer, through 51 DIV, we
showed that this feature of asynchronous network activity in FX neurons is even more
pronounced (Figure 6A). Together with the data presented in this study, we suggest the
following molecular mechanism to regulate the aberrant function of FX neuronal networks
(Figure 6B). In FMRP-expressing neurons, the regulation of the TGFβ/BMP pathway allows
for normal neurite outgrowth and axonogenesis, resulting in good neuronal network
activity and leading to the development of normal learning and memory abilities. In
contrast, in FX neurons, the lack of FMRP changes the local expression of different members
of the BMP signaling pathway that reduces the guidance of axonal growth cones. Together
with the hyperexcitability and asynchronous neuronal network activity, this mechanism
of action can explain the origin for development of intellectual dysfunction associated
with FXS.
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Figure 6. Suggested mechanism by which FMR1 inactivation regulates the impaired functional
connectivity underlying Fragile X syndrome. (A) Neurons were plated, measured, and analyzed by
multielectrode array recordings and data analyses were performed as previously described in Gildin
et al., 2022 [24]. These heatmaps summarize cross-correlation among all multielectrode array active
electrodes (≥15 spikes/min) of WT (top) and FX (bottom) derived neurons at 44 DIV (left) and 51 DIV
(right). The panel ranges from high synchrony/high cross-correlation among neurons (red), to low



Int. J. Mol. Sci. 2022, 23, 9278 10 of 16

synchrony/low cross-correlation (blue). Diagonal red patterns stand for autocorrelation within
the recorded neurons. (B) Schematic presentation of the suggested molecular pathway regulating
aberrant function in FXS. In control neurons, FMRP is important for the regulation of BMP signaling
pathways and ECM molecules expression: these in turn control proper neurite outgrowth. Together
with the formation of normal neuronal network activity, learning and memory abilities are generated.
In contrast, in FX-derived neurons, FMRP is not expressed, leading to altered expression of BMP
and ECM signaling pathways and resulting in reduced neurite outgrowth. Eventually, with the
hyperexcitable and less synchronous neuronal networks, intellectual disability is formed.

3. Discussion

In this study, we used a set of isogenic hESC subclones of full-mutation FX and
control lines that share the same genetic background, together with an accelerated in vitro
neuronal differentiation protocol, followed by neuronal enrichment, in order to investigate
the molecular alterations controlled by FMR1 inactivation. RNA sequencing analysis
demonstrated that, already at the early stages of neurodevelopment, the FX neural cells
present altered and delayed maturation, which may affect the electrophysiological function
of the mature neurons within the brain. We identified changes in the TGFβ/BMP signaling
pathway: these DEGs were also associated with ECM organization and neuronal migration.
We found that the neurite outgrowth of FX neurons is decreased, which was corrected by
inhibiting the TGFβ/BMP/SMAD signaling pathway, showing its impact on the abnormal
neurodevelopment induced upon FMRP loss.

FMRP is highly expressed in healthy individuals during early embryogenesis and is
required for proper neuronal differentiation [7,30]. It is an mRNA-binding protein which
regulates the translation of hundreds of proteins [3]. In order to mimic the effect of FMRP si-
lencing on the embryo’s neurodevelopment, the accelerated neural differentiation protocol
was applied in this study, which generated a heterogenous neural cell population, including
astrocytes that autonomously support even very long neuronal cultures. Since the focus
of this study was the neurons, and in order to reduce variations among experiments, the
neuronal population was enriched using MACS to gently exclude NPCs and glial cells
from the analyzed cultures. A similar gene expression profile was observed in both FX and
their isogenic control hESCs indicating that, although the FMRP mutation does not harm
the differentiation potential of the cells, it does disrupt neuronal related molecular path-
ways. The association between FMRP silencing and the aberrant gene expression profile
is reflected in the DEGs wefound, which were enriched in FMRP targets also previously
found in FX-mouse brains [3]. The RNA sequencing analysis also demonstrated alterations
in pathways related to the ECM, neurite outgrowth, synaptogenesis, and synaptic function
and maturation, that collectively affect learning and memory capabilities associated with
FXS [31,32]. Altogether, these results suggest that the absence of FMRP leads to dysregula-
tion of critical processes in the developing brain that consequently probably contribute to
the cognitive deficiencies underlying FXS.

