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Abstract: One of the commonly accepted approaches to estimate protein–protein interactions (PPI) in
aqueous solutions is the analysis of their translational diffusion. The present review article observes
a phenomenological approach to analyze PPI effects via concentration dependencies of self- and
collective translational diffusion coefficient for several spheroidal proteins derived from the pulsed
field gradient NMR (PFG NMR) and dynamic light scattering (DLS), respectively. These proteins
are rigid globular α-chymotrypsin (ChTr) and human serum albumin (HSA), and partly disordered
α-casein (α-CN) and β-lactoglobulin (β-Lg). The PPI analysis enabled us to reveal the dominance
of intermolecular repulsion at low ionic strength of solution (0.003–0.01 M) for all studied proteins.
The increase in the ionic strength to 0.1–1.0 M leads to the screening of protein charges, resulting
in the decrease of the protein electrostatic potential. The increase of the van der Waals potential for
ChTr and α-CN characterizes their propensity towards unstable weak attractive interactions. The
decrease of van der Waals interactions for β-Lg is probably associated with the formation of stable
oligomers by this protein. The PPI, estimated with the help of interaction potential and idealized
spherical molecular geometry, are in good agreement with experimental data.

Keywords: protein–protein interactions; collective diffusion; self-diffusion; DLVO theory; Vink
theory; spheroidal proteins

1. Introduction

Diffusion is one of the fundamental physical phenomena characterizing functional
properties of molecules and their interaction with environment [1–7]. Molecular diffusion
is the inevitable component of specific recognition of cell community [8]. Translational
diffusion is the main way of molecular transport in organisms that defines numerous vital
activities of the living systems. Previously, the knowledge of protein diffusion was mainly
utilized for estimation of the protein hydrodynamic dimensions under different conditions
or for evaluation of molecule association. In such systems, the diffusional process is well
described by the classical Stokes–Einstein model [9–12]:

D =
kBT

6πηRh
, (1)

where D is the diffusion coefficient, kB is the Boltzmann constant, T is the temperature, η is
the solution dynamic viscosity, and Rh is the hydrodynamic radius of a particle approxi-
mated as a sphere.

Although the Stokes–Einstein relation was designed for rigid spheres in isotropic
medium, it is often used to estimate the size of complicated biological molecules. Unfortu-
nately, frequently, the deviation from the strict spherical shape is substantial, and the use
of Stokes–Einstein relation can lead to large inaccuracies and/or misleading conclusions.
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Additional parameters were introduced to take into account the deviation from the protein
spherical shape, i.e., ellipsoid, polymer, rod, or disk [13–16]. However, the related empirical
formulas work adequately only in very limited cases. For objects of unknown shape, the
size obtained from the Stokes–Einstein equation should be considered as the effective
hydrodynamic radius Rh (Figure 1).
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In real living systems, translational diffusion of macromolecules significantly deviates
from the classical representation of the diffusion in diluted aqueous solutions [17–21]. The
internal environment of a living cell is densely crowded with macromolecules, which create
steric barriers for diffusing particles. Living systems contain various types of biological
macromolecules, such as DNA, RNA, proteins, and polysaccharides, all engaged in a
multitude of specific and non-specific intermolecular interactions [22]. Thermodynamic
heterogeneity and many other factors that exist in the cell affect protein diffusion, providing
ambiguous diffusion coefficients [23,24]. In fact, due to the existence of such macromolecu-
lar obstacles (or other cellular components) that represent the so-called “cell” effect, the
diffusion coefficient of molecules can exhibit anomalous behavior [23,25]. These deviations
from the classical view (diluted solutions) cause the limitations of common theoretical
and experimental approaches, which are mainly used to study protein dynamics [26,27].
There were many attempts to characterize non-specific intermolecular interactions in terms
of excluded volume and restricted motion of studied molecules [28–33]. However, the
experimental diffusion data show significant deviation of protein diffusion under crowding
conditions from the phenomenological predictions [34,35].

