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Abstract: Liquid biopsy has been emerging for early screening and treatment monitoring at each
cancer stage. However, the current blood-based diagnostic tools in breast cancer have not been
sufficient to understand patient-derived molecular features of aggressive tumors individually. Herein,
we aimed to develop a blood test for the early detection of breast cancer with cost-effective and
high-throughput considerations in order to combat the challenges associated with precision oncology
using mRNA-based tests. We prospectively evaluated 719 blood samples from 404 breast cancer
patients and 315 healthy controls, and identified 10 mRNA transcripts whose expression is increased
in the blood of breast cancer patients relative to healthy controls. Modeling of the tumor-associated
circulating transcripts (TACTs) is performed by means of four different machine learning techniques
(artificial neural network (ANN), decision tree (DT), logistic regression (LR), and support vector
machine (SVM)). The ANN model had superior sensitivity (90.2%), specificity (80.0%), and accuracy
(85.7%) compared with the other three models. Relative to the value of 90.2% achieved using the
TACT assay on our test set, the sensitivity values of other conventional assays (mammogram, CEA,
and CA 15-3) were comparable or much lower, at 89%, 7%, and 5%, respectively. The sensitivity,
specificity, and accuracy of TACTs were appreciably consistent across the different breast cancer
stages, suggesting the potential of the TACTs assay as an early diagnosis and prediction of poor
outcomes. Our study potentially paves the way for a simple and accurate diagnostic and prognostic
tool for liquid biopsy.

Keywords: blood test; breast cancer; early diagnosis; prognosis; tumor-associated circulating tran-
scripts assay

1. Introduction

Breast cancer accounts for 30% of all oncological diagnoses of women worldwide,
and a fifth of breast cancers recur as incurable, direct metastases [1]. According to the
World Health Organization, 2.1 million new cases and 627,000 deaths of breast cancer
occurred in 2018. Breast cancer is a heterogeneous disease classified into four subtypes by
protein expression in tissues, including luminal A (estrogen receptor (ER) or progesterone
receptor (PR)+, human epidermal growth factor receptor 2 (HER-2)−, or Ki67+ < 20%),
luminal B (ER or PR+, HER-2+, or Ki67+ ≥ 20%), HER-2 (ER or PR−, HER-2 +), and basal-
like (ER−, PR−, HER-2−) [2]. Diagnosis of breast cancer through early screening enables
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complete treatment at an early stage and increases the survival rate [1,3]. Screening methods
through liquid biopsy, combined with high-sensitivity molecular detection technology and
advanced bioinformatics protocols for metastasis prediction, can greatly improve screening
and monitoring at each cancer stage [3,4].

The most actively studied screening and monitoring blood test ctDNA was analyzed
based on the fact that solid tumors are characterized by a plethora of genomic abnormalities.
Recently, GRAIL has demonstrated a moderate sensitivity of <55% at a specificity >99%
with high-precision information on the tissue of origin through targeted methylation assays
for more than 50 cancer types. However, the sensitivity for early detection of breast cancer
is still as low as 30% [5].

To overcome the low sensitivity of blood tests using ctDNA in breast cancer, we
established a strategy for the early detection of breast cancer through blood-cell-based
circulating transcriptome blood tests: (I) Cancer-related mRNA can also be expressed in
immune cells because immune cells around cancer cells mimic and interact with tumor cells.
Therefore, it is possible to increase the sensitivity of early cancer cells through cancer-related
genome studies that are affected not only by tumor cells, but also by immune cells [6]. (II) If
oncogenes elevated in cancer are detected even in an environment with abundant immune
cells in the blood, it can simplify complex analytical procedures such as the isolation of
circulating tumor cells (CTCs) [4,5].