The TGFβ/BMP signaling pathway is tightly engaged in early neurodevelopment
when BMP ligands and receptors are expressed in a complex manner in all regions of
the central and peripheral nervous system [33–35]. The strict regulation of this pathway
controls cell fate specification and maturation. Among its roles in neurogenesis is the regu-
lation of dendritic development, neurite outgrowth, axon growth, and synapse formation,
plasticity, and transmission [33,36]. In the present study, we show the involvement of
TGFβ/BMP signaling in the disrupted development of FX neurons, as well as the dysreg-
ulation of neuronal maturation and synaptic genes. It was previously shown in neurons
derived from FMR1-KO mice and FXS patients that FMRP binds the BMP type II receptor
(BMPR2) and regulates its downstream targets, leading to abnormal synaptogenesis [37].
These results are in accordance with those found in the Drosophila FX-KO model in which its
locomotion abnormality was reversed by inhibiting the BMP downstream target, LIMK [38].
Aberrant expression of the BMP pathway was also found in other neurodevelopmental
and neurodegenerative disorders, such as Angelman syndrome, Alzheimer’s disease, and
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Huntington’s disease [33]. All these results, together with those found here for human FX
neurons, points out at the extensive involvement of the FMRP-regulated BMP pathway in
neurogenesis.

We and others previously reported defective neurite outgrowth and downregulation of
axon guidance genes in neurons derived from FX- human pluripotent stem cells [17,18,26].
Other studies also showed abnormalities in neural development, abnormal dendritic spine
morphology, and deformed growth cone development that affect axon guidance, regulated
at least in part by the BMP pathway [39–42]. Here, we show for the first time that the
reduction in neurite outgrowth in the early development of FX-derived neurons can be
corrected by the inhibition of the TGFβ/BMP signaling pathway. The dynamics and stabi-
lization of actin and microtubules is a major factor in neurite outgrowth and is regulated
by BMPs [43,44]. Our differential gene expression analysis identified downregulation of
inhibitory genes of the TGFβ/BMP signaling pathway, such as BAMBI, FST, and FSTL1.
Since it was shown that neurite outgrowth is altered in a concentration-dependent man-
ner while high concentration impaired their growth and low concentrations promoted
neurite outgrowth [45], we assume that the balance of activation–inhibition is disrupted.
Upon FMRP absence, the inhibition of the TGFβ/BMP signaling pathway is dysregulated,
leading to decreased neurite outgrowth. By inhibiting BMP signaling, we were able to
correct the FMRP-related neuronal phenotype of neurite outgrowth. Together, these results
demonstrate the dynamic role of BMP as a morphogen and underlines its importance
in neurogenesis and in the pathogenesis of FXS neuro-phenotypes. Further studies are
needed in order to explore the distinct components of the BMP pathway that are involved
in regulating axonal guidance and proper neuronal network maturation and activity in FXS.

Our results show the delayed maturation of FX-derived neurons at the transcriptomic
level and at the functional level by the retarded neuronal outgrowth and maturation, point-
ing at related impaired neurodevelopmental pathways: mainly the TGFβ/BMP signaling
pathway. Furthermore, we propose that this impaired gene expression is probably one of
the reasons for the less synchronous neuronal network activity we recently observed in
FX neurons [24], eventually leading to intellectual disability. Processes impaired by FMRP
downregulation already at early stages of development can explain the aberrant functional
activity of their derived neurons arising later in development, such as hyperexcitability and
asynchronous neuronal networks, promoting the importance of neural differentiation pro-
tocols that mimic the biological progress of the syndrome in the human fetus. These results
highlight the value of studying isogenic hESC lines when investigating the downstream
regulators of FMRP on differentiating neurons. Gaining better understanding of these
regulating mechanisms will provide new therapeutic targets for FXS. Although animal
models can also be used for discovering potential new drugs for treating FXS, it is well
accepted that, before starting clinical trials with human patients, potential drugs should
be tested on human pre-clinical experimental models. Some molecular pathways are also
unique to human physiology. Therefore, these hESC-derived neurons can serve as a great
platform for drugs screening and discovery for neurodevelopmental diseases in general
and for FXS in particular.

4. Materials and Methods
4.1. Human Embryonic Stem Cell Culture

The use of spare in vitro fertilization (IVF)-derived embryos following preimplan-
tation genetic diagnosis (PGD) for the generation of hESCs was approved by the Israeli
National Ethics Committee (7/04-043), and in accordance with the guidelines released
by the Bioethics Advisory Committee of the Israel Academy of Sciences and Humani-
ties. All experiments were conducted using a pair of FX and its isogenic control sub-
clones that were derived from the original Lis_FX6 hESC line of relatively early passage
(p 40–55) that present CGG repeats from the normal to the full mutation range. Clone 8A has
>200 CGG repeats, and thus served as the full mutation clone: clone 7B has <50 CGG re-
peats, and thus served as its isogenic control that shares the same genetic background. Full
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characterization of these isogenic clones is described in Gildin et al. [24], including CGG
repeats number analysis by a specific designed PCR CGG repeat number assay and by the
AmplideX PCR/CE FMR1 Reagents (Asuragen, Austin, TX, USA), in which confirmation
of their polymorphic markers by CA repeats analysis are known to identify their parental
Lis_FX6 line, and the expression of pluripotent markers. In addition, three male FX-hESC
lines derived in our lab were studied: LisFX6 [21,46], HEFX1 [20,47], and LisFX11 (see
characterization in Figure S2). The following control hESC lines free of FMR1 mutation
were also used: HUES-13 and HUES-64 ([48,49]; kindly provided by Dr. Douglas Melton,
Harvard University) and H9 ([50,51]; WiCell, University of Wisconsin). hESCs were treated
as we previously described [24].