In concentrated/crowded solutions, the non-linear behavior of the diffusion coeffi-
cient under the conditions of increased protein concentration was shown [36–38]. Such a
trend indicates the presence of a significant deviation of protein diffusion from the Stokes–
Einstein behavior in concentrated/crowded systems. It was suggested that translational
diffusion of macromolecules in crowded environment differs significantly from dilute
solution due to the huge number of intermolecular contacts [39–42]. The physical con-
sequence of macromolecular crowding declares itself mainly in the hard-core repulsions
and the so-called “soft” interactions [43]. The hard-core repulsion represents a steric effect
arising from the impenetrable nature of atoms, which reduces the available free volume for
their diffusive motion. The “soft” interactions include hydrogen bonding, charge–charge,
solute–protein, van der Waals, and hydrophobic interactions [44]. Of these, only the strong
electrostatic repulsion of similarly charged molecules prevents their convergence. Other
“soft” interactions are attractive and destabilizing, because they favor the expanded confor-
mations that allow the access to attractive surfaces. The effect of intracellular environment
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modulating protein–protein interactions (PPI) is important because the totality of weak
interactions in the cells forms the crowded cellular interior [45–47]. The simplest systems
for modeling the intermolecular interactions of proteins in cells are solutions with one type
of macromolecules at different concentrations [48]. Therefore, one of the well-known ways
for estimation of the intermolecular interactions of proteins in aqueous solutions is the
analysis of their translational diffusion in a wide concentration range [49,50].

Earlier, we have shown that the PPI estimation can be based on comparative analysis
of self- and collective translational diffusion [51,52]. The technique of pulsed field gradient
nuclear magnetic resonance (PFG NMR) operates on the experimental time scales exceeding
those of the intermolecular collisions. The long-time self-diffusion coefficient Ds is observed
as the averaged result of protein diffusivity over a long observation time [3,53–57]. The
value of Ds can be characterized by the Stokes–Einstein equation via the coefficient of
protein hydrodynamic friction f 12 with solvent molecules [58]:

Ds =
kT
f12

. (2)

This relationship is correct only for spherical proteins in dilute homogeneous solution.
The Stokes–Einstein equation was found to well-describe the variety of different systems,
such as hard sphere dispersions [59,60], microemulsions [61], micellar solutions [62], and
protein dispersions [63]. However, for solutions of charged particles in semi-diluted
and concentrated solutions, the strong deviation from the Stokes–Einstein relation was
experimentally observed [38,64]. When the protein volume fraction ϕ increases, the PPI
growth results in an additional friction term f 22(ϕ) in the Stokes–Einstein relation. f 22(ϕ) is
a phenomenological parameter introduced to describe the self-diffusion slowing down due
to the increase in the “local viscosity”. Thus, one can write [65]:

Ds(ϕ) =
kT

f12 + f22(ϕ)
. (3)

Such an interpretation of the Stokes–Einstein relation successfully describes the behav-
ior of proteins self-diffusion coefficient in semi-dilute and concentrated solutions [66–68].

In dilute solutions, the molecules move independently of each other, whereas in the
semi-dilute solutions, the intermolecular interactions result in appearance of new class of
motion-collective modes. It is described by the Fick law [69,70]:

j(r, t) = −Dc∇ρ(r, t) (4)

where Dc is the collective diffusion coefficient, j is the diffusion flux vector, ρ is the in-
stantaneous number density (number of molecules per unit volume) at position r and
time t.

The collective diffusion coefficient Dc takes into account the local small-displacement
mobility of a tracer particle in the medium at equilibrium [71]. It depends on the mi-
croscopic fluctuations in the local concentration of particles and the corresponding local
inhomogeneity in the refractive index of medium [72]. The technique of dynamic light
scattering (DLS) is sensitive to the local fluctuations of particle concentration and provides
the means for measurements of the short time collective diffusion coefficient Dc.