We previously identified mRNA-based methods involving PCR blood tests for five
markers (EPCAM, KRT19, ERBB2, MKI67, and TERT) as an alternative breast cancer screen-
ing tool [7–9]. The mRNA genes we selected did not focus on a specific mutation sequence
for each individual, but focused on markers with increased genetic expression by limiting
to cancer cells and immune cells present in the blood. It is involved in all immune cells
and cancer-cell-derived substances that interact in the blood and has useful diagnostic
and prognostic information [9]. First, we profiled mRNA in blood samples from breast
cancer patients who encompassed heterogeneous cancer subtypes and stages, and then
compared their mRNA profiles with those of healthy subjects to identify tumor-associated
circulating transcripts (TACTs). Subsequently, we stratified the TACTs using machine
learning to develop a highly sensitive predictive model validated with a training set and a
subsequent test set, and evaluated the clinical relevance by analyzing the receiver operating
characteristic (ROC) curve and the Kaplan–Meier plot for the TACT assay (Figure 1).
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2. Results
2.1. Development of TACTs for Breast Cancer Diagnosis

We profiled the expression of 28 candidate markers using initially designed primers in
four breast cancer cell lines representing subtypes: SKBR3 (HER-2 subtype), MDA-MB-231
(basal-like subtype), BT-474 (luminal B subtype), and MCF-7 (luminal A subtype). We
then profiled candidate markers in normal and patient populations using small samples
as pilot studies. Of the 28 markers, 18 markers that did not show target amplification or
did not differ between breast cancer patients and healthy controls and had low expression
in breast cancer were excluded (Table S1). We selected ten tumor-associated transcripts
(EPCAM, KRT19, ERBB2, MKI67, TERT, VIM, NPTN, MCAM, SNAI2, and FOXA2) with
high expression that are specifically upregulated in the cellular environment of cancer
patients compared with the normal control group. We thought that not only cancer cell-
derived mRNA, but also cancer-related mRNA, which is affected by immune cells in
the blood that interacts with cancer cells, would be expressed simultaneously. Then, ten
tumor-associated transcripts were optimized as highly accurate and sensitive primers
of corresponding transcripts and validated with four representative breast cancer cell
lines SKBR3, BT-474, MDA-MB-231, and MCF-7 spiked in normal blood. The cancer cells
were serially diluted 10-fold from 1 × 106 to 1 × 100 cells/mL, and the last serial linear
concentration that produced three positive replicates was identified. The overall detection
limits of this RT-qPCR assay for the 10 tumor-associated transcripts developed ranged from
101 to 100 cells/mL, indicating high sensitivity (Figure S1).

2.2. Assessment for Performance of TACTs in Patients with Breast Cancer versus Healthy Controls

We prospectively recruited 404 patients with stage I–IV breast cancer and 315 healthy
controls (Table 1). Blood samples from patients were organized according to cancer stage
and subtype. Samples from healthy controls were organized based on the proportion of
ages with breast cancer prevalence. The assay was double-blinded and validated. Details
on the study design are described in Figure 1.

Table 1. Clinicopathologic characteristics of breast cancer patients.

Cohorts Training Cohort, n (%) Test Cohort, n (%)

Variable Healthy Control
(n = 220)

Breast Cancer
(n = 282)

Healthy Control
(n = 95)

Breast Cancer
(n = 122)

Age at diagnosis
<50 years 174 (79.1) 157 (55.7) 66 (69.5) 61 (50)
≥50 years 46 (20.9) 125 (44.3) 29 (30.5) 61 (50)

TNM stage
I 126 (44.7) 47 (38.6)
II 66 (23.4) 32 (26.2)
III 14 (5.0) 10 (8.2)
IV 24 (8.5) 17 (13.9)

Unknown 52 (18.4) 16 (13.1)
Therapy
Adjuvant 210 (74.5) 92 (75.4)

Neoadjuvant 48 (17.0) 13 (10.7)
Metastasis 24 (8.5) 17 (13.9)
Subtypes

Luminal A 165 (58.5) 65 (53.3)
Luminal B 30 (10.6) 21 (17.2)

HER-2 38 (13.5) 18 (14.8)
Triple-negative 45 (16.0) 18 (14.8)

Unknown 4 (1.4) 0 (0)
CEA

Positive 26 (9.2) 10 (8.2)
Negative 256 (90.8) 112 (91.8)
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Table 1. Cont.