4.2. In Vitro Neural Differentiation

hESCs were differentiated into cortical neurons by an accelerated dual SMAD inhibi-
tion protocol as previously described [52,53]. Briefly, hESCs were plated on Geltrex with
mTeSR1 to confluence. From day 0, cells were cultured in KSR media in the presence of
small chemical inhibitors of the TGF, SMAD, and Wnt pathways until six DIV. From two
DIV, cells were cultured also in the presence of MEK, FGF, and Notch signaling inhibitors
to trigger cortical precursors for cortical neuron differentiation. N2/B27 medium was
added in increasing 1/3 increments every other day from four DIV, until reaching 100%
Neurobasal at eight DIV. The WNT agonist CHIR99021 was added at 8-15 DIV, as it exerted
a strong pro-survival effect on cultures. After MACS, cortical neurons were cultured on
Poly-L-ornithine hydrobromide/Laminin I/Fibronectin coated wells in NB/B27 supple-
mented with 1% Pen/Strep (03-033-1B, Biological Industries, Beit Haemek, Israel), BDNF,
dbcAMP, and ascorbic acid.

Coating plates for replating with Poly-L-ornithine/Laminin I/Fibronectin: plates were
coated with 15 µg/mL Poly-L-ornithine (P4957, Sigma-Aldrich, St. Louis, MI, USA) in
PBS and incubated over night at 37 ◦C in 5% CO2. The next day, Poly-L-ornithine was
removed, washed with 1X PBS, and plates were coated with 1 µg/mL Laminin I (L2020,
Sigma-Aldrich) and 2 µg/mL Fibronectin (F1056, Sigma-Aldrich) in PBS, air dried for
45 min at room temperature, and kept at 4 ◦C.

4.3. Immunofluorescence

Cells were fixed with 4% paraformaldehyde (PFA; P6148, Sigma-Aldrich) for 20 min at
room temperature (RT). Blocking was performed with blocking solution: 10% Fetal Bovine
Serum (FBS) or 5% Goat serum (GS) with 0.2% Triton X 100 in PBS for permeabilization.
Cells were then incubated with primary antibodies (anti-SSEA4, CST-4755, Cell Signaling
Technology, Danvers, MA, USA; anti-TRA-1-60, ab16288, Abcam, Cambridge, UK; anti-
OCT4, sc-5279, Santa-Cruz, Starr County, TX, USA; anti-FMRP, BLG-834601, Biolegend, San
Diego, CA, USA; anti-Tuj1, BLG-801201, Biolegend; anti-PAX6, BLG-901301, Biolegend; anti-
MAP2, sc-20172, Santa Cruz; anti-SYN1, AB1543, Merck, Darmstadt, Germany; anti-PSD-95,
MAB1596, Merck) diluted in blocking solution for 1 h at RT, washed 3 times with PBS,
and incubated with secondary antibodies (donkey anti-mouse Alexa Fluor 488, A21202,
Thermo Fisher Scientific, Waltham, MA, USA; goat anti-rabbit Alexa Fluor 594, A11012,
Thermo Fisher) for another 1 h at RT in the dark, and counterstained with DAPI for nucleus
localization (D1306, Thermo Fisher Scientific). Cells were mounted with Fluoromount
aqueous mounting medium (00-4958-02, Thermo Fisher Scientific). Bright-field, phase,
and fluorescence images of cells were obtained using an Olympus IX51 inverted light
microscope (Olympus, Tokyo, Japan).

4.4. Western Blot Analysis

Protein extraction was performed in ice-cold RIPA lysis buffer containing 1 mM
phenylmethylsulfonyl fluoride (PMSF; CST-8553S, Cell Signaling Technology) and 1%
protease inhibitor cocktail (p2714, Sigma-Aldrich). Cell lysates were incubated for 20 min
on ice, centrifuged, and the supernatants were separated on 7.5% SDS-polyacrylamide gel
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electrophoresis (SDS-PAGE), followed by transfer to nitrocellulose membranes (0.2 µm;
PB7320, Thermo Fisher Scientific) using BIO-RAD Mini Trans-Blot Cell. After electrotransfer,
the blots were blocked with PBST containing 5% BSA and incubated 1 h at RT with primary
antibodies anti-FMRP (BLG-834601, Biolegend) and anti-β-actin (ab8226, Abcam). Blots
were then washed with PBST and incubated 1 h at RT with the secondary antibody anti-
mouse horseradish peroxidase (CST-7076, Cell Signaling Technology). Blots were detected
by enhanced chemiluminescence Western blotting substrate EZ-ECL (RPN2106, Biological
Industries) and developed by MYECL Imager (Thermo Fisher Scientific).