For dilute systems, where inter-molecular interactions and resulting deviations from
the average density are absent, the diffusion coefficient is a constant. In the case of di-
lute solutions, the self- and collective diffusion coefficients are identical Dc = Ds = D0,
where the subscript “0” indicates that interactions between diffusing species are absent.
In practice, in most of systems, the concentration of diffusing molecules is noticeable, and
the inter-molecular interactions affect the translational diffusion [24]. At the intermediate
concentrations, Dc and Ds differ from D0 and strongly depend on the inter-molecular inter-
actions (Figure 2) [49,73]. It was shown [52,74,75] that the collective diffusion coefficient
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Dc tends to increase with the growth of the repulsive interactions between molecules and
decrease with the prevalence of attractive ones (Figure 2).
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The concentration dependencies of the protein self- and collective diffusion coefficients
contain information about the contributions from various intermolecular interactions [76–78].
Weak PPI are commonly characterized in terms of virial coefficients [49,79–81] and the
friction formalism [82,83], providing the linkage between solvent- and solute-mediated
interactions. To date, the studies of PPI in dilute solutions are limited by the second
(paired) virial coefficient A2 [79,80], which is inter-related to the paired interaction potential
determined by the Deryaguin–Landau–Verwey–Overbeek (DLVO) theory [84,85]. The
DLVO theory was applied to describe interactions between biological colloids, such as
cells, vesicles, and micelles [86,87]. Recently, we have proposed a complex approach to
study the interactions of protein molecules via the analysis of their diffusive mobility over
a wide concentration range [51]. The next subsection overviews the main points of the
Vink theory, which provides an explicit expression for the self- and collective diffusion
coefficients in terms of the basic principles of non-equilibrium thermodynamics. The PPI
were estimated using the interaction potentials in the frame of DLVO theory and idealized
molecular geometry. We have shown that they are in good agreement with the experimental
data, thereby indicating the adequacy of this approach for modeling protein interactions in
dilute and semi-dilute solutions [74,84,87].

In the present article, PPI were estimated using the examples of spheroidal pro-
teins with various structural organization. They were two rigid globular proteins, α-
chymotrypsin (ChTr) and human serum albumin (HSA), with spherical and ellipsoidal form,
respectively; another two were spheroidal proteins α-casein (α-CN) and β-lactoglobulin
(β-Lg) containing disordered fragments in their structure (see Figure 3). At low solution
salinity, the dominance of electrostatic repulsion was shown for all studied proteins. How-
ever, α-CN and β-Lg exhibited the significant impact of van der Waals attraction in the total
PPI potential, which was related to the tendency of these proteins to form associates. The
increase of solution ionic strength resulted in the strong screening of the protein charges
leading to decrease of electrostatic inter-protein repulsion for all proteins. The increase
in the van der Waals attraction observed for the α-CN and ChTr was responsible for the
ability of these proteins to form the short-living protein oligomers. At the same time, the
increase in the ionic strength in the β-Lg solution caused the formation of stable oligomers,
leading to the decrease in non-specific interactions.
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2. Existing Theoretical Descriptions of Protein Translational Diffusion

The study of protein translational diffusion provides the unique way to reveal the
intricacies of their inter-molecular interactions. The theory used for interpretation of exper-
imental data is a key step for extracting such information. In the theoretical descriptions of
the diffusion process, one can distinguish four levels:

1. Purely phenomenological models with accent on (a) hydrodynamics; (b) free volume
theory; (c) effect of steric hindrances, etc. [89]. Such theories are constructed in an ad hoc
manner for description of particular experiments. They usually stress only one, supposedly
dominant type of particle interaction and neglect the others. The motivation of such
approaches is mainly in the agreement of the corresponding fits with the experimental
data rather than in the logical self-consistency of physical principles, which lie in their
foundations. This highly superficial level of description was totally exhausted in ideas by
the 2000s [89].

2. Semi-phenomenological approach based on the standard Stokes–Einstein formalism.
It links the particle self-diffusion coefficient Ds with the solute-solvent friction coefficient
f 12 (Equation (2)). This friction coefficient, in turn, is the function of solution viscosity
η as well as the particle size and shape [90]. In this approach, the random collisions of
Brownian particle with solvent molecules define diffusive character of the motion (i.e., the
surrounding liquid medium provokes random particle displacements). In this approach,
the friction coefficient f 12 is a semi-phenomenological function of solution viscosity η and
protein size. The dependence of η on molar concentration of the solute C is usually taken
as a relationship [91]:

η = ηs(1 + [η]C + kH [η]
2C2), (5)

where ηs is viscosity of pure solvent, [η] is the so-called intrinsic protein viscosity, and kH is
the phenomenological parameter known as the Huggins coefficient (named after Maurice
L. Huggins (1897–1981)), which is an indicator of the strength of a solvent that typically
ranges from about 0.3 (for strong solvents) to 0.5 (for poor solvents).