Cohorts Training Cohort, n (%) Test Cohort, n (%)

Variable Healthy Control
(n = 220)

Breast Cancer
(n = 282)

Healthy Control
(n = 95)

Breast Cancer
(n = 122)

CA15-3
Positive 19 (6.7) 9 (7.4)

Negative 263 (93.3) 113 (92.6)
Survival status

Alive 242 (85.8) 110 (90.2)
Dead 40 (14.2) 12 (9.8)

Mammography
(category)

<4 19 (6.7) 8 (6.6)
≥4 263 (93.3) 104 (85.2)

2.3. Predictive Modeling of TACTs Using the Training Set and Test Set

The TACTs represented three biological processes: epithelial origin (EPCAM and
KRT19), proliferation (ERBB2, MKI67, and TERT), and epithelial-to-mesenchymal transition
(EMT; VIM, NPTN, MCAM, SNAI2, and FOXA2) (Figure 2a). Gene Ontology (GO) revealed
that all 10 are involved in protein c-terminal binding, positive regulation of stem cell
proliferation, cell–cell adhesion regulation, and cell differentiation. These functions imply
an association with cancer development (Figure 2b). Additionally, our interaction network
analysis indicated that all transcripts except NPTN were connected (Figure 2c).

In vitro diagnostics showed that the individual 10 transcripts were significantly higher
in breast cancer patients than in healthy controls (all p < 0.01) and showed clinical relevance
of TNM stages and subtypes (Figure 2d, Figures S2 and S3), but the sensitivity of each
individual marker was too low to distinguish between normal and cancer patients. In addi-
tion, the characteristics of individual markers expressed in each patient were different. An
integrated understanding of each transcript for an individual patient is required to increase
the sensitivity of early diagnosis. Therefore, we combined each marker to investigate the
clinical relevance of these TACTs.

To optimize TACTs as early predictors of breast cancer, we applied four different
machine-learning models (decision tree (DT), logistic regression (LR), support vector ma-
chine (SVM), and artificial neural network (ANN)) to the relative mRNA expression of
10 TACTs. We selected the classifier with the highest accuracy after 1000 iterations. The
best model was then chosen after processing with a training set (282 breast cancer patients
and 220 healthy controls) and a test set (randomizing control and cancer patient samples).

To select the best model, we determined their sensitivity, specificity, and accuracy
(positive predictive value (PPV) and negative predictive value (NPV)) (Figure 3a). Using the
training set, the ANN model had 88.3% sensitivity, 87.7% specificity, and 88.0% accuracy
(p < 0.001) (Figure 3b and Table S2). Using the test set (122 breast cancer patients and
95 healthy controls), the ANN model had superior sensitivity (90.2%), specificity (80.0%),
and accuracy (85.7%) compared with the other three models (Figure 3c,d) (p < 0.001). These
results indicate that the model is not overfitted and has moderate diagnostic value.
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Figure 3. Modeling classifiers and validation of the TACT assay in healthy controls and breast cancer
patients. (a) Optimization of artificial intelligence analyses (decision tree (DT), logistic regression
(LR), artificial neural network (ANN), and support vector machine (SVM)) to model TACTs for
distinguishing breast cancer patients from healthy controls. (b) Sensitivity and specificity of the
ANN model in the training set. (c) Validation of TACTs using optimized DT, LR, ANN, and SVM.
(d) Sensitivity and specificity of the ANN model in the test set. (e) Comparison of breast cancer
positivity rates between the TACT assay and conventional breast cancer diagnostic methods (i.e.,
mammograms and CEA/CA15-3 blood markers). (f) Sensitivity of the TACT assay and conventional
diagnostic methods for differentiating breast cancer subtypes. (g) Sensitivity of the TACT assay
and conventional diagnostic methods for differentiating breast cancer stages. AUC, area under the
receiver operating characteristic (ROC) curve.