4.5. RNA Extraction and Quantitative Real-Time PCR

Total mRNA samples were extracted using a Direct-zol RNA miniprep kit (ZR-R2050,
Zymo research, Irvine, CA, USA), followed by random hexamer-primed reverse transcrip-
tion using Superscript IV RT-PCR kit (18091050, Thermo Fisher Scientific). Quantitative
real-time PCR (qRT-PCR) was performed using SYBR Green FastMix (95071-012, Quantabio,
Beverly, MA, USA). Cycling and analysis were performed using Rotor Gene 6000 Series
and its complementary analysis software (v1.7, Corbett, QIAGEN, Düsseldorf, Germany).
PCR reactions were performed for three independent experiments with three technical
replicates in each experiment. All qRT-PCR assays included a no-template control (NTC)
and -RT. GAPDH served as a control to normalize target gene expression.

4.6. Magnetic-Activated Cell Sorting (MACS)

At 17 DIV of neuronal differentiation, neuronal cells were dissociated using Accutase
to a single cell suspension. Neurons were enriched by the depletion of CD184+ cells with the
CD184 (CXCR4) MicroBead kit, Human (130-100-070, Miltenyi Biotec Bergisch Gladbach,
Germany) following manufacturer’s protocol, and re-plated on PO/L/FN coated plates in
NB/B27 supplemented with BDNF, dbcAMP, and ascorbic acid up to 23 DIV.

4.7. RNA Sequencing and Bioinformatic Analysis

Total mRNA samples were extracted from hESCs (day 0), at 13 and 23 DIV of their
differentiation into cortical neurons, using the mirVana miRNA Isolation Kit (AM9720 +
AM1560, Ambion, Austin, TX, USA) according to manufacturer’s protocol. Extraction was
performed in three biological experiments. Library preparation and RNA sequencing were
performed on Illumina NovaSeq 6000 at a commercial laboratory (Macrogen Inc., Europe,
Milan, Italy). Raw sequencing data was trimmed and filtered using fastp 0.19.6 [54],
then aligned to the GRCh38 assembly using STAR 2.7.1a [55]. Differential expression
analysis was performed using DESeq2 1.24.0 [56] and gene set enrichment was performed
using clusterProfiler 3.16.0 [57], both on R version 3.6.3. A heatmap was created using
ComplexHeatmap 2.4.232. Taxonomic classification of reads for the contamination was
performed using Kraken 2.0.9 [58]. All RNA-seq data from this study can be found in the
NCBI Gene Expression Omnibus (GEO) with accession number GSE206088.

4.8. Scratch Assay

Neurite outgrowth was measured by the scratch wound assay. Wells were washed
with PBS and a cell free area spanning approximately 600 µm in diameter was scratched
using a 10 µL pipette tip. The plates were then rinsed with sterile PBS to remove cell
debris and replaced with fresh NB/B27 supplemented with 1% Pen/Strep, PD0325901,
SU5402, DAPT, BDNF, dibutyryl cAMP, ascorbic acid, and CHIR99021. Treated wells
were also supplemented with 10 µM SB431542 and 250 nM LDN-193189, that inhibits the
TGFβ- and BMP-mediated activation of SMAD proteins, as well as the phosphorylation
of SMADs. The scratch was photographed 0 h and 24 h after its generation: in between,
cells were maintained at 37 ◦C and5% CO2. Images were captured using an Olympus
IX71 microscope with a 10X objective using an Olympus IX51 inverted light microscope
and CellSence measuring software. Gap width was measured using ImageJ 1.53f51 (NIH,
http://rsbweb.nih.gov/ij/ (accessed on 22 September 2020), USA) with the wound healing
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size tool plugin [59] from three biological experiments, and 30 fields or more were analyzed
in each group. Growth was calculated as the difference between the gap width at 0 h and
24 h.

4.9. Statistical Analysis and Experimental Design

All statistical analysis was carried out in GraphPad Prism version 8.4.3 (GraphPad
Software, Inc., La Jolla, CA, USA). Statistical significance was determined by paired or
unpaired two-tailed Student’s t-test or one-way ANOVA. Differences were considered
statistically significant when p < 0.05.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/ijms23169278/s1.
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