3. Purely hydrodynamic models based on the stringent solution of corresponding
Navier–Stokes equations for hard spheres [92], rod-like particles [93,94], etc. The case
of hard spheres seems to be pertinent for spheroidal globular proteins. In this case, the
self-diffusion coefficient Ds is obtained as [92]:

Ds

D0
s
=

1− 9ϕ/32

1 + H(ϕ) + (ϕ/ϕ0)/(1− ϕ/ϕ0)
2 , (6)
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where ϕ0 ≈ 0.5718 is the critical concentration of dense packing for hard spheres,

H(ϕ) =
2b2

1− b
− c

1 + 2c
− bc(2 + c)

(1 + c)(1− b + c)

b =

(
9
8

)1/2
, c =

11ϕ

16

The hard-sphere model yields quite reliable results (see, e.g., [38]). However, its appli-
cability is extremely limited by spheroidal shape of particles and does not take into account
various intermolecular interaction. Additional approaches are necessary for taking into
account the effects of solute-solute and solute-solvent interactions on protein translational
diffusion [95].

4. Finally, there is an approach proposed by Hans Vink [65]. It is based on the
frictional formalism of non-equilibrium thermodynamics and provides a fundamental
level of description for molecular diffusion. By now, it has become a well-established
formalism for both self- and collective (or otherwise mutual) diffusion of various particles.
The profound physical principles of non-equilibrium thermodynamics go back to the
famous reciprocal relations for kinetic coefficients discovered by Lars Onsager (1903–1976)
(see, e.g., [96]). On the one hand, the Vink’s approach makes use of the phenomenological
solute–solute and solvent–solute hydrodynamic friction coefficients, and, on the other hand,
it relates collective diffusion coefficient Ds and solute virial coefficients, which include
interaction potentials. As a result, the frictional formalism deals with the phenomenological
coefficients, and their origin can be justified and revealed in molecular theories of more
profound character. A notable characteristic of Vink’s approach is a clear-cut distinction
between the self- and collective diffusion. The self-diffusion coefficient Ds refers to the
motion of a single particle in solution and depends both on the particle-particle and particle-
solvent friction coefficients. As a result, Ds characterizes the movement of solute particles
relative to each other. In contrast, collective diffusion coefficient Dc characterizes the
flow of solvent molecules relatively to solute particles and, as a result, depends only on
the particle-solvent friction coefficient. Therefore, the collective diffusion describes the
movement of solute molecules past the solvent ones (the molecules of another type) while
the self-diffusion describes the movement of solute molecules past themselves (i.e., actually
a displacement of single molecule).

The Vink theory was successfully applied to several systems, such as non-associative
fluorinated amphiphile [97], water solutions of non-ionic surfactants [98], charged block
copolymers [99], wormlike micelles of non-ionic surfactants [100], amylopectin (homopoly-
mer of D-glucose) [101], polysterene [102], rod-like polymers [103] in different solvents,
and some other systems [54,104,105]. The dependence of Ds on the solute concentration
was measured and interpreted within the framework of Vink theory for a number of
globular proteins, including β-lactoglobulin [106], hemoglobin [107], serum albumin [26],
ovalbumin [27,108], and lysozyme [109]. Additionally, it was applied to monoclonal anti-
bodies [67,110], α-chymotrypsinogen [49], and proteins of various shape and size, such as
chymotrypsin, α-casein, and fibrinogen [51,111,112].