2.4. Diagnostic Performance of TACTs According to Breast Cancer Stage

Relative to the value of 90.2% achieved using the TACT assay on our test set, the
sensitivity values of other conventional assays (mammogram, CEA, and CA 15-3) were
comparable or much lower, at 89%, 7%, and 5%, respectively (Figure 3e). To gain the
detailed clinical relevance of subtypes and stages in breast cancer, we analyzed the sensitiv-
ity of TACTs in each breast cancer subtype. The sensitivity values of the TACT assay by
breast cancer subtype were 86%, 100%, 100%, and 83% for luminal A, luminal B, HER-2,
and triple-negative breast cancer, respectively, and the sensitivity of the assay for these
subtypes corresponded to that of the mammogram (96% for luminal A, 100% for luminal
B, 100% for HER-2, and 83% for triple-negative breast cancer). Moreover, compared with
the sensitivity values of conventional assays for the blood markers CEA (8% for luminal A,
14% for luminal B, 11% for HER-2, and 0% for triple-negative breast cancer) and CA 15-3
(12% for luminal A, 0% for luminal B, 11% for HER-2, and 0% for triple-negative breast
cancer), this showed that the sensitivity of the TACT assay was remarkably high (Figure 3f).
By cancer stage, the sensitivity values of the TACT assay were 87%, 91%, 100%, and 83% for
patients with stage I (early-stage), stage II, stage III, and stage IV breast cancer, respectively
(Figure 3g). Thus, the assay appears capable of detecting early-stage breast cancer.

2.5. Predictive Ability of the TACT Assay for Poor Prognosis in Metastatic Breast Cancers

To analyze the prognostic performance of the TACT assay, the association between
TACTs and overall survival (OS) was investigated. Using Kaplan–Meier analysis and log-
rank test, the positivity of the TACT assay resulted in poor survival outcomes
(HR = 3.06 (0.39–7.91), p < 0.05). Breast cancer blood samples with positive TACTs had
a threefold higher risk of poor prognosis than samples with negative TACTs (Figure 4a).
The TACT assay predicted the outcomes of all 12 patients who died (9.8% out of 122 pa-
tients) during the 5 years after breast cancer diagnosis (Figure 4b). Conventional prognostic
markers (i.e., CEA or CA15-3) were less accurate in predicting poor prognosis among
those 12 patients (Figure 4c,d). When patients were stratified by treatment, positive TACT
was related to a higher propensity for distant metastasis and the triple-negative subtype
(Figure S4). Seven of the 14 patients (50%) with positive TACT results died during the
5 years after metastatic diagnosis (HR = 5.2, 95% CI 1.0–22.8, p < 0.05), whereas patients
with negative TACT survived, supporting the association between prognosis and the ability
of this indicator to predict metastasis (Figure 4e,f). By contrast, the use of CEA or CA15-3
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markers did not yield a significant association between the negative and positive markers
in patients with metastatic disease (Figure 4g,h).
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Figure 4. Prognostic value of the TACT assay in breast cancer patients. (a) Five-year overall survival
of all samples in the test cohort (n = 122) according to the TACT assay. (b) Survival status of patients
in the test cohort according to the AI-TACT assay. AI-TACT (−) included AI-TACT (−) to AI-TACT
(−) and TACT (+) to AI-TACT (−) before and after treatment. AI-TACT (+) included AI-TACT (−)
to AI-TACT (+) and TACT (+) to AI-TACT (+) before and after treatment. (c) Survival status of all
samples in the test cohort according to CEA. (d) Survival status of all samples in the test cohort
according to CA15-3. (e) Five-year overall survival of patients with metastatic tumors in the test
cohort according to the AI-TACT assay (n = 17). (f) Survival status of patients with metastatic tumors
in the test cohort according to the AI-TACT assay. (g) Survival status of patients with metastatic
tumors in the test cohort according to CEA. (h) Survival status of patients with metastatic tumors in
the test cohort according to CA15-3. Log-rank test. * p < 0.05.