For the self-diffusion coefficient of particle Ds, the Vink theory yields:

Ds =
RT

f12c1 + f22c
, (7)

where f 22 and f 12 are referred to the solute–solute and solvent–solute molar hydrody-
namic friction coefficients, respectively, and c and c1 are the solute and solvent molar
concentrations, respectively. For the normalized Ds, one has

Ds

D0
=

f12c1

f12c1 + f22c
, (8)
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where D0 is the protein diffusion coefficient at infinite dilution.
Partial volume of the solvent molecule is denoted as υ1, and that of the solute as υ2.

Then, the volume fraction of solute is ϕ = cυ2 and the analogous expression can be written
for the solvent. The sum of solvent and solute volume fractions equals to 1:

c1υ1 + cυ2 = 1, (9)

If we denote:
ρ =

f22υ1

f12υ2
and ϕ = cυ2, (10)

Equation (10) can be rewritten as:

Ds

D0
=

1
1 + ρ

ϕ
1−ϕ

(11)

On the other hand, for the collective diffusion coefficient Dc, Vink’s formalism yields:

Dc(ϕ)

D0
= (1− ϕ)2

(
1 + νϕ + µϕ2 + ηϕ3 + ωϕ4 + . . .

)
(12)

where

ν =
2|A2|

υ2
;µ =

3A3

υ2
2

;η =
4A4

υ3
2

;ω =
5A5

υ4
2

. (13)

Here A2, A3, . . . are the second, third, etc., solute virial coefficients, respectively, in
molar concentration units. They characterize the solute-solute (protein–protein, in our
case) interactions. The second virial coefficient A2 is a valuation of pairwise interactions.
However, if the solute concentration increases, there is inevitable need to introduce the
multi-particle interactions, which are characterized by the higher-order virial coefficients.

In the course of our investigation attempts, we tried the hydrodynamic model of
Michio Tokuyama and Irwin Oppenheim (type 3) in [68], the semi-phenomenological
approach (type2) [113], and the Vink theory (type 4) [51,52]. In our opinion, the Vink’s
approach gives the most profound and fundamental microscopic level of the description of
diffusion coefficients for proteins with both regular (globular and cylindrical) or partially
disordered structure.

3. Paired PPI Potential

The Vink’s formalism relates Dc to the second virial coefficient A2, which is one of
the most important PPI characteristics. Its value is determined by the combined action of
various inter-molecule interactions, manifesting themselves in the potential of mean force
W. The William G. McMillan–Joseph E. Mayer solution theory provides the relationship
between A2 and W [114]:

A2(a0
1, T) = Ahs

2 −
NA
2

∞∫
d+3

◦
A

{
exp

[
−W(r, a0

1, T)− kBT
]
−1}4πr2dr, (14)

where a0
1 is the activity of pure solvent, Ahs

2 =
(
2πd3)/3 is the hard-sphere contribution to

A2, d is the diameter of protein molecule, and r is the radial coordinate. The lower limit of
integration in (12) is chosen as d + 3Å to take into account a layer of water bound to the
protein [81].

For protein molecules in solution, the pair interaction potential, W(r), is usually
modeled within the framework of classical DLVO theory of the colloid suspension sta-
bility [115,116]. According to the DLVO theory, the total interaction potential is mainly
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determined by the sum of a long-ranged Coulomb potential and the van der Waals interac-
tions [108,109]:

W(r) = Wel(r) + WvdW(r), (15)

where Wel(r)—electrostatic interaction potential, WvdW(r)—van der Waals interaction potential.
In our previous studies, several models of colloidal particles have been successfully ap-

plied for estimation of the interaction potential of proteins with different mass, shape, and
structural rigidity [51,52]. We distinguished the model of porous colloid particle [117,118]
as the most suitable in all cases, where protein molecules do not form associates in a rather
wide concentration range [52]. The “porous” model represents the most complete descrip-
tion of protein charge shell including the surface charge distributions and the counter-ion
layer Figure S1 (for calculation details see supplementary material). However, when we
deal with the probable protein association, the “porous” model fails in description of exper-
imental data [51]. For these cases, it is better to use the Yukawa electrostatic potential [119],
which considers the effective ζ-potential as a charge characteristic of a protein molecule
and may be used to obtain the satisfactory interpretation of the experimental results [51].

4. Self-and Collective Diffusion of Spheroidal Proteins

The concentration dependencies of the self-diffusion coefficients obtained with PFG
NMR for ChTr, HSA, β-Lg, and α-CN are presented in Figure 4 [51,68,73,120]. The initial
near-horizontal parts of the curves (Figure 4) characterize the region of the dilute solutions
with the diffusion coefficients D0 of 15.2 · 10−10 m2/s, 9.63 · 10−11 m2/s, 8.65 · 10−11 m2/s,
and 7.82 · 10−11 m2/s for ChTr, β-Lg, α-CN and has, respectively. We have estimated
the protein hydrodynamic radii using the Stokes–Einstein equation (Equation (1)). These
evaluations revealed that the Rh values of the diffusing particles are 1.8 nm, 3.5 nm, 2.9 nm,
and 3.2 nm for ChThasHSA, β-Lg, and α-CN respectively.
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The original data were obtained from [51,73,120].

The preliminary analysis of the obtained concentration dependencies for protein self–
diffusion coefficient shows that the diffusive mobilities of β-Lg and αS-CN are lower than
those of the HSA and ChTr. The sharper, in comparison with the globular HSA and ChTr,
concentration-dependent decrease in the α-CN self-diffusion is probably caused by the
mostly disordered structure of α-casein molecule [68] (see Figure 3C). It is striking that β-Lg
has the most precocious decrease of the diffusive mobility against its smallest molecular
weight (18 kDa), whereas the presence of protein associates has not been proven. The
reason for such early decrease of β-Lg self-diffusion is probably related with the partly
disordered structure of β-Lg (see Figure 3B) and the presence of significant attractive PPI
of β-Lg at low protein concentration [121–123].
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We compared the translational diffusion coefficients obtained using the DLS and PFG
NMR methods to get the information about weak intermolecular interactions. Figure 5
shows the concentration dependencies of ChTr, HSA, β-Lg, and αS-CN obtained by these
two independent experimental methods, which observe different diffusion effects charac-
terized by the self-diffusion coefficient Ds for NMR and the collective diffusion coefficient
Dc for DLS. The estimation of the protein intermolecular interactions involves analysis
of the translational diffusion using the methods that are sensitive to various molecular
effects [51].
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by the Vink’s algorithm. The original data were obtained from [51,68,73,120].

Earlier, Vink theory was successfully applied to the approximation of the experimental
data on the self- and collective diffusion of proteins. It was shown that Vink theory well-
described the experimental data obtained in the studied concentration range for spheroidal
ChTr, HSA, β-Lg, and α-CN [51,68,73,120]. The numerical fitting of the experimental
self- and collective diffusion data gives the friction and virial coefficients, respectively.
According to the Vink’s approach, the hydrodynamic interactions are taken into account
by introduction of the solvent–solute (f 12) and the solute–solute (f 22) friction coefficients.
For dilute protein solutions, solvent–solute friction coefficient f 12 can be determined by the
Stokes–Einstein relation (Equation (2)). Using the thus retrieved f 12 values and the fitting
parameter ρ, the f 22 values were calculated. The f 22 value characterizes the influence of
the direct and hydrodynamic interactions between the protein molecules on the protein
self-diffusion [67,124]. Figure 6 shows f 22 for ChTr, HSA, β-Lg, and α-CN in dilute solution
(ϕ = 0.003). The f 22 values for β-Lg and α-CN were found to be higher than those for ChTr
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and HSA. It can be associated with the influence of disordered fragments in β-Lg and α-CN
structure, which can provide the steric PPI prior to the associates formation [125,126].
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The collective diffusion coefficient and its approximation by the Vink’s algorithm
(squares on Figure 5) made it possible to obtain the sets of virial coefficients (Table S1) [51,120].
Intermolecular interactions of participating partners manifest themselves in the number
and values of virial coefficients. An analytical relationship between the experimental and
theoretical values exists only for the second virial coefficient A2. This value contains infor-
mation about pairwise intermolecular interactions, which are possible in dilute solutions. In
the case of the semi-diluted and concentrated solutions, A2 cannot provide all information
about protein interactions, since it is necessary to take into account the influence of the
many-body interactions via the higher order virial coefficients.