3. Discussion

Through the early detection of breast cancer, surgical treatment can be used to com-
pletely remove malignant tumors and reduce mortality by assigning various treatment
options to the patient. Mammography, which is the most commonly used breast cancer
screening test, is known to have a sensitivity of 66% and a specificity of 92% [10]. However,
recent studies have shown that breast mammography tests do not contribute to mortality
reduction and have a false-positive rate of over 30%. Sixty-five percent of false-positive
results lead to unnecessary surgical procedures and patient anxiety [11].

The measurement of blood tumor markers is used to detect early signs of cancer
through screening or for monitoring a patient’s cancer status during or after chemotherapy.
Serum tumor markers such as carcinoembryonic antigen (CEA) and cancer antigen 15-3
(CA 15-3) have been used for cancer screening, but none of the currently tested markers are
suitable for screening the entire population because they have a low specificity. Moreover,
these markers have been reported to have a low sensitivity for the detection of early breast
cancer [12].

Blood-based tests in the circulation can complement existing diagnostic tools to im-
prove the performance of breast cancer screening and detection. Among the blood-based
tests, the existing CTC method has the advantage of knowing the origin of cancer because
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tumor cells are generated from cancer, but there is a limit to improving the test perfor-
mance because of the small number of CTCs that can be isolated from early-stage cancers.
Our assay can help to improve sensitivity for cancer-related mRNA expression in cancer
environments by differentiating the cancer cell environment from the normal cellular envi-
ronment [13]. In several studies, the mRNA markers we profiled were already reported
to be highly expressed in tumor tissues [14–18]. We found that these cancer-associated
markers were also highly expressed in blood.

We profiled 28 tumor-associated transcript known markers to develop and validate the
highly sensitive and specific non-invasive biomarkers of the early detection and monitoring
of breast cancer. We excluded markers that did not show amplification of targets, did not
differ between breast cancer patients and healthy controls, and had low expression in breast
cancer. These criteria yield 10 TACTs. To establish the functional features of the 10 TACTs,
GO analysis was performed using the Database for Annotation, Visualization, and Inte-
grated Discovery (DAVID). The TACTs are involved protein C-terminus binding, positive
regulation of stem cell proliferation, cell–cell adhesion regulation, and cell differentiation,
which are associated with cancer development.

The introduction of TACTs into blood tests is an easy-access diagnosis method that
enables early detection of breast cancer in a high-risk population as well as tentative
prognosis of the metastatic stage. Supplementary diagnostic tools associated with this
assay also help us better understand individual patients based on the molecular features of
an aggressive tumor. Early cancer detection can reduce treatment costs by USD 26 billion
annually [19–21], and the TACT assay is applicable to a wide age range of women.

Our study focused on the expression of cancer-associated transcripts expressed in
all cells present in the blood. Among the various immune cells, there are immune cells
that increase in close association with tumors. M2-like tumor-associated macrophages
are attributed to bone-marrow-derived progenitor cells and Tregs in peripheral blood,
and higher numbers of Tregs have been reported in the peripheral blood of breast cancer
patients compared with healthy controls. In addition, an increase in dendritic cells was
also observed in the peripheral blood of breast cancer patients, with higher levels in HER-
2-positive breast cancer patients than in HER-2-negative patients, suggesting a difference
between the various breast cancer subtypes. It has been reported that various cancer-related
genes (EpCAM, VIM, and NPTN, among others) increase in these immune cells. Therefore,
our study, as a baseline study, can be a solution as an assay for early diagnosis by comparing
the complex expression of immune cells and cancer cells with markers expressed in normal
blood [22,23].