The second virial coefficient A2 can be obtained using different experimental meth-
ods, such as dynamic light scattering (DLS) [65], static light scattering (SLS) [79], gas-
chromatographic elution [127], and membrane osmometry [80] measurements. In previous
works, the A2 values for ChTr, HSA, β-Lg, and α-CN were determined independently
with DLS and SLS techniques [51,73,79,120,128]. Table 1 shows that the difference in A2
values of ChTr, has, and β-Lg obtained by two light-scattering methods is rather significant,
which can be explained by the different protein environment in corresponding experiments.
Furthermore, the difference of A2 values for α-CN by a factor of approximately 40 may be a
result of the α-CN associate formation detected in the DLS experiment [128,129]. Therefore,
the subsequent analysis of PPI for α-CN was based on the SLS data for α-CN monomers,
and corresponding A2 values were obtained by Dickinson et al. [128]. For other proteins,
the PPI estimations were based on the diffusion data from the DLS data combined with the
Vink’s algorithm.

Table 1. Second virial coefficients of proteins obtained by the light scattering [51,73,79,120,128,130].

A2,·10−4 m3 mol/kg2

(DLS)
A2,·10−4 m3 mol/kg2

(SLS)

ChTr 4.96 ± 0.08 3.8

HSA 0.46 ± 0.1 1.5

β-Lg 163 ± 6.5 42

α-CN 105 ± 7 2.7

5. Paired PPI Potential of Spheroidal Proteins

The second virial coefficient A2 is sensitive to the nature of “soft” PPI. The McMillan–
Mayer theory (Equation (14)) is usually used for the quantifying of PPI, providing the
relationship between the A2 and the total paired interaction potential W [131]. The effective
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interaction potential in the framework of the DLVO theory is represented by the attraction–
repulsion balance between two molecules in solution and is determined by the contributions
of electrostatic and van der Waals interactions (Equation (15)). The calculation of PPI
potentials of spheroidal proteins ChTr, HSA, β-Lg, and α-CN was based on the model
of spherical porous colloidal particle [117,132] (for calculation details, see Supporting
Information). The corresponding data on the PPI potentials are presented in Figure 7. It
was found that the main contribution to intermolecular interactions of all studied spheroidal
proteins is made by electrostatic repulsion potential Wel(r). However, in the cases of β-Lg
and α-CN, the contribution of the van der Waals interaction was more noticeable. The
stronger van der Waals potentials of β-Lg and α-CN are probably associated with the
propensity of these proteins to self-associate [37,68,106,126,128]. The flexible disordered
domains of β-Lg and α-CN can provide the attractive PPI potential during the associate
formation. To create the favorable conditions for attractive interactions of proteins resulting
in their association, it is necessary to reduce electrostatic repulsion. As a rule, for alteration
of the electrostatic interactions, one can use the change in the ionic strength (i.e., the changes
in the concentration of the free ions in solution).
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original data for ChTr ahasHSA were obtained from [51,120].

6. Ionic Strength Influence on Repulsion–Attraction Balance in PPI

At low ionic strength (0.003 M–0.01 M), all spheroidal proteins have positive A2
values indicating the prevalence of the paired repulsive potential. The increase in the
ionic strength (0.01 M–1.0 M) shows the strong charge screening reflected in the decrease
in the Debye (screening) length κ−1 and negative value of A2 for ChTr, β-Lg, and α-CN
(Table 2) [73,79,106,128]. It should be noted that for the rigid ChTr, a negative A2 is observed
at a sufficiently high ionic strength (1.0 M). A negative value of A2 in the framework of
DLVO theory characterizes the dominance of the van der Waals attractions [52,128,133,134].
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Other factors affecting PPI, such as the steric ones, hydrogen bonding, and short-range
hydration forces, are not included in the DLVO representation. These attractive effects
can be considered as a correction to the van der Waals term by adjusting the Hamaker
coefficient H [135]. A strong screening of protein charges leads to a significant probability
of the neighboring protein molecules to stick and self-assemble, which is expressed in the
increasing values of Hamaker constant (Table 2).