Next-generation sequencing (NGS)-based investigations are drawing considerable
attention because they provide massive amounts of information, but their clinical use is
limited by cost and reproducibility issues [24,25]. Our assay is less expensive and has
higher throughput than NGS-based testing [25,26]. In addition, our mRNA-based breast
cancer diagnostic method, which can quantify mRNA relevant to active tumor-driver genes
in real time, has several advantages over DNA for gene expression, including the possibility
that it lacks any requirement for nuclear transcription or localization. Moreover, the mRNA
regions harbor prognostically useful information [7,9,26,27], because mRNA is made from
DNA through a transcription process to be translated into protein, and it is the most easily
understood source of nucleic acids for the current state of cancer. Our newly developed
mRNA assay was designed using the clinically related coding mRNA region, which is
highly expressed in breast cancer patients. In order to secure the expression of mRNA,
which is fragile compared with the structure of the DNA, the length was designed to be
within 100 bp to minimize degradation, and validated the specificity.

As a result of this study, the overall sensitivity and specificity of breast cancer diagnosis
using TACT markers were found to be 90.2% and 80.0%, respectively (Figure 3) The
sensitivity and specificity of various screening and imaging tests were compared with
the TACT assay to confirm the clinical usefulness for breast cancer diagnosis [28–30].
Wang et al., demonstrated that the sensitivity and specificity of the CEA and CA15-3 were
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22.6 to 51.6% and 94.3 to 97.1%, respectively [31]. Shao et al., reported that the sensitivities
of CEA analysis for cancer detection were 4.6%, 11.4%, and 15.4% for breast cancer stages I,
II, and III, respectively. Moreover, the sensitivities of CA 15-3 were 5.6%, 16.9%, and 17.1%
for breast cancer stages I, II, and III, respectively [32]. Breast cancer patients in the same
cohort were analyzed. The sensitivity of CEA was 6.6% and that of CA15-3 was 5.6%. In
the case of mammography, Bone et al., reported a sensitivity of 83.9% and a specificity of
63.3% in 81 patients with breast cancer and 30 healthy subjects [33]. Malur et al., reported
that 155 of 235 patients were positive (sensitivity of 65.9%) and 144 of 204 healthy controls
were negative (specificity of 70.6%) [34]. The sensitivity of the TACT assay was significantly
higher than the sensitivity of the standard blood tumor marker assays and mammography.

Despite tremendous advances in the treatment of breast cancer, the morbidity and
mortality rates of advanced and metastatic breast cancer remain high at about 50% to
date [35,36]. In general, the recurrence and prognosis of breast cancer patients are influenced
by various factors such as age, sex, TNM stage, subtype, and treatment modality. Our
study investigated whether the prognosis was affected by positive or negative AI-TACT.
It showed poor prognosis, especially when subdivided into stage IV. We believe that our
study may jointly see the prognostic potential as an adjuvant to the prognostic biomarkers
of CEA and CA15-3. The size of the tumor, evaluated as the largest diameter of the
tumor, is fundamental for TNM staging, and it is an important determinant for predicting
a poor prognosis as the stage of TNM increases, but it is evaluated as a tumor [37–39].
Our study has the advantage that these tissue prognostic observations can be measured
through blood.

In this study, we also demonstrated that patients in the positive TACTs group had a
significantly shorter OS than those in the negative TACTs group (Figure 4). The patients
who tested positive for TACT had three- and fivefold higher risk in all stages and the
metastatic stage, respectively, compared with the patients who tested negative for TACT.

Taken together, the present study suggests that the detection of TACTs in the blood
might provide a better estimate of the risk of relapse and facilitate individualization
of treatment.

Despite the validation of rigorously designed breast cancer patients and healthy
controls considering the prevalence of ages, we still need to improve assay specificity and
extend multi-cross-validation. A further study would be helpful to understand the crosstalk
between the tumor microenvironment and circulating cells by analyzing the expression
of TACT in pairs between tumor tissues and blood samples using immunofluorescence
or immunohistochemistry in future studies. Moreover, long-term randomized trials with
follow-up of healthy controls and prognostic values in breast cancer patients will be
prospectively analyzed considering age, pregnancies, menopause, and the use of oral
contraceptive therapies.

4. Materials and Methods
4.1. Cell Lines and Cell Culture

Four cell lines representing subtypes of breast cancer (SK-BR-3, MCF-7, BT-474, and
MDA-MB-231) were used for initial primer development and gene-specific quantification.
The four selected breast cancer cell lines have various protein expression characteristics of
breast cancer: SKBR3 (human epidermal growth factor receptor 2 (HER-2) overexpression
and weak expression of estrogen receptor (ER) and progesterone receptor (PR)), MCF-7
(overexpression of ER and PR and weak expression of HER-2), MDA-MB-231 (HER, weak
expression of ER and PR), and BT-474 (overexpression of HER-2 and ER). SK-BR3 (KCLB
No. 30030), MCF-7 (KCLB No. 30022), BT-474 (KCLB No. 60062), and MDA-MB-231 (KCLB
No. 30026) were purchased from Korea Cell Line Bank (Seoul, Korea)). SKBR-3, MCF-7,
BT-474, and MDA-MB-231 cell lines were grown at 37 ◦C in a humidified 5% CO incubator.
SK-BR-3, MCF-7, BT-474, and MDA-MB-231 cells were cultured in RPMI 1640 medium
(Gibco-BRL, Carlsbad, CA, USA), and all media were added with 10% fetal bovine serum
(FBS), penicillin at 100 U/mL, and streptomycin at 100 µg/mL (Gib-co-BRL) before use.
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4.2. Selection and Blood Spiking Test of Tumor-Associated Circulating Transcripts

We selected 10 tumor-associated circulating transcripts representative of the
epithelium (EPCAM and KRT19), proliferation (ERBB2, MKI67, and TERT), and EMT
(VIM, NPTN, MCAM, SNAI2, and FOXA2), and optimized highly accurate and sensitive
primers of corresponding transcripts (Figure S1). To find out whether RT-qPCR of ten TACT
markers could detect the breast cancer cells in blood, SK-BR-3, MCF-7, MDA-MB-231, and
BT-474 cells were spiked in 7.5 mL of blood. The breast cancer cell lines were mixed with
blood from a total of 1 × 105 cells to 1 cell, and the cDNA prepared from each sample were
subjected to the assay.

4.3. Patient Cohorts

A total of 404 types of blood were collected from patients over 20 years who were
diagnosed with breast cancer. For healthy controls, 315 blood samples were obtained from
women without a breast cancer history. All of the blood was drawn before the treatment
and followed sequential screening after the treatment (Figure S5). All of the patients
were followed up for at least 5 years. These blood samples were collected after receiving
written consent from the Institutional Ethics Committee of Yonsei Severance Hospital. The
approval number for breast cancer patients is 1-2010-0018, and the approval number for
healthy controls is 4-2011-0011. The healthy control group was additionally evaluated with
a sample that received written consent from Yonsei University Wonju University (approval
number 1041849-201311-BM-020).

4.4. Peripheral Blood from Patients and Healthy Controls

After withdrawing the first 5 mL of blood from each participant, it was discarded
for reducing epithelial contamination, and then 7.5 mL of blood was withdrawn for the
experiments. The blood sample was prepared as discussed in our previous reports [7,8].
Briefly, ACK solution (0.15 M NH4Cl, 1 mM KHCO3, and 0.1 mM Na2EDTA) was added
to lyse the red blood cells in blood, and RNA was isolated using Isol-RNA Lysis Reagent
(5 Prime, Austin, TX, USA), according to the manufacturers’ instructions. All of the
processes were performed within 4 h. The purity and concentration of total RNA were
confirmed using an Infinite 200 ® (Tecan, Salzburg, Austria). All steps were performed
under RNase-free conditions. The isolated total RNA was stored at −70 ◦C.

4.5. Reverse Transcription-Quantitative PCR Assay

Complementary DNA (cDNA) was synthesized using the M-MLV Reverse Transcrip-
tase enzyme (Invitrogen, Carlsbad, CA, USA) and a random hexamer (Invitrogen). The
CFX-96 PCR system (Bio-Rad, Hercules, CA, USA), which performs real-time quantifica-
tion, detected fluorescence using TaqMan probes designed in house. The assay includes
10 µL of 2 × Thunderbird probe qPCR mixture (Toyobo, Osaka, Japan), 5 µL of primer and
TaqMan probe mixture, and 2 µL of template cDNA and distilled water (D.W.). Positive
and negative controls were used throughout all experimental procedures. Each sample was
tested in duplicate. The reaction process was repeated 40 times, after 3 min at 95 ◦C, 15 s at
95 ◦C, and 30 s at 55 ◦C.