Table 2. Second virial coefficient A2, Debye screening length κ−1, Hamaker constant H of ChTr, β-Lg,
and α-CN at various ionic strength I values [73,79,106,128].

I = 0.003–0.01 M I = 0.1–1.0 M

A2,·10−4 m3 mol/kg2 κ−1, nm H, kBT A2,·10−4 m3 mol/kg2 κ−1, nm H, kBT

ChTr
(0.01 M) 4.96 3.04 1.1 ChTr

(1.0 M) −0.44 0.3 6

β-Lg
(0.003 M) 16 6.52 1 β-Lg

(0.1 M) −1 0.98 5

α-CN
(0.01 M) 2.7 3.04 5 α-CN

(0.1 M) −20.6 0.78 15

Finally, using the protein–protein second virial coefficient A2 at increasing ionic
strength, we estimated the contributions of the electrostatic and van der Waals interactions
to the total paired PPI potential WI (for calculation details, see Supplementary Information).
Our results show that the increase in the salinity of the protein solutions associated with a
strong screening of protein charges results in the significant decrease of the electrostatic
repulsion and the dominance of the protein–protein attraction (Figure 8).
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The β-Lg and α-CN self-association is highly dependent on the ionic strength (I) of the
solution [68,73,125,126,129]. Furthermore, β-Lg at I = 0.1 M could form stable oligomers,
leading to a decrease in the resulting weak non-specific PPI. In our opinion, the van der
Waals attraction of protein molecules contributes to the further self-association of proteins.
This effect is especially pronounced for α-CN. The main reason for this behavior is likely
the non-electrostatic interactions between disordered fragments of its molecules. However,
these intra-molecular interactions are relatively weak and unstable in solution. With a
further increase in the salinity or due to other favorable factors, these attractive interactions
lead to the formation of stable protein self-associates, as was observed for β-Lg [136,137].

7. Conclusions

PPIs have a pivotal role in biological processes in living systems, controlling and
modulating the direction protein functioning, such as, for example, signal transduction,
associated with various diseases, including cancer, infections, and neurodegenerative
diseases [138].

In the present article, we analyzed the uniform approach to study intermolecular inter-
actions of proteins in solutions. This approach is based on the analysis of the translational
diffusion data. It was applied to a set of the spheroidal proteins differing in degree of struc-
tural (dis)order. The reviewed approach carries out the inter-complementary analysis of
the protein self- and collective diffusion coefficients obtained by the experimental methods
of nuclear magnetic resonance with pulsed gradient of magnetic field (PFG NMR) and spec-
troscopy of dynamic light scattering (DLS). The combination of concentration dependencies
for coefficients of self- and collective diffusion with the Vink theory (phenomenological
approach based on the formalism of non-equilibrium thermodynamics) enables one to
obtain the sets of friction and virial coefficients for proteins studied. The second and higher
virial coefficients were obtained for estimation of pair and multi-particle intermolecular
interactions in solutions with low values of the ionic strength (0.003–0.01 M) for ChTr, HSA,
α-CN, and β-Lg. The McMillan–Mayer theory can be used for quantitative estimation
of the non-specific PPI. This theory provides the relationship between the second virial
coefficient A2 and the effective potential of paired interactions W(r) within the framework
of DLVO theory. In this theory, the balance of attraction-repulsion interactions between the
two protein molecules in solution depends on the electrostatic and van der Waals potentials.
The positive value of the second virial coefficient A2 for spheroidal ChTr, HSA, α-CN, and
β-Lg at low ionic strengths (0.003–0.01 M) means the dominance of the intermolecular
repulsion. The increase in ionic strength (0.1–1.0 M) led to the screening of the protein
charges and, as a result, to the decrease in the electrostatic potential. The increase in the
van der Waals potential for ChTr and α-CN can explain the propensity of these proteins to
weak unstable attractive interactions. The decrease in the strength of the van der Waals
interaction for β-Lg is probably associated with oligomers formation.
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