Gene expression used the comparative Ct method (∆∆Ct method) and normalized to
the internal housekeeping gene GAPDH. The amount of target relative to the calibrator was
given as 2 − ∆∆Ct, and the analysis used the following equation: ∆∆Ct = [∆Ct(test) = Ct)
− Ct(reference test)] − [∆Ct(calibrator) = Ct(target calibrator) − Ct(reference calibrator)].

4.6. Sensitivity and Specificity by Deep Learning Analysis

The TACTs were clinically evaluated using four types of machine learning classifiers,
namely decision tree (DT), logistic regression (LR), artificial neural network (ANN), and
support vector machine (SVM). All classifiers were implemented using R package caret
(method “rpart” for DT, “glm” for LR, “nnet” for ANN, and “e1071” for SVM). The classifier
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with the best accuracy over 1000 iterations was selected. The best model of the algorithm
was considered based on acceptable sensitivity, specificity, and accuracy.

Each deep learning model was processed using two sets: the training set and test set.
For the training and validation of the model using artificial intelligence analysis, 70% of
the total subjects, including 282 patients with breast cancer and 220 healthy volunteers,
were used (the training set), and the model was created. The remaining 30% of the total
population, including 122 patients with breast cancer and 95 healthy volunteers, was used
to test the model.

The selected artificial neural network (ANN) is a computer model made up of highly
interconnected nodes, an adaptive algorithm that can learn from pattern to pattern, and is
a proper method for medical use [40]. An ANN estimates the impact on input variables
and outcomes by increasing or decreasing the value of the connection weights between
nodes through “learning”. Specifically, its ability to help predict outcomes is determined
by the connections between neurons in the ANN [41]. Numerous studies have verified
that the ANN model could categorize breast cancer patients using medical images [42,43].
Moreover, the ANN model has been used for the analyses of genomic data [44]. The
ANN model used in this study was developed as a three-layer, feed-forward method. The
layers of the ANN model consist of an input layer of 10 TACT expression levels, a hidden
layer with 1000 hidden nodes, and an output layer with a single node generating breast
cancer positivity.

4.7. Bioinformatic Analysis of TACTs

GO enrichment analysis of TACTs genes was implemented using the Database for
Annotation, Visualization, and Integrated Discovery (DAVID) tool. The GO term was
displayed with p < 0.05. Then, we used the STRING database (https://string-db.org/
accessed on 20 June 2022) to analyze and visualize the protein–protein interaction (PPI) of
the TACTs.

4.8. Statistical Analysis

Graphs were presented using GraphPad Prism software version 7.00 (GraphPad, La
Jolla, CA, USA), and statistical analysis was performed using Statistical Package for the
Social Sciences (SPSS) software version 18.0 (SPSS Inc., Chicago, IL, USA). A cutoff analysis
of each marker to differentiate between normal and cancer patients performed ROC curve
analysis. Two-group comparisons and multiple-group comparisons were performed by
Student’s t-test, and correlation analysis was performed by Pearson correlation and one-
way ANOVA. The sensitivity, specificity, and accuracy determined the optimal diagnostic
assay. Overall survival (OS) was analyzed using the Kaplan–Meier method, and statistical
significance was compared between groups using the log-rank test. Finally, a Cox regression
model was used to evaluate the association between OS for positive and negative TACT. A
p-value < 0.05 was considered statistically significant.

5. Conclusions

In conclusion, this study is the first to demonstrate that the TACT assay is a cost-
effective method for making risk-stratified predictions using mRNA-based blood tests
combined with neural networks. This novel assay can provide essential data that facilitate
early and appropriate therapeutic decisions.
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